模型10 斜面上的平抛运动(解析版)
斜面上的平抛运动模型

斜面上的
在学习平抛运动之后经常遇见以物体从斜面上某点以不同的初速 度抛出,最终还落在斜面上为情景的试题,由于这类试题给出的已知 量比较少,解答时疑问较多,下面将对这类问题进行总结分析。
方法策略: 这类试题是平抛运动中的典型试题,一般考查以下规律的求解或判断: (1)物体的竖直位移与水平位移之比是同一个常数,这个常数等于 斜面倾角的正切值; (2)物体落在斜面上,位移方向相同,都是沿斜面方向; (3)物体的运动时间与初速度成正比; (4)物体落在斜面上时的速度方向都平行; (5)当物体的速度方向与斜面平行时,物体离斜面的距离最大并求 解最大距离。
斜面上的平抛运动

二 、抛 出点不在 斜面上的 平 抛 运 动
例 2.一 质 量 为 m 的 小 球 ,以 初速 度 沿 水平 方 向
豳 6
射 出,恰好垂直地射 到一倾角 为 30 ̄的固定斜 面上 ,并立 即
反方 向弹 回。已 知反 弹 速度
的大小是入 射速 度的 3 ,求
圈 7
在碰撞 中斜面对小球 的冲量大小 。
向与斜 面平行时 ,离斜面最远 ,如 图 2所示。
tan口 = 上
设小球的整个飞行时 间为 ,将 小球 的运 动按 常 规分解 为水平方 向的匀速直线运动和竖直方 向的
自由落体运动 ,则 :
= 0T Y 寺 gT2
联立 以上三式得 :
t :
2votБайду номын сангаасn a T: — —
二 、激趣导入法 。即通过 游戏 、谜语 、诗歌 、对联 等引入新课 。这种 引课 方法可使学生对数学 课有极 大的兴趣 ,课堂气氛 活跃 ,使学 生 尝到学 习 的乐趣 。 如《有理数的乘方》可这样设计 :以小组合作 的方式 , 把厚 0.1毫米 的纸依次折叠并计算 纸的厚度 。引导 学生观察 、发现纸张 厚度 所发生 的变 化是 在成倍 地 增加 。同时提 出问题 :继续折 叠 20次 、30次 ,会有多 厚?教师作 出假设 :如果一层楼按 高 3米计 算 ,折叠 20次有 34层 楼 高 ,折叠 30次 有 12个珠 穆 朗玛 峰 高 。这一惊人 的猜想使学生精神集 中 、思维活跃 ,进 人最佳状 态。
常见 的斜面上 的平 抛运动 可以分 为两种情 况 ,即抛
出点在 斜面上的平抛运动 和抛 出点不在斜面上 的平
抛 运动。
一 、 抛 出点在斜面上的平抛运动 例 1.如图 1所示 ,在倾 角
平抛运动:“平抛”+“斜面”模型

v2 v2
D.A、B、C处三个小球的运动轨迹可能在空中相交
解析 由于沿斜面 AB∶BC∶CD=5∶3∶1,故三个小球竖直方向运动的
位移之比为 9∶4∶1,运动时间之比为 3∶2∶1,A 项错误;斜面上平抛的小
球落在斜面上时,速度与初速度之间的夹角α满足 tanα=2tanθ,与小球
抛出时的初速度大小和位置无关,因此 B 项正确;同时 tan
α=gt,所以三
v0
个小球的初速度之比等于运动时间之比,为 3∶2∶1,C 项正确;三个小球
的运动轨迹(抛物线)在 D 点相交,因此不会在空中相交,D 项错误。
答案 BC
解析显隐
【变式训练3】(多选)如图示,小球从倾角
v1
为θ的斜面顶端A点以速率v0做平抛运动, 则下列说法正确的是( )
A.若小球落到斜面上,则v0越大,小球飞行时间越长 B.若小球落到斜面上,则v0越大,小球末速度与竖直方向的夹角越大 C.若小球落到水平面上,则v0越大,小球飞行时间越长 D.若小球落到水平面上,则v0越大,小球末速度与竖直方向的夹角越大
A.轰炸机的飞行高度 B.轰炸机的飞行速度
ห้องสมุดไป่ตู้
多选
C.炸弹的飞行时间
D.炸弹投出时的动能
审题设疑
1、审题中的关键着眼点在哪里?
2、通过什么办法找出各量之间的 关系,列方程求解?
H
x
v0
θ
H-h=12vyt vy
v
x=v0t,
vy= 1 v0 tan θ
x=tahn θ
转解析
【备选】 如图所示,小球以 v0 正对倾
注意分析:小球落到斜面 上时的末速度与竖直方向 的夹角与什么因素有关?
平抛运动与斜面模型

平抛运动与斜面模型平抛运动是一种古老的物理模型,它描述了当一个物体以一定的初速度被投掷出去时,沿着水平方向运动,并受到重力的作用而沿着竖直方向下落的运动状态。
这种运动状态被称为平抛运动,是物理学中比较简单的一种运动状态,也是一些很有用的实际问题中的基础。
平抛运动的数学模型是基于牛顿的力学定律和基本运动学公式建立的。
当一个物体以初速度v0在地面上被投掷出去时,它会以固定的速度沿水平方向移动,其水平速度不变,可以用以下方程表示:x = v0t其中,x为物体沿水平方向移动的距离,t为运动的时间。
如果物体受到重力的作用,它将沿竖直方向运动,竖直方向的速度将会发生改变。
物体的竖直运动可以由以下公式描述:y = v0t - 1/2gt^2其中,y为物体沿竖直方向下落的距离,g为重力加速度,t为运动的时间。
在这个运动状态中,物体沿着抛出角度的曲线运动,其运动轨迹可以表示为:y = xtanθ-1/2gx²/(v0cosθ)²其中,θ为抛出角度,在这个运动状态中,这个抛出角度是重要的参数之一,它会影响物体的运动轨迹。
如果初始速度v0和抛出角度θ已经确定,我们就可以使用这些公式来计算出物体在任意时间和任意位置的运动状态。
平抛运动模型有许多实际运用,其中之一是对于物体的落点的预测。
在一些体育比赛中,比如说击球运动、投掷项目等,通过预测体育器材的抛出速度和角度,运动员可以估算出它们的运动轨迹和落点。
此外,平抛运动模型也被广泛应用于医院等领域,在判断怪物或人的跳跃速度、分析运动员的动作时我们需要用到平抛运动模型。
斜面模型是一种质点受到斜面力作用而在斜面上滑动的物理模型。
当一个物体放置在斜面上后,受到位置和重力的相互作用,它在斜面上沿着向下的方向开始滑动,这种滑动称为斜面运动。
斜面运动的模型包含了许多因素,比如物体的重量、斜面的夹角、摩擦系数等,这些因素都会影响物体在斜面上的滑动状态。
基于运动学和力学原理,可以把这些因素纳入斜面运动的数学模型中。
平抛运动与斜抛运动典例分析讲义(含有答案解析)

第二讲平抛运动及斜抛运动专题训练知识重点:1、知道什么是平抛运动与斜抛运动2、理解平抛运动与斜抛运动是两个直线运动的合成3、掌握平抛运动与斜抛运动的规律,并能用来解决简单的问题知识难点:1、理解平抛运动与斜抛运动是匀变速运动2、理解平抛运动与斜抛运动在水平方向和竖直方向的运动互相独立3、会用平抛运动与斜抛运动的规律解答有关问题(一)平抛运动沿水平方向抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做平抛运动1、平抛运动的分解:(1)水平方向是匀速直线运动,水平位移随时间变化的规律是:x=vt ①(2)竖直方向是自由落体运动,竖直方向的位移随时间变化的规律是:y=gt2 ②由上面①②两式就确定了平抛物体在任意时刻的位置。
2、平抛物体的运动轨迹:由方程x=vt得t=,代入方程y=gt2,得到:y=x2这就是平抛物体的轨迹方程。
可见,平抛物体的运动轨迹是一条抛物线。
3、平抛运动的速度:如果用v x和v y分别表示物体在时刻t的水平分速度和竖直分速度,在这两个方向上分别应用运动学的规律,可知v x=vv y=gt根据v x和v y的值,按照勾股定理可以求得物体在这个时刻的速度(即合速度)大小和方向:v合=v合与水平方向夹角为θ,tanθ=如图所示:4、平抛物体的位移s=位移与水平方向的夹角α,tanα==如图所示5、运动时间:平抛运动在空中运动的时间t=由高度h决定,与初速度无关。
6、平抛运动水平位移:水平位移大小为x=v0t=v0,与水平初速度及高度h都有关系。
【典型例题】例1、在一次“飞车过黄河”的表演中,汽车在空中飞经最高点后在对岸着地.已知汽车从最高点至着地点经历的时间约0.8 s,两点间的水平距离约为30 m,忽略空气阻力,则汽车在最高点时速度约为m/s.最高点与着地点的高度差为m.(取g=10 m/s2)例2、飞机在离地面720m的高度,以70m/s的速度水平飞行,为了使从飞机上投下的炸弹落在指定的轰炸目标上,应该在离轰炸目标水平距离多远的地方投弹?(不计空气阻力g取10m/s2)可以参考媒体展示飞机轰炸目标的整个过程以及分析,帮助理解.例3、如图所示,以9.8m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为θ=30°的斜面上,则物体完成这段飞行的时间为多少?【模拟试题】1、在水平匀速飞行的飞机上,相隔1s落下物体A和B,在落地前,A物体将[]A. 在B物体之前B. 在B物体之后C. 在B物体正下方D. 在B物体前下方2、做平抛运动的物体,在水平方向通过的最大距离取决于[]A. 物体的高度和受到的重力B. 物体受到的重力和初速度C. 物体的高度和初速度D. 物体受到的重力、高度和初速度3、g取10m/s2,做平抛运动的物体在任何1s内[]A. 速度大小增加10m/sB. 动量增量相同C. 动能增量相同D. 速度增量相同4、一物体从某高度以初速度v0水平抛出,落地时速度大小为v t,则它的运动时间为[]5、如图,从倾角为θ的足够长的斜面顶端A点,先后将相同的小球以大小不同的水平速度v1和v2向右抛出,落在斜面上。
与斜面有关的平抛运动

与斜面有关的平抛运动与斜面有关的平抛运动,包括两种情况:(1)物体从空中抛出落在斜面上;(2)物体从斜面上抛出落在斜面上.在解答该类问题时,除要运用平抛运动的位移和速度规律外,还要充分利用斜面倾角,找出斜面倾角同位移和速度的关系,从而使问题得到顺利解决.两种情况的特点及分析方法对比如下:方法内容斜面飞行时间总结分解速度水平方向:v x=v0竖直方向:v y=gt合速度:v=v x2+v y2特点:tan θ=v xv y=v0gtt=v0g tan θ分解速度,构建速度三角形分解位移水平方向:x=v0t竖直方向:y=12gt2合位移:s=x2+y2特点:tan θ=yx=gt2v0t=2v0tan θg分解位移,构建位移三角形【例1】如图所示,以9.8 m/s的水平初速度v 0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的固定斜面上,这段飞行所用的时间为(不计空气阻力,g取9.8 m/s2)()A.23s B.223s , C. 3 s D.2 s【例2】如图所示,AB为固定斜面倾角为30°,小球从A点以初速度v0水平抛出,恰好落到B点.求:(空气阻力不计,重力加速度为g)(1)A、B间的距离及小球在空中飞行的时间;(2)从抛出开始,经过多长时间小球与斜面间的距离最大?最大距离为多大?【例3】如图所示,B 为竖直圆轨道的左端点,它和圆心O 的连线与竖直方向的夹角为α.一小球在圆轨道左侧的A 点以速度v 0平抛,恰好沿B 点的切线方向进入圆轨道.已知重力加速度为g ,则A 、B 之间的水平距离为( )A.v 20tan αgB.2v 20tan αgC.v 20g tan αD.2v 20g tan α【例4】如图所示,在倾角为37°的斜面上从A 点以6 m/s 的初速度水平抛出一个小球,小球落在B 点,求:(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力)(1)A 、B 两点间的距离和小球在空中飞行的时间;(2)小球刚碰到斜面时的速度方向与水平方向夹角的正切值.【例5】如图所示,一个小球从高h =10 m 处以水平速度v 0=10 m/s 抛出,撞在倾角θ=45°的斜面上的P 点,已知AC =5 m .g =10 m/s 2,不计空气阻力,求:(1)P 、C 之间的距离;(2)小球撞击P 点时速度的大小和方向.课后作业1.如图所示,位于同一高度的小球A、B分别以v1和v2的速度水平抛出,都落到了倾角为30°的斜面上的C点,小球B恰好垂直打在斜面上,则v1、v2之比为()A.1∶2B.2∶1 C.3∶2 D.2∶32.如图所示,斜面与水平面之间的夹角为45°,在斜面底端A点正上方高度为10 m处的O 点,以5 m/s的速度水平抛出一个小球,飞行一段时间后撞在斜面上,不计空气阻力,这段飞行所用的时间为(g取10 m/s2)()A.2 s B. 2 s C.1 s D.0.5 s3.如图所示,一个倾角为37°的斜面固定在水平面上,在斜面底端正上方的O点将一小球以速度v0=3 m/s水平抛出,经过一段时间后,小球垂直打在斜面P点处.(小球可视为质点,不计空气阻力,取重力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8),则()A.小球击中斜面时的速度大小为5 m/sB.小球击中斜面时的速度大小为4 m/sC.小球做平抛运动的水平位移是1.6 mD.小球做平抛运动的竖直位移是1 m4.将一小球以水平速度v0=10 m/s从O点向右抛出,经 3 s小球恰好垂直落到斜面上的A点,不计空气阻力,g=10 m/s2,B点是小球做自由落体运动在斜面上的落点,如图所示,下列判断正确的是()A.斜面的倾角是60°B.小球的抛出点距斜面的竖直高度约是15 mC.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P的上方D.若将小球以水平速度v0′=5 m/s向右抛出,它一定落在AB的中点P处5.如图所示,在斜面顶端先后水平抛出同一小球,第一次小球落到斜面中点,第二次小球落到斜面底端,从抛出到落至斜面上(忽略空气阻力)( )A.两次小球运动时间之比t 1∶t 2=1∶2B.两次小球运动时间之比t 1∶t 2=1∶2C.两次小球抛出时初速度之比v 01∶v 02=1∶2D.两次小球抛出时初速度之比v 01∶v 02=1∶46.如图所示,从斜面上的A 点以速度v 0水平抛出一个物体,飞行一段时间后,落到斜面上的B 点,已知AB =75 m ,α=37°,不计空气阻力,g =10 m/s 2,sin 37°=0.6,下列说法正确的是( )A.物体的位移大小为60 mB.物体飞行的时间为6 sC.物体的初速度v 0大小为20 m/sD.物体在B 点的速度大小为30 m/s7.如图所示,可视为质点的小球,位于半径为3m 半圆柱体左端点A 的正上方某处,以一定的初速度水平抛出小球,其运动轨迹恰好能与半圆柱体相切于B 点.过B 点的半圆柱体半径与水平方向的夹角为60°,则初速度为(不计空气阻力,重力加速度g 取10 m/s 2)( )A.553 m/sB.4 3 m/sC.3 5 m/sD.152m/s8.如图所示,一小球从平台上水平抛出,恰好落在平台前一倾角为α=53°的固定斜面顶端并刚好沿斜面下滑,已知平台到斜面顶端的高度为h =0.8 m ,不计空气阻力,g =10 m/s 2,sin 53°=0.8,cos 53°=0.6,求: (1)小球水平抛出的初速度大小v 0; (2)斜面顶端与平台边缘的水平距离x .与斜面有关的平抛运动参考答案【例1】【答案】 C【解析】 如图所示,把末速度分解成水平方向的分速度v 0和竖直方向的分速度v y ,则有:tan 30°=v 0v y ,v y =gt ,联立得:t=v 0g tan 30°=3v 0g= 3 s ,故C 正确. 【例2】【答案】 (1)4v 0 23g 23v 03g (2)3v 03g 3v 0 212g【解析】 (1)设飞行时间为t ,则有:水平方向位移l AB cos 30°=v 0t 竖直方向位移l AB sin 30°=12gt 2解得:t =2v 0g tan 30°=23v 03g ,l AB =4v 023g .(2)方法二(结合斜抛运动分解)如图所示,把初速度v 0、重力加速度g 都分解成沿斜面和垂直斜面的两个分量.在垂直斜面方向上,小球做的是以v 0y 为初速度、g y 为加速度的“竖直上抛”运动.小球到达离斜面最远处时,速度v y =0, 由v y =v 0y -g y t ′可得:t ′=v 0y g y =v 0sin 30°g cos 30°=v 0g tan 30°=3v 03g小球离斜面的最大距离y =v 0y22g y =v 0 2sin 2 30°2g cos 30°=3v 0 212g.【例3】【答案】 A【解析】 如图所示,对在B 点时的速度进行分解,小球运动的时间t =v y g =v 0tan αg,则A 、B 间的水平距离x =v 0t =v 20tan αg,故A 正确,B 、C 、D 错误.【例4】【答案】 (1)6.75 m 0.9 s (2)32【解析】 (1)如图所示,小球落到B 点时位移与初速度的夹角为37°,设运动时间为t . 则tan 37°=h x =12gt 2v 0t =56t又因为tan 37°=34,解得:t =0.9 s所以x =v 0t =5.4 m则A 、B 两点间的距离l =xcos 37°=6.75 m(2)设小球落到B 点时速度方向和水平方向的夹角为α,则tan α=v y v 0=gt v 0=32.【例5】【答案】 (1)5 2 m (2)10 2 m/s 方向垂直于斜面向下 【解析】 (1)设P 、C 之间的距离为L ,根据平抛运动规律有: AC +L cos θ=v 0t ,h -L sin θ=12gt 2联立解得:L =5 2 m ,t =1 s.(2)小球撞击P 点时的水平速度v 0=10 m/s 竖直速度v y =gt =10 m/s所以小球撞击P 点时速度的大小v =v 02+v y 2=10 2 m/s设小球撞击P 点时的速度方向与水平方向的夹角为α,则tan α=v yv 0=1 解得:α=45°故小球撞击P 点时速度方向垂直于斜面向下.课后作业1.【答案】C【解析】球A 做平抛运动,根据分位移公式,有x =v 1t ,y =12gt 2,又tan 30°=yx ,联立解得v 1=32gt ;小球B 恰好垂直打到斜面上,则有tan 30°=v 2v y =v 2gt ,则得v 2=33gt ,可得v 1∶v 2=3∶2,故C 正确,A 、B 、D 错误. 2.【答案】C【解析】设小球撞到斜面AB 中的一点D 上,则小球的水平运动的时间与竖直下落的时间相等,设飞行时间为t ,则根据几何关系可得v 0t =10 m -12gt 2,代入数据解得t =1 s ,故选项C正确. 3.【答案】 A【解析】 P 点小球的速度方向与斜面垂直,则有:tan 37°=v 0v y ,解得:v y =v 0tan 37°=334 m/s=4 m/s ,小球击中斜面时的速度大小为:v =v 20+v 2y =32+42 m/s =5 m/s ,A 正确,B 错误;小球运动的时间:t =v y g =410 s =0.4 s ,可知水平位移:x =v 0t =3×0.4 m =1.2 m ,竖直位移:y =12gt 2=12×10×0.42 m =0.8 m ,C 、D 错误.4.【答案】 C【解析】 设斜面倾角为θ,对小球在A 点的速度进行分解有tan θ=v 0gt,解得θ=30°,A 错误;小球距过A 点水平面的距离为h =12gt 2=15 m ,所以小球的抛出点距斜面的竖直高度一定大于15 m ,B 错误;若小球的初速度为v 0′=5 m/s ,过A 点做水平面,小球落到水平面的水平位移是小球以初速度v 0=10 m/s 抛出时的一半,延长小球运动的轨迹线,可知小球应该落在P 、A 之间,C 正确,D 错误。
专题02 平抛运动的描述——解析版

专题2 平抛运动的描述(教师版)一、目标要求二、知识点解析1.平抛运动的定义将物体以一定的速度抛出,如果物体只受重力的作用,这时的运动叫做抛体运动;做抛体运动的物体只受到重力作用,既加速度g不变,因此抛体运动一定是是匀变速运动.抛体运动开始时的速度叫做初速度.如果初速度是沿水平方向的,这个运动叫做平抛运动.平抛运动是匀变速曲线运动.平抛运动的特征:①具有水平方向的初速度②只受重力作用2.平抛运动的基本规律(1)水平方向:匀速直线运动.(2)竖直方向:自由落体运动,加速度为g.3.平抛运动的运动规律v的方向相同;竖直方向为y轴,正方向向下;物以抛出点为原点取水平方向为x轴,正方向与初速度(,),下面将就质点任意时刻的速度、位移进行讨论.体在任意时刻t位置坐标为P x yy(1)速度公式:水平方向和竖直方向速度:0x y v v v gt =⎧⎪⎨=⎪⎩因此物体的实际速度为:0y x v v gtv v tan α⎧===⎪⎪⎨⎪==⎪⎩(2)位移公式水平方向和竖直方向位移:0212x v t y gt =⎧⎪⎨=⎪⎩因此实际位移为:02S y gt x v tan θ⎧⎪==⎪⎨⎪==⎪⎩注意:显然,位移和速度的夹角关系为:12tan tan θα=,即v 的反向延长线交于OA 的中点O ’.这一结论在运算中经常用到.(3)轨迹公式 由0x v t =和212y gt =可得2202g y x v =,所以平抛运动的轨迹是一条抛物线. 4.平抛运动的几个重要结论(1)运动时间:t =(2)落地的水平位移:x x v t v ==,即水平方向的位移只与初速度0v 和下落高度h 有关.(3)落地时速度:v =0v 和下落高度h 有关平抛运动 (4)两个重要推论:表示速度矢量v 与水平方向的夹角,故 表示位移矢量与水平方向的夹角,故 ①平抛运动中,某一时刻速度与水平方向夹角的正切值是位移与水平方向夹角正切值的2倍. ②根据示意图,我们可知,平抛运动中,某一时刻速度的反向延长线与x 轴的交点为水平位移的中点. 5.求解平抛运动飞行时间的四种方法(1)已知物体在空中运动的高度,根据212h gt =,得到t = (2)已知水平射程x 和初速度0v ,也可以求出物体在空中运动的时间0x t v =(3)已知物体在空中某时刻的速度方向与竖直方向的夹角θ与初速度0v 的大小,根据0v gttan θ=可以求得时间.(4)已知平抛运动的位移方向与初速度方向的夹角α及初速度0v 的大小,根据200122gtgt v t v tan α==可求出时间.6.类平抛运动有时物体的运动与平抛运动很相似,也是在某个方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动.对这种运动像平抛又不是平抛,通常称为平抛运动,处理方法与平抛运动一样,只是a 不同而已.如图所示倾角为θ.一物块沿上方顶点P 水平射入,而从右下方顶点Q 离开.xα0tan y xv gt v v α==θ21tan tan 222x x y gt gt x v t v θα====7.斜面上的平抛运动解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,若已知斜面倾角,则相当于间接告诉合速度或者合位移的方 向.这个类问题主要就是将平抛运动规律与几何知识综合起来.①当物体的起点和落点均在斜面上此类问题的特点是物体的位移与水平方向的夹角即为斜面的倾角.一般要从位移关系入手,根据位移中分运动和合运动的大小和方向(角度)关系进行求解.例如:两个相对的斜面,倾角分别为037和053,在顶点把两个小球以相同初速度分别向左、向右水平抛出,小球都落在斜面上,若不计空气阻力,是求解A 、B 两个小球落到斜面上的时间之比是多少.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,== b :由于物体的位移与水平方向的夹角即为斜面的倾角可知:tan y x θ=,()201tan 2gt v t θ=,0tan v t g θ2=,所以:tan 379tan 5316A B t t ︒==︒ ②当物体的起点在斜面外,落点在斜面上 解决这类问题应该注意一下几点: (1)斜面的倾角θ是一个很重要的条件(2)当物体做平抛运动,落到斜面上时,是垂直打到斜面上,所以水平方向的速度和竖直方向的速度有以下关系:0tan yv v θ=根据这个公式再加上水平方向和竖直方向的位移关系就可以方便的求解.例如:在倾角为37°的斜面底端的正上方H 处平抛一个小球,该小球垂直打在斜面上的一点,求小球抛出时的初速度.a :从位移关系入手,我们可以求出水平方向和竖直方向的位移大小:2012x v t y gt ,==,由图可知, 2012tan 37H gt v t-︒=. b :由速度关系得:0tan 37v gt ︒=,解之得:0v = 8.斜抛运动的基本概念(1)定义:斜向上或斜向下抛出的物体只在重力(不考虑空气阻力)作用下的运动叫做斜抛运动. (2)斜抛运动的特点:水平方向速度不变,竖直方向仅受重力,加速度为g .(3)斜抛运动的分解:斜抛运动可以看成是水平方向的匀速直线运动和竖直方向的竖直上抛或竖直下 抛运动的合运动. (4)斜抛运动的方程如图所示,斜上抛物体初速度为v ,与水平方向夹角为θ,则速度:x yv v v v gt cos sin θθ=⎧⎪⎨=-⎪⎩位移:212x v t y v t gt cos sin θθ=⎧⎪⎨=-⎪⎩轨迹方程:可得:xt v cos θ=,代入y 可得2222gx y x v tan cos θθ=-可以看出:y =0时 (1)x =0是抛出点位置.(2)22v x gsin θ=是水平方向的最大射程.(3)飞行时间:2v t gsin θ=三、考查方向题型1:平抛运动的基本规律典例一:(多选)关于平抛运动,下列说法中正确的是( ) A .落地时间仅由抛出点高度决定B .抛出点高度一定时,落地时间与初速度大小有关C .初速度一定的情况下,水平飞出的距离与抛出点高度无关D .抛出点高度一定时,水平飞出距离与初速度大小成正比 【答案】AD【解析】AB .平抛运动在竖直方向上做自由落体运动,由 h =212gt 得 t则知平抛运动的时间由抛出点高度决定,与初速度无关,故A 正确,B 错误;CD .平抛运动的水平距离 x =v 0t=v 抛出点高度一定时,水平飞出距离与初速度的大小成正比,故C 错误,D 正确.题型2:平抛运动的计算典例二:(2020江苏·多选)如图所示,小球A 、B 分别从2l 和l 的高度水平抛出后落地,上述过程中A 、B 的水平位移分别为l 和2l 。
2025新高考物理抛体运动的9种情景解读+训练(解析版)

抛体运动的9种情景解读+训练(解析版)目录情景1平抛运动+斜面 1情景2平抛运动+圆弧面 15情景3平抛运动+竖直面 23情景4抛体运动+体育 29情景5抛体运动+娱乐 43情景6抛体运动+机械能和极值 55情景7平抛运动+相遇 69情景8抛体运动+竖直面内圆周运动 76情景9喷泉 84情景1平抛运动+斜面【情景解读】情景图示解题方法基本规律运动时间分解速度,构建速度的矢量三角形水平:v x=v0竖直:v y=gt合速度:v=v x2+v y2由tanθ=v0v y=v0gt得t=v0g tanθ分解位移,构建位移的矢量三角形水平:x=v0t竖直:y=12gt2合位移:x合=x2+y2由tanθ=yx=gt2v0得t=2v0tanθg在运动起点同时分解v0、g由0=v1-a1t,0-v21=-2a1d得t=v0tanθg,d=v20sinθtanθ2g分解平行于斜面的速度v由v y=gt得t=v0tanθg【针对性训练】1.(2024湖南岳阳5月三模)如图所示,光垂直照射倾斜木板,把一个质量为0.2kg的小球从倾斜木板顶端水平弹射出来做平抛运动,小球刚好落在倾斜木板底端。
然后使用手机连续拍照功能,拍出多张照片记录小球此运动过程。
通过分析照片可以得到小球的飞行时间为0.6s,小球与其影子距离最大时,影子A距木板顶端和底端的距离之比为7:9,重力加速度g=10m/s2。
下列说法不正确的是()A.飞行过程中,重力对小球做的功为3.6JB.小球与影子距离最大时,刚好是飞行的中间时刻C.木板的斜面倾角θ=37°D.木板的长度为3.6m【参考答案】C【名师解析】小球做平抛运动,竖直方向做自由落体运动,根据匀变速直线运动位移时间公式有h=12gt2=12×10×0.62m=1.8m根据功的公式,可得飞行过程中,重力对小球做的功为W G =mgh =0.2×10×1.8J =3.6J 故A 正确;经过分析可知,当小球与影子距离最大时,此时小球的速度方向与斜面平行,即速度方向与水平方向的夹角为θ,此时竖直方向的速度为v y =v 0tan θ当小球落到斜面底端时,此时小球位移与水平方向的夹角为θ,令此时速度方向与水平方向的夹角为α,则有tan α=gt v 0=12gt 212v 0t =2h x =2tan θ此时竖直方向的速度为v y 1=v 0tan α=2v 0tan θ则有v y v y 1=gt 1gt 2=v 0tan θ2v 0tan θ=12则有t 1t 2=12故小球与影子距离最大时,刚好是飞行的中间时刻,故B 正确;将小球的运动沿斜面与垂直于斜面分解,建立直角坐标系如图所示由题意可知OA :AB =7:9则有OA :OB =7:16可得OA =v 0cos θt 1+12g sin θt 12OB =v 0cos θt 2+12g sin θt 22又由于v y =v 0sin θ-g cos θt 1则y 方向速度减为零需要的时间为t1=v 0sin θg cos θ结合上述有t 2=2t 1联立可得OA=v02sinθg1+12tan2θOB=2v02sinθg1+tan2θ可得tanθ=33则有θ=30°故木板的长度为OB=hsinθ=3.6m故C错误,D正确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【变式训练 3】(多选)如图所示,一质点以速度 v0 从倾角为 θ 的斜面底端斜向上抛出,落到斜面上的 M 点且速 度水平向右。现将该质点以 2v0 的速度从斜面底端朝同样方向抛出,落在斜面上的 N 点。下列说法正确的是 ( )。
【解析】(1)设石块击中物块的过程中,石块运动的时间为 t 对物块,运动的位移 s=vt 对石块,竖பைடு நூலகம்方向有(l+s)sin37°= gt2 水平方向有(l+s)cos37°=v0t 解得 v0=20m/s。 (2)对物块有 x1=vt 对石块,竖直方向有 h= gt2
解得 t= =4s
水平方向有 +x1=v1t 联立可得 v1=41.7m/s。 【典例 3】(多选)如图所示,从倾角为 θ 的斜面上某点先后将同一小球以不同的初速度水平抛出,小球均落在斜 面上,当抛出的速度为 v1 时,小球到达斜面时速度方向与斜面的夹角为 α1;当抛出速度为 v2 时,小球到达斜面时 速度方向与斜面的夹角为 α2,则( )。
根据几何关系可知,水平位移 x=tahnα=60 m
水平方向上,v0=xt=20 m/s.
(2)竖直方向上的位移 y=12gt2
水平方向上位移 x=v0t 根据平抛运动规律可知 tanα=yx=2gvt0 竖直分速度 vy=gt
根据平行四边形定则可知,合速度 v= v20+v2y
联立解得 v=
13 2
【变式训练 2】如图所示,在倾角为 37°的固定斜坡上有一人,前方有一物块沿斜坡匀速下滑,且速度 v=15 m/s, 在二者相距 l=30 m 时,此人以速度 v0 水平抛出一石块打击物块,人和物块都可看成质点。(已知 sin 37°=0.6,g=10 m/s2)
(1)若物块在斜坡上被石块击中,求 v0 的大小。 (2)当物块在斜坡末端时,物块离人的高度 h=80 m,此刻此人以速度 v1 水平抛出一石块打击物块,同时物块开始 沿水平面运动,物块速度 v=15 m/s,若物块在水平面上能被石块击中,求速度 v1 的大小。 【答案】(1)20m/s (2)41.7m/s
【解析】选 D。A、B、C 处三个小球下降的高度之比为 9∶4∶1,根据平抛运动的时间 t= 知,A、B、C 处 三个小球运动时间之比为 3∶2∶1,故 A 项错误;因最后三个小球落到同一点,抛出点不同,轨迹不同,故三个小 球的运动不可能在空中相交,故 B 项错误;三个小球的水平位移之比为 9∶4∶1,根据 x=v0t 知,初速度之比为 3∶2∶1,故 C 项错误;对于任意一球,因为平抛运动某时刻速度方向与水平方向夹角的正切值是位移与水平方 向夹角正切值的 2 倍,三个小球落在斜面上,位移与水平方向夹角相等,即位移与水平方向夹角正切值相等,则 三个小球在 D 点速度与水平方向上的夹角的正切值相等,也就是三个小球在 D 点的速度与水平方向的夹角相 等,故 D 项正确。 【变式训练 1】第十六届中国崇礼国际滑雪节在张家口市崇礼区的长城岭滑雪场隆重举行.如图 1 所示,跳 台滑雪运动员经过一段加速滑行后从 A 点水平飞出,落到斜坡上的 B 点.A、B 两点间的竖直高度 h=45 m,斜坡与水平面的夹角 α=37°,不计空气阻力(取 sin37°=0.6,cos37°=0.8,g 取 10 m/s2).求:
(1)运动员水平飞出时初速度 v0 的大小; (2)设运动员从 A 点以不同的水平速度 v0 飞出,落到斜坡上时速度大小为 v,请通过计算确定 v 与 v0 的 关系式,并在图 2 中画出 v-v0 的关系图象.
【答案】(1)20 m/s
(2)v=
13 2
v0
图见解析
【解析】(1)运动员离开 A 点后做平抛运动,竖直方向上,h=12gt2
方向:tan θ=
【典例 1】如图所示,倾角为 θ 的斜面上有 A、B、C 三点,现从这三点分别以不同的初速度水平抛出一小球, 三个小球均落在斜面上的 D 点,今测得 AB∶BC∶CD=5∶3∶1,由此可判断 ( )
A.A、B、C 处三个小球运动时间之比为 1∶2∶3 B.A、B、C 处三个小球的运动轨迹可能在空中相交 C.A、B、C 处三个小球的初速度大小之比为 1∶2∶3 D.A、B、C 处三个小球落在斜面上时速度与初速度间的夹角之比为 1∶1∶1 【答案】D
B. va= 2vb
C. ta=tb
D. ta= 2tb
【解析】做平抛运动的物体运动时间由竖直方向的高度决定,即 t= 2h ,小球从 a 处下落的高度是 b g
处的 2 倍,有 ta=
2tb ,D 正确;水平方向的距离由高度和初速度决定,即 x=v0
2h ,由题意得 a 处的 g
水平位移是 b 处的 2 倍,可知 va= 2vb ,B 正确。
A.当 v1>v2 时,α1>α2 B.当 v1>v2 时,α1<α2 C.无论 v1、v2 关系如何,均有 α1=α2 D.α1、α2 的大小与斜面的倾角 θ 有关 【答案】CD 【解析】从斜面上抛出,又落到斜面上,位移偏向角一定为 θ,设速度偏向角为 φ,根据速度偏向角和位移偏向角 的关系有 tanφ=2tanθ,故无论 v1、v2 关系如何,一定有 φ 相等,根据 α=φ-θ,有 α1=α2,且大小与斜面倾角 θ 有关,A、 B 两项错误,C、D 两项正确。
模型 10 斜面上的平抛运动(解析版)
平抛运动与斜面模型组合是一种常见的题型,也是高考考查的热点题型,具体有以下两种情况。
模型
解题方法
方法应用
分解速度, 构建速度 矢量三角
水平方向:vx=v0 竖直方向:vy=gt 合速度:v=
形
方向:tan θ=
分解位移, 构建位移 矢量三角 形
水平方向:x=v0t 竖直方向:y= gt2 合位移:s=
v0,作图如下.
【典例 2】如图所示,在斜面顶端 a 处以速度 va 水平抛出一小球,经过时间 ta 恰好落在斜面底端 P 处;今 在 P 点正上方与 a 等高的 b 处以速度 vb 水平抛出另一小球,经过时间 tb 恰好落在斜面的中点处。若不计空 气阻力,下列关系式正确的是( )
A. va=vb 【答案】BD