2021届高三大一轮复习40分钟单元基础小练 32 椭圆的定义、标准方程及性质

合集下载

2021年新高考数学一轮复习题型归纳与达标检测:48 椭圆及其性质(解析版)

2021年新高考数学一轮复习题型归纳与达标检测:48 椭圆及其性质(解析版)

『高考复习·精推资源』『题型归纳·高效训练』第48讲椭圆及其性质(讲)思维导图知识梳理1.椭圆的定义平面内与两个定点F1,F2的距离的和等于常数2a(2a>|F1F2|)的动点P的轨迹叫做椭圆,这两个定点F1,F2叫做椭圆的焦点.2.椭圆的标准方程(1)中心在坐标原点,焦点在x轴上的椭圆的标准方程为x2a2+y2b2=1(a>b>0).(2)中心在坐标原点,焦点在y轴上的椭圆的标准方程为y2a2+x2b2=1(a>b>0).3.椭圆的几何性质题型归纳题型1 椭圆的定义及其应用【例1-1】(2019秋•盐田区校级期中)已知F1(﹣3,0),F2(3,0)动点M满足|MF1|+|MF2|=10,则动点M的轨迹方程.【分析】依据动点M满足的条件及椭圆的定义可得:动点M的轨迹是:以F1,F2为焦点的椭圆,即可得出结论.【解答】解:根据椭圆的定义知,到两定点F1,F2的距离之和为10>|F1F2|=6,动点M的轨迹是:以F1,F2为焦点的椭圆,且a=5,c=3,b=4,∴动点M的轨迹方程是=1.故答案为=1.【例1-2】(2019•新课标Ⅲ)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为.【分析】设M(m,n),m,n>0,求得椭圆的a,b,c,e,由于M为C上一点且在第一象限,可得|MF1|>|MF2|,△MF1F2为等腰三角形,可能|MF1|=2c或|MF2|=2c,运用椭圆的焦半径公式,可得所求点的坐标.【解答】解:设M(m,n),m,n>0,椭圆C:+=1的a=6,b=2,c=4,e==,由于M为C上一点且在第一象限,可得|MF1|>|MF2|,△MF1F2为等腰三角形,可能|MF1|=2c或|MF2|=2c,即有6+m=8,即m=3,n=;6﹣m=8,即m=﹣3<0,舍去.可得M(3,).故答案为:(3,).【跟踪训练1-1】(2019秋•龙岗区期末)已知△ABC的周长为20,且顶点B(0,﹣4),C(0,4),则顶点A的轨迹方程是()A.(x≠0)B.(x≠0)C.(x≠0)D.(x≠0)【分析】根据三角形的周长和定点,得到点A到两个定点的距离之和等于定值,得到点A的轨迹是椭圆,椭圆的焦点在y轴上,写出椭圆的方程,去掉不合题意的点.【解答】解:∵△ABC的周长为20,顶点B(0,﹣4),C(0,4),∴BC=8,AB+AC=20﹣8=12,∵12>8∴点A到两个定点的距离之和等于定值,∴点A的轨迹是椭圆,∵a=6,c=4∴b2=20,∴椭圆的方程是故选:B.【跟踪训练1-2】(2019秋•广东期末)已知椭圆+=1上的点P到一个焦点的距离为3,则P到另一个焦点的距离为.【分析】椭圆的长轴长为10,根据椭圆的定义,利用椭圆上的点P到一个焦点的距离为3,即可得到P到另一个焦点的距离.【解答】解:椭圆的长轴长为10根据椭圆的定义,∵椭圆上的点P到一个焦点的距离为3∴P到另一个焦点的距离为10﹣3=7故答案为:7【名师指导】椭圆定义的应用技巧椭圆定义的应用主要有两个方面:一是确认平面内与两定点有关的轨迹是否为椭圆;二是当P在椭圆上时,与椭圆的两焦点F1,F2组成的三角形通常称为“焦点三角形”,利用定义可求其周长,利用定义和余弦定理可求|PF1|·|PF2|,通过整体代入可求其面积等.题型2 椭圆的标准方程【例2-1】(2020春•黄浦区校级期末)如图,已知椭圆C的中心为原点O,为椭圆C的左焦点,P为椭圆C上一点,满足|OP|=|OF|且|PF|=4,则椭圆C的标准方程为.【分析】设椭圆的方程为(a>b>0),由题可知,c=,根据|OP|=|OF|且|PF|=4可求出点P的坐标,将其代入椭圆方程,并结合a2=b2+c2解出a2和b2的值即可.【解答】解:由题可知,c=,过点P作PM垂直x轴于M,设|OM|=t,则|FM|=﹣t,由勾股定理知,|PM|2=|OP|2﹣|OM|2=|PF|2﹣|FM|2,即,解得,∴,∴点P的坐标为(﹣,),设椭圆的方程为(a>b>0),则,化简得,又a2=b2+c2=b2+20,∴a2=36,b2=16,∴椭圆的标准方程为.故答案为:.【例2-2】(2019秋•伊春区校级期中)过点(,﹣),且与椭圆+=1有相同的焦点的椭圆的标准方程.【分析】求出椭圆+=1的焦点,即c=4,可设所求椭圆方程,由a,b,c的关系,和点在椭圆上得到a,b的方程组,解出a,b,进而得到所求椭圆方程.【解答】解:椭圆+=1的焦点为(0,±4),则所求椭圆的c=4,可设椭圆方程为=1(a>b>0),则有a2﹣b2=16,①再代入点(,﹣),得,=1,②由①②解得,a2=20,b2=4.则所求椭圆方程为=1.故答案为:=1.【例2-3】(2019秋•南通期末)椭圆以坐标轴为对称轴,经过点(3,0),且长轴长是短轴长的2倍,则椭圆的标准方程为()A.B.C.或D.或【分析】根据题意,按椭圆的焦点位置分2种情况讨论,求出对应的椭圆方程,综合即可得答案.【解答】解:根据题意,要求椭圆经过点(3,0),且长轴长是短轴长的2倍,分2种情况讨论:①,椭圆的焦点在x轴上,则a=3,b=,此时椭圆的方程为+=1,②,椭圆的焦点在y轴上,则b=3,则a=6,此时椭圆的方程为+=1;故椭圆的方程为+=1或+=1;故选:C.【跟踪训练2-1】(2019秋•广东期末)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=3|BF2|,|BF1|=5|BF2|,则椭圆C的方程为()A.B.C.D.【分析】根据椭圆的定义以及余弦定理列方程可解得a,再由隐含条件求得b,则椭圆的方程可求.【解答】解:∵|BF1|=5|BF2|,且|BF1|+|BF2|=2a,∴|BF2|=,|BF1|=,∵|AF2|=3|BF2|,∴|AF2|=a,∵|AF1|+|AF2|=2a,∴|AF1|=a,∴|AF1|=|AF2|,则A在y轴上.在Rt△AF2O中,cos∠AF2O=,在△BF1F2中,由余弦定理可得cos∠BF2F1==,根据cos∠AF2O+cos∠BF2F1=0,可得,解得a2=2,∴b2=a2﹣c2=1.∴椭圆C的方程为:.故选:A.【跟踪训练2-2】(2019秋•天心区校级期末)若直线x﹣2y+2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为()A.+y2=1B.+=1C.+y2=1或+=1D.以上答案都不对【分析】利用椭圆的简单性质求解,题中没有明确焦点在x轴还是在y轴上,所以分情况讨论.【解答】解:设焦点在x轴上,椭圆的标准方程为∴焦点坐标为(﹣c,0),(c,0),顶点坐标为(0,b),(0,﹣b);椭圆的a,b,c关系:;a2﹣b2=c2∵直线x﹣2y+2=0恒过定点(0,1)∴直线x﹣2y+2=0必经过椭圆的焦点(﹣c,0),和顶点(0,b)带入直线方程:解得:c=2,b=1,a=∴焦点在x轴上,椭圆的标准方程为;当设焦点在y轴,椭圆的标准方程为∴焦点坐标为(0,﹣c),(0,c),顶点坐标为(﹣b,0),(b,0);椭圆的a,b,c关系:a2﹣b2=c2∵直线x﹣2y+2=0恒过定点(0,1)∴直线x﹣2y+2=0必经过椭圆的焦点(0,c),和顶点(﹣b,0)带入直线方程解得:c=1,b=2,a=∴焦点在y轴上,椭圆的标准方程为.故选:C.【跟踪训练2-3】(2019秋•阳泉期末)经过两点A(0,2)、B(,)的椭圆的标准方程为.【分析】本题先设椭圆的方程为+=1,然后将两点A(0,2)、B(,)代入椭圆的方程,解关于m、n的二元一次方程组,即可得到椭圆的标准方程.【解答】解:由题意,设椭圆的方程为+=1,则,解得.∴椭圆的标准方程为x2+=1.故答案为:x2+=1.【名师指导】根据条件求椭圆方程的2种方法题型3 椭圆的几何性质【例3-1】(2020•邵阳三模)已知椭圆C:(a>b>0)的左、右焦点分别为F1,F2,M为椭圆上一点,,线段MF2的延长线交椭圆C于点N,若|MF1|,|MN|,|NF1|成等差数列,则椭圆C的离心率为()A.B.C.D.【分析】设|MF2|=m,根据等差数列的性质和椭圆的定义可得|MN|=a,再根据向量的垂直可得a=m,即可求出离心率.【解答】解:设|MF 2|=m ,∵|MF 1|,|MN|,|NF1|成等差数列,∴2|MN|=|MF1|+|NF1|,∴|MN|=|MF2|+|NF2|=2a﹣|MF1|+2a﹣|NF1|=4a﹣2|MN|,∴|MN|=a,∴|NF2|=a﹣m,∴|NF1|=2a﹣(a﹣m)=a+m,∵,∴MF1⊥MF2,∴Rt△F1MN中,|NF1|2=|MN|2+|MF1|2,∴(2a﹣m)2+(a)2=(a+m)2,整理可得m=a,∴|MF2|=a,|MF1|=a,∴|F2F1|2=|MF2|2+|MF1|2,∴4c2=2a2,∴e==,故选:A.【例3-2】(2020•襄州区校级四模)已知F1、F2分别是椭圆的左、右焦点,P是椭圆上一点(异于左、右顶点),若存在以为半径的圆内切于△PF1F2,则椭圆的离心率的取值范围是()A.B.C.D.【分析】利用已知条件列出三角形的面积,推出不等式,然后推出椭圆的离心率的范围.【解答】解:F1、F2分别是椭圆的左、右焦点,P是椭圆上一点(异于左、右顶点),若存在以为半径的圆内切于△PF1F2,可得:,∴,∴,∴(a+c)2≤2b2,则0≤a2﹣2ac﹣3c2,∵(a+c)(a﹣3c)≥0,∴a≥3c,∴.故选:D.【例3-3】(2019秋•和平区校级期末)已知F1,F2椭圆的左右焦点,|F1F2|=4,点在椭圆C上,P是椭圆C上的动点,则的最大值为()A.4B.C.5D.【分析】由题意求出椭圆的方程,可得左焦点F1的坐标,求出数量积的表达式,再由P的纵坐标的范围及二次函数的性质可得所求的结果.【解答】解:由题意可得:c=2,=1,a2=b2+c2,解得a2=8,b2=4,所以椭圆的方程为:=1,可得F1(﹣2,0),设P(x,y)则:=1,所以可得:x2=8﹣2y2,则=(2﹣x,﹣y)(﹣2﹣x,﹣y)=x2﹣4+y2﹣=﹣y2﹣+4=﹣(y)+,当且仅当y=∈[﹣2,2],时,则的最大值为:,故选:B.【跟踪训练3-1】(2020•丹东二模)已知O为椭圆C的中心,F为C的一个焦点,点M在C外,=3,经过M的直线l与C的一个交点为N,△MNF是有一个内角为120°的等腰三角形,则C的离心率为()A.B.C.﹣1D.【分析】不妨设F(c,0),计算M的坐标,根据等腰三角形得到N点坐标,代入椭圆方程化简即可求出离心率.【解答】解:不妨设F(c,0),,则M(﹣3c,0),易知△MNF中只能∠MNF=120°,△MNF是有一个内角为120°的等腰三角形,则N(﹣c,c),将N代入椭圆方程得到,即,解得或e2=3(舍去),故e=,故选:B.【跟踪训练3-2】(2020春•湖北期末)设椭圆C:=1(a>b>0)的两个焦点分别为F1,F2,若在x轴上方的C上存在两个不同的点M,N满足∠F1MF2=∠F1NF2=,则椭圆C离心率的取值范围是()A.B.C.D.【分析】当点M在上顶点A时,∠F1MF2最大,要使在x轴上方的C上存在两个不同的点M,N满足∠F1MF2=∠F1NF2=,只需∠F1AF2>,即tan,即可求解.【解答】解:如图,当点M在上顶点A时,∠F1MF2最大,要使在x轴上方的C上存在两个不同的点M,N满足∠F1MF2=∠F1NF2=,只需∠F1AF2>,即∠AF2F1<∴tan,⇒3b2<c2⇒3(a2﹣c2)<c2,⇒3a2<4c2,e,则椭圆C离心率的取值范围是:(,1),故选:C.【跟踪训练3-3】(2020•武侯区校级模拟)已知P是椭圆上一动点,A(﹣2,1),B(2,1),则的最大值是()A.B.C.D.【分析】过点P作PH⊥AB,垂足为H,设P(x,y),可得,由正切的和角公式可得,通过换元令t=1﹣y∈[0,2],结合基本不等式可得当时cos∠APB最大,由此得解.【解答】解:过点P作PH⊥AB,垂足为H,设P(x,y),则,∴=,令t=1﹣y∈[0,2],当t=0时,tan∠APB=0,∠APB=π,cos∠APB=﹣1;当t∈(0,2]时,,当且仅当,即时取等号,此时cos∠APB最大,且.故选:A.【名师指导】一、求椭圆离心率的三种方法1.直接求出a,c来求解e.通过已知条件列方程组,解出a,c的值.2.构造a,c的齐次式,解出e.由已知条件得出关于a,c的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解.3.通过取特殊值或特殊位置,求出离心率.二、与椭圆有关的最值或范围问题的求解方法高考复习·归纳训练1.利用数形结合、几何意义,尤其是椭圆的性质,求最值或取值范围.2.利用函数,尤其是二次函数求最值或取值范围.3.利用不等式,尤其是基本不等式求最值或取值范围.4.利用一元二次方程的根的判别式求最值或取值范围.。

高三数学一轮复习 第九章 解析几何 9.5 椭圆

高三数学一轮复习 第九章 解析几何 9.5 椭圆

则 2a=2√2,c=1,所以 a=√2,b=1.
所以点 P 的轨迹方程为������22+y2=1.
考点1
考点2
考点3
-15-
解题心得1.在利用椭圆定义解题的时候,一方面要注意到常数 2a>|F1F2|这个条件;另一方面要熟练掌握由椭圆上任一点与两个焦 点所组成的焦点三角形中的数量关系.
2.求椭圆标准方程的两种方法 (1)定义法:根据椭圆的定义,确定a2,b2的值,结合焦点位置写出椭 圆方程. (2)待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合 已知条件求出a,b;若焦点位置不明确,则需要分焦点在x轴上和y轴 上两种情况讨论,也可设椭圆的方程为Ax2+By2=1(A>0,B>0,A≠B).
2
+
������
2
=1
的焦点为(0,-4),(0,4),即
c=4.
25 9
由椭圆的定义知,
2a= (√3-0)2 + (-√5 + 4)2 + (√3-0)2 + (-√5-4)2,
解得 a=2√5.
由 c2=a2-b2 可得 b2=4.
所以所求椭圆的标准方程为������ 2
+
������
2
=1.
思考如何理清椭圆的几何性质之间的内在联系?
考点1
考点2
考点3
-19-
解析:(1)由题意知,2a+2c=2(2b), 即a+c=2b,两边平方得a2+c2+2ac=4b2=4(a2-c2), 化简得5c2-3a2+2ac=0. 两边同除以a2,得5e2+2e-3=0, 解得 e=3或 e=-1(舍去).

高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲

高三数学第一轮复习椭圆的定义、性质及标准方程知识精讲

高三数学第一轮复习:椭圆的定义、性质及标准方程【本讲主要内容】椭圆的定义、性质及标准方程椭圆的定义及相关概念、椭圆的标准方程、椭圆的几何性质【知识掌握】 【知识点精析】1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。

⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。

定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。

说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。

②若常数2a 小于2c ,则动点轨迹不存在。

2. 椭圆的标准方程、图形及几何性质:标准方程)0(12222>>=+b a by a x 中心在原点,焦点在x 轴上)0(12222>>=+b a bx a y 中心在原点,焦点在y 轴上图形范围x a y b ≤≤,x b y a ≤≤,顶点()()()()12120000A a A a B b B b --,、,,、,()()()()12120000A a A a B b B b --,、,,、,对称轴x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上x 轴、y 轴;长轴长2a ,短轴长2b ;焦点在长轴上焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距)0(221>=c c F F)0(221>=c c F F3. 焦半径公式:椭圆上的任一点和焦点连结的线段长称为焦半径。

焦半径公式:椭圆焦点在x 轴上时,设12F F、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。

推导过程:由第二定义得11PFe d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。

2021高考椭圆知识点

2021高考椭圆知识点

2021高考椭圆知识点椭圆是解析几何中的一个重要概念,广泛应用于数学和物理学等领域。

在2021年高考中,椭圆也是一个重要的考点。

本文将对2021年高考椭圆知识点进行详细介绍,包括定义、性质、标准方程、焦点、离心率等内容。

一、椭圆的定义椭圆是平面上一点到两个定点(焦点)的距离之和等于常数的轨迹。

其中,两个定点的连线称为椭圆的主轴,主轴的长度为2a;主轴的中点称为椭圆的中心;与主轴垂直的线段称为椭圆的次轴,次轴的长度为2b;a和b之间的关系为a>b>0。

二、椭圆的性质1. 椭圆上任意一点到两个焦点的距离之和等于常数,即对于椭圆上的点P(x,y),有PF1 + PF2 = 2a,其中PF1和PF2分别表示点P到两个焦点F1和F2的距离。

2. 椭圆的离心率e定义为焦距与主轴长度之比,即e = c/a,其中c表示两个焦点之间的距离。

3. 椭圆的离心率满足0<e<1,当e=0时,椭圆为圆;当e趋近于1时,椭圆趋近于无穷远,变为两条平行直线。

三、椭圆的标准方程椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别表示椭圆的主轴和次轴的长度。

四、椭圆的焦点和准线1. 椭圆的焦点为两个定点F1和F2,焦点位于椭圆的主轴上,与椭圆的中心对称。

2. 椭圆的准线为平行于次轴的两条直线,使得椭圆的两个焦点和两个准线上的任意一点构成平行四边形,且平行四边形的对角线相等。

五、椭圆的参数方程椭圆的参数方程为x = a*cosθ,y = b*sinθ,其中θ为参数。

六、椭圆的相关性质1. 椭圆的面积为πab,其中π为圆周率。

2. 椭圆的周长可通过积分公式求解,但一般情况下无法用有限的初等函数表示。

3. 椭圆在对称轴上具有对称性,即椭圆关于主轴和次轴的对称轴对称。

综上所述,椭圆是一个重要的解析几何概念,在2021年高考中也是一个重要的考点。

通过掌握椭圆的定义、性质、标准方程、焦点和离心率等知识点,我们能够更好地理解和应用椭圆,提升解题能力,为高考取得好成绩奠定坚实的基础。

2021版新高考数学一轮复习讲义:第八章第五讲 椭圆 (含解析)

2021版新高考数学一轮复习讲义:第八章第五讲 椭圆 (含解析)

第五讲椭圆ZHI SHI SHU LI SHUANG JI ZI CE知识梳理·双基自测知识梳理知识点一椭圆的定义平面内与两个定点F1、F2的__距离的和等于常数(大于|F1F2|)__的点的轨迹叫做椭圆,这两个定点叫做椭圆的__焦点__,两焦点间的距离叫做椭圆的__焦距__.注:若集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a、c为常数,则有如下结论:(1)若a>c,则集合P为__椭圆__;(2)若a=c,则集合P为__线段F1F2__;(3)若a<c,则集合P为__空集__.知识点二椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围-a≤x≤a-b≤y≤b-b≤x≤b-a≤y≤a 对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0) 轴长轴A1A2的长为__2a__;短轴B1B2的长为__2b__焦距|F1F2|=__2c__离心率e=ca∈(0,1)a、b、c__c2=a2-b2__重要结论1.a +c 与a -c 分别为椭圆上的点到焦点距离的最大值和最小值. 2.过椭圆的焦点且与长轴垂直的弦|AB |=2b 2a ,称为通径.3.若过焦点F 1的弦为AB ,则△ABF 2的周长为4a . 4.e =1-b 2a2. 5.椭圆的焦点在x 轴上⇔标准方程中x 2项的分母较大,椭圆的焦点在y 轴上⇔标准方程中y 2项的分母较大.6.AB 为椭圆x 2a 2+y 2b 2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则(1)弦长l =1+k 2|x 1-x 2|=1+1k2|y 1-y 2|; (2)直线AB 的斜率k AB =-b 2x 0a 2y 0.双基自测题组一 走出误区1.(多选题)下列结论正确的是( CD )A .平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆B .椭圆的离心率e 越大,椭圆就越圆C .方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆D .x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b 2=1(a >b >0)的焦距相同题组二 走进教材2.(必修2P 42T4)椭圆x 210-m +y 2m -2=1的焦距为4,则m 等于( C )A .4B .8C .4或8D .12[解析] 当焦点在x 轴上时,10-m >m -2>0, 10-m -(m -2)=4,∴m =4.当焦点在y 轴上时,m -2>10-m >0,m -2-(10-m )=4,∴m =8. ∴m =4或8.3.(必修2P 68A 组T3)过点A (3,-2)且与椭圆x 29+y 24=1有相同焦点的椭圆的方程为( A )A .x 215+y 210=1B .x 225+y 220=1C .x 210+y 215=1D .x 220+y 215=1题组三 考题再现4.(2019·湖南郴州二模)已知椭圆E 的中心为原点,焦点在x 轴上,椭圆上一点到焦点的最小距离为22-2,离心率为22,则椭圆E 的方程为 x 28+y 24=1 .[解析] ∵椭圆上一点到焦点的最小距离为a -c , ∴a -c =22-2,∵离心率e =22, ∴c a =22, 解得a =22,c =2,则b 2=a 2-c 2=4, ∴椭圆E 的方程为x 28+y 24=1.5.(2018·课标全国Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上的一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( D )A .1-32B .2- 3C .3-12D .3-1[解析] 设|PF 2|=x ,则|PF 1|=3x ,|F 1F 2|=2x ,故2a =|PF 1|+|PF 2|=(1+3)x,2c =|F 1F 2|=2x ,于是离心率e =c a =2c 2a =2x(1+3)x=3-1.KAO DIAN TU PO HU DONG TAN JIU考点突破·互动探究考点一 椭圆的定义及应用——自主练透例1 (1)(2019·泉州模拟)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果M 是线段F 1P 的中点,那么动点M 的轨迹是( B )A .圆B .椭圆C .双曲线的一支D .抛物线(2)已知F 是椭圆5x 2+9y 2=45的左焦点,P 是此椭圆上的动点,A (1,1)是一定点.则|P A |+|PF |的最大值和最小值分别为 6+2,6-2 .(3)已知F 1,F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且∠F 1PF 2=60°.若△PF 1F 2的面积为33,则b =__3__.[解析] (1)如图所示,由题知|PF 1|+|PF 2|=2a ,设椭圆方程:x 2a 2+y 2b 2=1(其中a >b >0).连接MO ,由三角形的中位线可得:|F 1M |+|MO |=a (a >|F 1O |),则M 的轨迹为以F 1、O 为焦点的椭圆.(2)如下图所示,设椭圆右焦点为F 1,则|PF |+|PF 1|=6.∴|P A |+|PF |=|P A |-|PF 1|+6. 由椭圆方程x 29+y 25=1知c =9-5=2,∴F 1(2,0),∴|AF 1|=2.利用-|AF 1|≤|P A |-|PF 1|≤|AF 1|(当P 、A 、F 1共线时等号成立). ∴|P A |+|PF |≤6+2,|P A |+|PF |≥6-2. 故|P A |+|PF |的最大值为6+2,最小值为6-2. (3)|PF 1|+|PF 2|=2a ,又∠F 1PF 2=60°, 所以|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos60°=|F 1F 2|2, 即(|PF 1|+|PF 2|)2-3|PF 1||PF 2|=4c 2, 所以3|PF 1||PF 2|=4a 2-4c 2=4b 2, 所以|PF 1||PF 2|=43b 2,又因为S △PF 1F 2=12|PF 1||PF 2|sin60°=12×43b 2×32=33b 2=33,所以b =3.故填3. 名师点拨 ☞(1)椭圆定义的应用范围:①确认平面内与两定点有关的轨迹是否为椭圆. ②解决与焦点有关的距离问题. (2)焦点三角形的应用:椭圆上一点P 与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1||PF 2|;通过整体代入可求其面积等.〔变式训练1〕(1)(2019·大庆模拟)已知点M (3,0),椭圆x 24+y 2=1与直线y =k (x +3)交于点A 、B ,则△ABM 的周长为__8__.(2)(2020·河北衡水调研)设F 1、F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任意一点,点M 的坐标为(6,4),则|PM |-|PF 1|的最小值为__-5__.[解析] (1)直线y =k (x +3)过定点N (-3,0).而M 、N 恰为椭圆x 24+y 2=1的两个焦点,由椭圆定义知△ABM 的周长为4a =4×2=8.(2)由题意可知F 2(3,0),由椭圆定义可知|PF 1|=2a -|PF 2|.∴|PM |-|PF 1|=|PM |-(2a -|PF 2|)=|PM |+|PF 2|-2a ≥|MF 2|-2a ,当且仅当M ,P ,F 2三点共线时取得等号,又|MF 2|=(6-3)2+(4-0)2=5,2a =10,∴|PM |-|PF 2|≥5-10=-5,即|PM |-|PF 1|的最小值为-5.考点二 求椭圆的标准方程——师生共研例2 求满足下列各条件的椭圆的标准方程: (1)长轴是短轴的3倍且经过点A (3,0);(2)短轴一个端点与两焦点组成一个正三角形,且焦点到同侧顶点的距离为3; (3)经过点P (-23,1),Q (3,-2)两点;(4)与椭圆x 24+y 23=1有相同离心率,且经过点(2,-3).[解析] (1)若焦点在x 轴上,设方程为x 2a 2+y 2b2=1(a >b >0).。

椭圆的定义与标准方程

椭圆的定义与标准方程

椭圆的定义与标准方程
首先,让我们来了解一下椭圆的定义。

椭圆可以被定义为平面上到两个定点
F1和F2的距离之和等于常数2a的点P的轨迹。

这两个定点被称为焦点,常数2a
被称为椭圆的长轴。

椭圆还有一个重要的参数e,被定义为焦距与长轴的比值,即
e=c/a,其中c为焦距。

当e小于1时,椭圆是一个封闭曲线,当e等于1时,椭圆
变成一个圆。

接下来,我们来看一下椭圆的标准方程。

椭圆的标准方程可以写成(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)为椭圆的中心坐标,a为长轴的长度,b为短轴的长度。


过标准方程,我们可以很容易地得到椭圆的中心、长短轴的长度以及椭圆的离心率等重要信息。

在实际问题中,椭圆有着广泛的应用。

比如在天体力学中,行星围绕太阳运动
的轨道就是椭圆;在工程中,椭圆的反射性质被应用在抛物面天线的设计中;在数学建模中,椭圆可以用来描述很多现实世界中的问题,比如椭圆的轨迹可以用来描述地球绕太阳的运动轨迹等。

总之,椭圆作为一种重要的几何图形,具有着丰富的数学性质和广泛的应用价值。

通过本文的介绍,相信读者对椭圆的定义与标准方程有了更清晰的认识,也能够更好地理解椭圆在实际问题中的应用。

希望本文能够对读者有所帮助,谢谢阅读。

高考数学一轮复习 40椭圆精品课件 新人教版

均为常数且2a>2c.
(3)涉及椭圆定义的问题时,一定要注意“2a>2c”这一个前提
条件.因为当平面内的动点与定点F1、F2的距离之和等于 |F1F2|时,其动点轨迹就是线段F1F2;当平面内的动点与定点 F1、F2的距离之和小于|F1F2|时,其轨迹不存在.
【典例1】一动圆与已知圆O1:(x+3)2+y2=1外切,与圆O2:(x3)2+y2=81内切,试求动圆圆心的轨迹方程.
(2)椭圆的定义:平面内与两个定点F1,F2的距离的和为常数 (大于|F1F2|)的动点的轨迹(或集合)叫做椭圆.这两个定 点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.用集 合表示:椭圆上的点M满足集合
P M | |M F 1 | |M F 2 | 2 a , F 1 F 2 2 c , a 0 , c 0 , a , c
类型二
求椭圆的标准方程
解题准备:(1)定义法;
(2)待定系数法.若已知焦点的位置可唯一确定标准方程;若
焦点位置不确定,可采用分类讨论来确定方程的形式,也可
以直接设椭圆的方程为Ax2+By2=1,其中A,B为不相等的正
来求常解数,或以由避已免知讨条论件和设繁椭琐圆的系计算.如ax22
y2 b2
,
0
故动圆圆心的轨迹方程为
x2 y2 1.
25 16
[反思感悟]先根据定义判断轨迹的类型,再用待定系数法求轨 迹方程的方法叫定义法.用定义法求轨迹方程时,应首先充 分挖掘图形的几何性质,找出动点满足的几何条件,看其是 否符合某种曲线的定义,如本例,根据平面几何知识,列出内 切、外切的条件后,可发现利用动圆的半径过渡,恰好符合椭 圆的定义,从而用待定系数法求解,这里充分利用椭圆的定 义是解题的关键.

2021年高考数学一轮复习 第二讲 椭圆讲练 理 新人教A版

2021年高考数学一轮复习 第二讲 椭圆讲练 理 新人教A 版一、椭圆的定义平面内到两定点F 1、F 2的距离的和等于常数(大于|F 1F 2|)的点的轨迹叫椭圆.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数.(1)若2a >|F 1F 2|,则集合P 为椭圆; (2)若2a =|F 1F 2|,则集合P 为线段;(3)若2a <|F 1F 2|,则集合P 为空集. 二、椭圆的标准方程和几何性质标准方程x 2a 2+y 2b 2=1(a >b >0) y 2a 2+x 2b 2=1(a >b >0) 图形性 质范围-a ≤x ≤a -b ≤x ≤b -b ≤y ≤b -a ≤y ≤a 对称性 对称轴:坐标轴;对称中心:原点顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) B 1(0,-b ),B 2(0,b ) B 1(-b,0),B 2(b,0)离心率e =ca∈(0,1)a ,b ,c 的关系c 2=a 2-b 2点P (x 0,y 0)和椭圆的关系(1)点P (x 0,y 0)在椭圆内⇔x 20a 2+y 20b 2<1;(2)点P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1;(3)点P (x 0,y 0)在椭圆外⇔x 20a 2+y 20b2>1.基础自测1.设P 是椭圆x 225+y 216=1上的点,若F 1、F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10【解析】 依椭圆的定义知:|PF 1|+|PF 2|=2×5=10. 【答案】 D2.“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【解析】 要使方程x 25-m +y 2m +3=1表示椭圆,应满足5-m >0,m +3>0且5-m ≠m+3,解之得-3<m <5且m ≠1,∴“-3<m <5”是“方程x 25-m +y 2m +3=1表示椭圆”的必要不充分条件.【答案】 B3.椭圆x 29+y 24+k =1的离心率为45,则k 的值为( )A .-21B .21C .-1925或21 D.1925或21【解析】 若a 2=9,b 2=4+k ,则c =5-k , 由c a =45即5-k 3=45,得k =-1925; 若a 2=4+k ,b 2=9,则c =k -5, 由c a =45,即k -54+k =45,解得k =21. 【答案】 C4.已知椭圆的中心在原点,焦点在x 轴,离心率为55,且过点P (-5,4),则椭圆的方程为________.【解析】 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),由于c a =55,故a 2=5c 2,b 2=4c 2,椭圆方程为x 25c 2+y 24c 2=1,P (-5,4)在椭圆上代入解得c 2=9,于是所求椭圆的方程为x 245+y 236=1.【答案】x 245+y236=1 考点一 椭圆的定义与标准方程例 [xx·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1 D.x 212+y 24=1答案:43,所以a = 3.又因为椭圆的离心率e =ca =33,所以c =1,b 2=a 2-c 2=3-1=2,所以椭圆C 的方程为x 23+y 22=1.方法与技巧 1.1求椭圆的标准方程的方法:①定义法;②待定系数法;③轨迹方程法.2确定椭圆标准方程需要一个“定位”条件,两个“定量”条件,“定位”是指确定焦点在哪条坐标轴上,“定量”是指确定a 、b 的值.运用待定系数法时,常结合椭圆性质,已知条件,列关于a ,b ,c 的方程.2.涉及椭圆焦点三角形有关的计算或证明,常利用正余弦定理、椭圆定义,向量运算,并注意|PF 1|+|PF 2|与|PF 1|·|PF 2|整体代换.跟踪练习 (xx·大纲全国卷)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 【解析】 由题意知椭圆焦点在x 轴上,且c =1,可设C 的方程为x 2a 2+y 2a 2-1=1(a >1),由过F 2且垂直于x 轴的直线被C 截得的弦长|AB |=3,知点⎝ ⎛⎭⎪⎫1,32必在椭圆上,代入椭圆方程化简得4a 4-17a 2+4=0,所以a 2=4或a 2=14(舍去).故椭圆C 的方程为x 24+y 23=1.【答案】 C考点二 椭圆的几何性质例 (1)(xx·辽宁高考)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67(2)已知椭圆:x 29+y 2b 2=1(0<b <3),左右焦点分别为F 1,F 2,过F 1的直线交椭圆于A 、B 两点,若|BF 2→|+|AF 2→|的最大值为8,则b 的值是( )A .2 2 B. 2 C. 3 D. 6【思路点拨】 (1)利用余弦定理确定AF ,进而判定△ABF 的形状,利用椭圆定义及直角三角形性质确定离心率.(2)因△AF 2B 的周长等于两个长轴长,欲使|BF 2→|+|AF 2→|的值最大,只需|AB |最小,利用椭圆的性质可求得b 的值.【尝试解答】 (1)在△ABF 中,|AF |2=|AB |2+|BF |2-2|AB |·|BF |·cos∠ABF =102+82-2×10×8×45=36,则|AF |=6.由|AB |2=|AF |2+|BF |2可知,△ABF 是直角三角形,OF 为斜边AB 的中线,c =|OF |=|AB |2=5.设椭圆的另一焦点为F 1,因为点O 平分AB ,有平分FF 1,所以四边形AFBF 1为平行四边形,所以|BF |=|AF 1|=8.由椭圆的性质可知|AF |+|AF 1|=14=2a ⇒a =7,则e =c a =57.(2)∵F 1、F 2为椭圆x 29+y 2b2=1的两个焦点,∴|AF 1|+|AF 2|=6,|BF 1|+|BF 2|=6,△AF 2B 的周长为|AB |+|AF 2|+|BF 2|=|AF 1|+|AF 2|+|BF 1|+|BF 2|=12,当|AB |最小时,|BF 2→|+|AF 2→|的值最大,又当AB ⊥x 轴时,|AB |最小,此时|AB |=2b23,故12-2b23=8,∴b = 6.【答案】 (1)B (2)D方法与技巧 1.求椭圆的离心率,其法有三:一是通过已知条件列方程组,解出a ,c 的值;二是由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;三是通过取特殊值或特殊位置,求出离心率.2.e 与a ,b 间的关系e 2=c 2a 2 =1-⎝ ⎛⎭⎪⎫b a 2.跟踪练习 (xx·福建高考)椭圆Γ:x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,焦距为2c .若直线y =3(x +c )与椭圆Γ的一个交点M 满足∠MF 1F 2=2∠MF 2F 1,则该椭圆的离心率等于________.【解析】 已知F 1(-c,0),F 2(c,0), 直线y =3(x +c )过点F 1,且斜率为3, ∴倾斜角∠MF 1F 2=60°.∵∠MF 2F 1=12∠MF 1F 2=30°,∴∠F 1MF 2=90°,∴|MF 1|=c ,|MF 2|=3c . 由椭圆定义知|MF 1|+|MF 2|=c +3c =2a ,∴离心率e =c a =21+3=3-1.【答案】3-1考点三 直线与椭圆的位置关系例 [xx·江苏卷] 如图1­5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝ ⎛⎭⎪⎫43,13,且BF 2=2,求椭圆的方程; (2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1­5解: 设椭圆的焦距为2c, 则 F 1(-c, 0), F 2(c, 0).(1)因为B (0, b ), 所以BF 2=b 2+c 2=a .又BF 2=2, 故a = 2.因为点C ⎝ ⎛⎭⎪⎫43,13在椭圆上,所以169a 2+19b 2=1,解得b 2=1.故所求椭圆的方程为x 22+y 2=1.(2)因为B (0, b ), F 2(c, 0)在直线 AB 上,所以直线 AB 的方程为 x c +y b=1.解方程组⎩⎪⎨⎪⎧x c +yb =1,x 2a 2+y 2b 2=1,得⎩⎪⎨⎪⎧x 1=2a 2c a 2+c2,y 1=b (c 2-a 2)a 2+c2,⎩⎪⎨⎪⎧x 2=0,y 2=b ,所以点 A 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (c2-a 2)a 2+c 2. 又AC 垂直于x 轴, 由椭圆的对称性,可得点 C 的坐标为⎝ ⎛⎭⎪⎫2a 2c a 2+c 2,b (a2-c 2)a 2+c 2.因为直线 F 1C 的斜率为b (a 2-c 2)a 2+c 2-02a 2c a 2+c 2-(-c )=b (a 2-c 2)3a 2c +c 3,直线AB 的斜率为-bc ,且F 1C ⊥AB ,所以b (a 2-c 2)3a 2c +c 3·⎝ ⎛⎭⎪⎫-b c =-1.又b 2=a 2-c 2,整理得a 2=5c 2,故e 2=15,因此e =55. 方法与技巧 直线与椭圆相交问题解题策略,当直线与椭圆相交时:涉及弦长问题,常用“根与系数的关系”设而不求计算弦长;涉及求过定点的弦中点的轨迹和求被定点平分的弦所在的直线方程问题,常用“点差法”设而不求,将动点的坐标、弦所在直线的斜率、弦的中点坐标联系起来,相互转化.其中,判别式大于零是检验所求参数的值有意义的依据.跟踪练习 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,左焦点为F (-2,0).(1)求椭圆C 的方程;(2)若直线y =x +m 与曲线C 交于不同的A 、B 两点,且线段AB 的中点M 在圆x 2+y 2=1上,求m 的值.【解】 (1)由题意得c a =22,c =2∴a =22,b 2=a 2-c 2=4.所以椭圆c 的方程为:x 28+y 24=1.(2)设点A 、B 的坐标分别为(x 1,y 1),(x 2,y 2),线段AB 的中点为M (x 0,y 0),由⎩⎪⎨⎪⎧x 28+y 24=1y =x +m,消去y 得3x 2+4mx +2m 2-8=0∵Δ=96-8m 2>0,∴-23<m <2 3∴x 0=x 1+x 22=-2m 3,y 1=x 0+m =m 3∵点M (x 0,y 0)在圆x 2+y 2=1上,∴⎝ ⎛⎭⎪⎫-2m 32+⎝ ⎛⎭⎪⎫m 32=1,即m =±355.∵±355∈(-23,23),∴所求m 的值为±355.25496 6398 掘9S33618 8352 荒 b29430 72F6 狶d29599 739F 玟` 30046 755E 畞936297 8DC9 跉#。

2021版高考数学(山东新高考版)一轮复习课时规范练40椭圆 Word版含解析

姓名,年级:时间:课时规范练40 椭圆基础巩固组1.已知椭圆x 23+y 24=1的两个焦点F 1,F 2,M 是椭圆上一点,|MF 1|—|MF 2|=1,则△MF 1F 2是( )A.钝角三角形 B 。

直角三角形C 。

锐角三角形D 。

等边三角形|MF 1|+|MF 2|=4,又|MF 1|—|MF 2|=1,联立后可解得|MF 1|=52,|MF 2|=32,又|F 1F 2|=2c=2√4-3=2,∵22+(32)2=254=(52)2, ∴MF 2⊥F 1F 2,∴△MF 1F 2是直角三角形。

故选B 。

2。

(2019山东临沂质检,6)点A ,B 分别为椭圆x 2a 2+y 2b2=1(a 〉b>0)的左、右顶点,F为右焦点,C 为短轴上不同于原点O 的一点,D 为OC 的中点,直线AD 与BC 交于点M ,且MF ⊥AB ,则该椭圆的离心率为( ) A .12B .13C .√23D .√32解析由题意作出椭圆如图,∵MF ⊥AB ,且OC ⊥AB ,∴MF ∥OC ,同理MF ∥OD ,∴ODMF =OAAF =aa+c ,① MF OC =FB OB =a -ca ,②①×②,得到OD MF ·MF OC =a a+c ·a -c a =a -c a+c =OD OC =12,∴2(a —c )=c+a ,∴a=3c ,∴e=c a =13.故选B 。

3.(2019福建福州八县(市)联考,7)椭圆x 225+y 216=1的左右焦点分别为F 1,F 2,过F 1的一条直线与椭圆交于A ,B 两点,若△ABF 2的内切圆面积为π,且A (x 1,y 1),B (x 2,y 2),则|y 1-y 2|=( )A .√53B .103C .203D .53椭圆x 225+y 216=1的左、右焦点分别为F 1,F 2,过焦点F 1的直线交椭圆于A (x 1,y 1),B (x 2,y 2)两点,△ABF 2的内切圆的面积为π,∴△ABF 2内切圆半径r=1,S △ABF 2=12×1×(AB+AF 2+BF 2)=2a=10。

北师大版2021高考数学一轮复习统考第9章平面解析几何第5讲椭圆学案含解析

第5讲椭圆基础知识整合1.椭圆的概念在平面内到两定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹(或集合)叫做01椭圆.这两定点叫做椭圆的02焦点,两焦点间的距离叫做03焦距.集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:(1)若04a>c,则集合P表示椭圆;(2)若05a=c,则集合P表示线段;(3)若06a<c,则集合P为空集.2.椭圆的标准方程和几何性质标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)图形性质范围07-a≤x≤08a09-b≤y≤10b11-b≤x≤12b13-a≤y≤14a对称性对称轴:坐标轴对称中心:原点顶点A1(-a,0),A2(a,0)B1(0,-b),B2(0,b)A1(0,-a),A2(0,a)B1(-b,0),B2(b,0)轴长轴A1A2的长为152a;短轴B1B2的长为162b焦距|F1F2|=172c焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c) 离心率e=18ca∈19(0,1)a,b,c的关系c2=20a2-b21.椭圆的焦点三角形椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.如图所示,设∠F 1PF 2=θ.(1)当P 为短轴端点时,θ最大.(2)S =12|PF 1||PF 2|sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 为短轴端点时,S 取最大值,最大值为bc .(3)焦点三角形的周长为2(a +c ). (4)4c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θ.2.焦点弦(过焦点的弦):焦点弦中以通径(垂直于长轴的焦点弦)最短,弦长l min =2b 2a.3.AB 为椭圆x 2a 2+y 2b2=1(a >b >0)的弦,A (x 1,y 1),B (x 2,y 2),弦中点M (x 0,y 0),则(1)弦长l =1+k 2|x 1-x 2|=1+1k2|y 1-y 2|;(2)直线AB 的斜率k AB =-b 2x 0a 2y 0.1.已知椭圆x 225+y 2m2=1(m >0)的左焦点为F 1(-4,0),则m =( )A .2B .3C .4D .9答案 B解析 由4=25-m 2(m >0 )⇒m =3,故选B .2.若椭圆x 2+my 2=1的焦点在y 轴上,且长轴长是短轴长的两倍,则m 的值为( ) A .14 B .12 C .2 D .4答案 A解析 将原方程变形为x 2+y 21m=1.由题意知a 2=1m,b 2=1,∴a =1m,b =1.∴1m=2,∴m =14.3.(2019·北京高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b答案 B解析 因为椭圆的离心率e =c a =12,所以a 2=4c 2.又a 2=b 2+c 2,所以3a 2=4b 2.故选B .4.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于13,则椭圆C 的方程是( )A .x 24+y 23=1B .x 24+y 23=1C .x 24+y 22=1D .x 29+y 28=1 答案 D解析 依题意,设椭圆方程为x 2a 2+y2b2=1(a >b >0),所以⎩⎪⎨⎪⎧c =1,c a =13,c 2=a 2-b 2,解得a 2=9,b 2=8.故椭圆C 的方程为x 29+y 28=1.5.(2019·西安模拟)已知点P (x 1,y 1)是椭圆x 225+y 216=1上的一点,F 1,F 2是其左、右焦点,当∠F 1PF 2最大时,△PF 1F 2的面积是( )A .1633B .12C .16(2+3)D .16(2-3)答案 B解析 ∵椭圆的方程为x 225+y 216=1,∴a =5,b =4,c =25-16=3,∴F 1(-3,0),F 2(3,0).根据椭圆的性质可知当点P 与短轴端点重合时,∠F 1PF 2最大,此时△PF 1F 2的面积S=12×2×3×4=12,故选B . 6.椭圆3x 2+ky 2=3的一个焦点是(0,2),则k =________. 答案 1解析 方程3x 2+ky 2=3可化为x 2+y 23k=1.a 2=3k >1=b 2,c 2=a 2-b 2=3k-1=2,解得k =1.核心考向突破考向一 椭圆定义及其应用例1 (1)已知圆(x +2)2+y 2=36的圆心为M ,设A 是圆上任意一点,N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A .圆B .椭圆C .双曲线D .抛物线答案 B解析 点P 在线段AN 的垂直平分线上,故|PA |=|PN |.又AM 是圆的半径,所以|PM |+|PA |=|PM |+|PN |=|AM |=6>|MN |.由椭圆的定义知,P 的轨迹是椭圆.(2)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16.则|AF 2|=________.答案 5解析 由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3.∵△ABF 2的周长为16,∴4a =16,∴a =4.则|AF 1|+|AF 2|=2a =8,∴|AF 2|=8-|AF 1|=8-3=5.(1)椭圆定义的应用范围①确认平面内与两定点有关的轨迹是否为椭圆. ②解决与焦点有关的距离问题. (2)焦点三角形的应用椭圆上一点P 与椭圆的两焦点组成的三角形通常称为“焦点三角形”,利用定义可求其周长;利用定义和余弦定理可求|PF 1|,|PF 2|;通过整体代入可求其面积等.[即时训练] 1.(2019·河北保定一模)与圆C 1:(x +3)2+y 2=1外切,且与圆C 2:(x -3)2+y 2=81内切的动圆圆心P 的轨迹方程为________.答案x 225+y 216=1 解析 设动圆的半径为r ,圆心P (x ,y ),则有|PC 1|=r +1,|PC 2|=9-r ,所以|PC 1|+|PC 2|=10>|C 1C 2|,即点P 在以C 1(-3,0),C 2(3,0)为焦点,长轴长为10的椭圆上,即点P 的轨迹方程为x 225+y 216=1.2.已知椭圆C :x 29+y 24=1,点M 与椭圆C 的焦点不重合.若M 关于椭圆C 的焦点的对称点分别为A ,B ,线段MN 的中点在椭圆C 上,则|AN |+|BN |=________.答案 12解析 取MN 的中点为G ,点G 在椭圆C 上.设点M 关于椭圆C 的焦点F 1的对称点为A ,点M 关于椭圆C 的焦点F 2的对称点为B ,则有|GF 1|=12|AN |,|GF 2|=12|BN |,所以|AN |+|BN |=2(|GF 1|+|GF 2|)=4a =12.考向二 椭圆的标准方程例2 (1)(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A .x 22+y 2=1B .x 23+y 22=1C .x 24+y 23=1D .x 25+y 24=1答案 B解析 设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,∴|AF 1|+2|AB |=4a . 又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴B ⎝ ⎛⎭⎪⎫32,-b 2.将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B . (2)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点P 1(6,1),P 2(-3,-2),则该椭圆的方程为________.答案x 29+y 23=1 解析设椭圆的方程为mx 2+ny 2=1(m >0,n >0,且m ≠n ).因为椭圆经过P 1,P 2两点,所以点P 1,P 2的坐标满足椭圆方程,则⎩⎪⎨⎪⎧6m +n =1,①3m +2n =1,②解得⎩⎪⎨⎪⎧m =19,n =13.所以所求椭圆的方程为x 29+y 23=1.求椭圆标准方程的两种方法(1)定义法:根据椭圆的定义确定2a,2c ,然后确定a 2,b 2的值,再结合焦点位置写出椭圆的标准方程.(2)待定系数法:具体过程是先定位,再定量,即首先确定焦点所在位置,然后根据条件建立关于a ,b 的方程组.如果焦点位置不确定,那么要考虑是否有两解.有时为了解题方便,也可把椭圆方程设成mx 2+ny 2=1(m >0,n >0,m ≠n )的形式.解题步骤如下:定位置—根据条件确定椭圆的焦点在哪条坐标轴上设方程—根据焦点位置,设方程为x 2a 2+y 2b2=1a >b >0或y 2a 2+x 2b2=1a >b >0;也可设整式形式的方程:mx 2+ny 2=1m >0,n >0,m ≠n寻关系—根据条件列出关于a ,b 或m ,n 的方程组 得方程—解方程组,将相应值代入所设方程,写出标准方程[即时训练] 3.(2019·青岛模拟)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A .x 22+y 2=1B .x 23+y 22=1C .x 24+y 23=1D .x 25+y 24=1答案 C解析 如图,|AF 2|=12|AB |=32,|F 1F 2|=2,由椭圆定义,得|AF 1|=2a -32. ①在Rt △AF 1F 2中,|AF 1|2=|AF 2|2+|F 1F 2|2=⎝ ⎛⎭⎪⎫322+22. ②由①②得a =2,∴b 2=a 2-c 2=3. ∴椭圆C 的方程为x 24+y 23=1,应选C .4.已知A ⎝ ⎛⎭⎪⎫-12,0,B 是圆:⎝ ⎛⎭⎪⎫x -122+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于点P ,则动点P 的轨迹方程为________.答案 x 2+43y 2=1解析 如图,由题意知|PA |=|PB |,|PF |+|BP |=2.所以|PA |+|PF |=2且|PA |+|PF |>|AF |,即动点P 的轨迹是以A ,F 为焦点的椭圆,a =1,c =12,b 2=34.所以动点P 的轨迹方程为x 2+43y 2=1.考向三 椭圆的几何性质例3 (1)(2019·云南保山期末)椭圆x 2a 2+y 2b2=1(a >b >0)的一个焦点为F 1,若椭圆上存在一点P ,满足以椭圆短轴为直径的圆与线段PF 1相切于该线段的中点,则椭圆的离心率为( )A .22B .23C .59D .53答案 D解析 设线段PF 1的中点为M ,另一个焦点为F 2,由题意知,|OM |=b ,又OM 是△F 2PF 1的中位线,∴|OM |=12|PF 2|=b ,|PF 2|=2b ,由椭圆的定义知|PF 1|=2a -|PF 2|=2a -2b .又|MF 1|=12|PF 1|=12(2a -2b )=a -b ,又|OF 1|=c ,在直角三角形OMF 1中,由勾股定理得(a -b )2+b 2=c 2,又a 2-b 2=c 2,可得2a =3b ,故有4a 2=9b 2=9(a 2-c 2),由此可求得离心率e =c a =53,故选D . (2)已知椭圆x 2a 2+y 2b2=1(a >b >0)的半焦距为c ,且满足c 2-b 2+ac <0,则该椭圆的离心率e的取值范围是________.答案 ⎝⎛⎭⎪⎫0,12解析 ∵c 2-b 2+ac <0,∴c 2-(a 2-c 2)+ac <0,即2c 2-a 2+ac <0,∴2c 2a 2-1+c a<0,即2e2+e -1<0,解得-1<e <12.又0<e <1,∴0<e <12.∴椭圆的离心率e 的取值范围是⎝ ⎛⎭⎪⎫0,12.1.求椭圆的离心率的方法(1)直接求出a ,c 来求解,通过已知条件列方程组,解出a ,c 的值;(2)构造a ,c 的齐次式,解出e .由已知条件得出关于a ,c 的二元齐次方程,然后转化为关于离心率e 的一元二次方程求解;(3)通过取特殊值或特殊位置,求出离心率.2.椭圆的范围或最值问题常常涉及一些不等式,例如,-a ≤x ≤a ,-b ≤y ≤b,0<e <1等,在求椭圆相关量的范围时,要注意应用这些不等式关系.[即时训练] 5.(2019·辽宁大连二模)焦点在x 轴上的椭圆方程为x 2a 2+y 2b2=1(a >b >0),短轴的一个端点和两个焦点相连构成一个三角形,该三角形内切圆的半径为b3,则椭圆的离心率为( )A .14B .13C .12D .23答案 C解析 由短轴的一个端点和两个焦点相连构成一个三角形,又由三角形面积公式得12×2c ·b =12(2a +2c )·b 3,得a =2c ,即e =c a =12,故选C .6.(2019·郑州市高三预测)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,过F 2的直线与椭圆交于A ,B 两点,若△F 1AB 是以A 为直角顶点的等腰直角三角形,则椭圆的离心率为( )A .22B .2- 3C .5-2D .6- 3答案 D解析 设|F 1F 2|=2c ,|AF 1|=m ,若△ABF 1是以A 为直角顶点的等腰直角三角形,则|AB |=|AF 1|=m ,|BF 1|=2m .由椭圆的定义可得△ABF 1的周长为4a ,即有4a =2m +2m ,即m =(4-22)a ,则|AF 2|=2a -m =(22-2)a ,在Rt △AF 1F 2中,|F 1F 2|2=|AF 1|2+|AF 2|2,即4c2=4×(2-2)2a 2+4×(2-1)2a 2,即有c 2=(9-62)a 2,即c =(6-3)a ,即e =c a=6-3,故选D .精准设计考向,多角度探究突破 考向四 直线与椭圆的位置关系角度1 例4 (2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点.线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差.解 (1)证明:设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得m <⎝ ⎛⎭⎪⎫1-14×3=32,且m >0, 即0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则由(1)及题设得(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0),x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32. 于是|FA →|=x 1-12+y 21= x 1-12+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|FB →|=2-x 22. 所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则 2|d |=||FB →|-|FA →||=12|x 1-x 2|=12x 1+x 22-4x 1x 2.②将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.角度2 切线问题例5 (2019·湖北优质高中联考)已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,右顶点为A ,上顶点为B .已知|AB |=3|OF |,且△AOB 的面积为 2.(1)求椭圆的方程;(2)直线y =2上是否存在点M ,使得从该点向椭圆所引的两条切线相互垂直?若存在,求点M 的坐标;若不存在,说明理由.解 (1)由|AB |=3|OF |,△AOB 的面积为2, 得 a 2+b 2=3c ,12ab =2,∴a =2,b =2,即椭圆方程为x 24+y 22=1.(2)假设直线y =2上存在点M 满足题意,设M (m,2),当m =±2时,从M 点所引的两切线不垂直.当m ≠±2时,设过点M 向椭圆所引的切线的斜率为k ,则l 的方程为y =k (x -m )+2,由⎩⎪⎨⎪⎧y =k x -m +2,x 24+y22=1,得(1+2k 2)x 2-4k (mk -2)x +2(mk -2)2-4=0,∵Δ=0,∴(m 2-4)k 2-4mk +2=0,设两切线的斜率分别为k 1,k 2,则k 1k 2=2m 2-4=-1,∴m =±2,即点M 坐标为(2,2)或(-2,2).角度3 弦长问题例6 (2019·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△PAB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),∴4a 2+1b2=1,∴a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y22=1,整理,得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14× x 1+x 22-4x 1x 2=54-m2.点P 到直线l 的距离d =|m |1+14=2|m |5. ∴S △PAB =12d |AB |=12×2|m |5×54-m2=m24-m2≤m 2+4-m 22=2.当且仅当m 2=2,即m =±2时,△PAB 的面积取得最大值2.(1)解决有关弦及弦中点问题常用方法是利用根与系数的关系和“点差法”.这两种方法的前提都必须保证直线和椭圆有两个不同的公共点.(2)直线与椭圆相切,有且仅有一个公共点,过椭圆外一点可以作两条切线,过椭圆上一点只能作一条切线.(3)设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2) 则有|AB |=1+k2[x 1+x 22-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[y 1+y22-4y 1y 2](k 为直线斜率,k ≠0).提醒:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.[即时训练] 7.已知椭圆具有如下性质:若椭圆的方程为x 2a 2+y 2b 2=1(a >b >0),则椭圆上一点A (x 0,y 0)处的切线方程为x 0x a 2+y 0y b 2=1.试运用该性质解决以下问题,椭圆C 1:x 2a 2+y 2b2=1(a >b >0),其焦距为2,且过点⎝ ⎛⎭⎪⎫1,22,点B 为C 1在第一象限中的任意一点,过B 作C 1的切线l ,l 分别与x 轴和y 轴的正半轴交于C ,D 两点,则△OCD 面积的最小值为( )A .22B . 2C . 3D .2答案 B解析 由题意,得2c =2,即c =1,a 2-b 2=1,将点⎝ ⎛⎭⎪⎫1,22代入椭圆方程,可得1a 2+12b 2=1,解得a =2,b =1,即椭圆的方程为x 22+y 2=1,设B (x 2,y 2),则椭圆C 1在点B 处的切线方程为x 22x +y 2y =1,令x =0,得y D =1y 2,令y =0,可得x C =2x 2,又点B 为椭圆在第一象限上的点,所以x 2>0,y 2>0,x 222+y 22=1,所以S △OCD =12·1y 2·2x 2=1x 2y 2=x 222+y 22x 2y 2=x 22y 2+y 2x 2≥2x 22y 2·y 2x 2=2,即S △OCD ≥2,当且仅当x 222=y 22=12,即点B 的坐标为⎝ ⎛⎭⎪⎫1,22时,△OCD 面积取得最小值2,故选B .8.(2019·广西联考)已知椭圆C :x 2a 2+y 2b2=1(a >b >1)的焦距为2,过短轴的一个端点与两个焦点的圆的面积为4π3,过椭圆C 的右焦点作斜率为k (k ≠0)的直线l 与椭圆C 相交于A ,B两点,线段AB 的中点为P .(1)求椭圆C 的标准方程;(2)过点P 且垂直于AB 的直线与x 轴交于点D ⎝ ⎛⎭⎪⎫17,0,求k 的值. 解 (1)由题中条件,可得过椭圆短轴的一个端点与两个焦点的圆的半径为 43. 设椭圆的右焦点的坐标为(c,0),依题意知⎩⎪⎨⎪⎧2c =2,a 2=b 2+c 2,⎝ ⎛⎭⎪⎫b -432+c 2=43.又因为b >1,解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)由题意,过椭圆C 的右焦点的直线l 的方程为y =k (x -1),将其代入x 24+y 23=1,得(3+4k 2)x 2-8k 2x +4k 2-12=0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=8k 23+4k 2,x 1x 2=4k 2-123+4k2,所以y 1+y 2=k (x 1+x 2)-2k =-6k3+4k 2.因为P 为线段AB 的中点,所以点P 的坐标为⎝ ⎛⎭⎪⎫4k 23+4k 2,-3k 3+4k 2.又因为直线PD 的斜率为-1k,所以直线PD 的方程为 y --3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x -4k 23+4k 2. 令y =0,得x =k 23+4k2,所以点D 的坐标为⎝ ⎛⎭⎪⎫k 23+4k 2,0, 则k 23+4k 2=17,解得k =±1. 9.(2019·云南昆明模拟)已知中心在原点O ,焦点在x 轴上的椭圆E 过点C (0,1),离心率为22. (1)求椭圆E 的方程;(2)直线l 过椭圆E 的左焦点F ,且与椭圆E 交于A ,B 两点,若△OAB 的面积为23,求直线l 的方程.解 (1)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),由已知得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2,解得a 2=2,b 2=1,所以椭圆E 的方程为x 22+y 2=1.(2)由已知,直线l 过左焦点F (-1,0). 当直线l 与x 轴垂直时,A ⎝ ⎛⎭⎪⎫-1,-22,B ⎝ ⎛⎭⎪⎫-1,22, 此时|AB |=2,则S △OAB =12×2×1=22,不满足条件.当直线l 与x 轴不垂直时,设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =k x +1,x 22+y 2=1得(1+2k 2)x 2+4k 2x +2k 2-2=0,所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k 2.因为S △OAB =12|OF |·|y 1-y 2|=12|y 1-y 2|,由已知S △OAB =23,得|y 1-y 2|=43.因为y 1+y 2=k (x 1+1)+k (x 2+1)=k (x 1+x 2)+2k =k · -4k 21+2k 2+2k =2k1+2k2,y 1y 2=k (x 1+1)·k (x 2+1)=k 2(x 1x 2+x 1+x 2+1)=-k21+2k 2, 所以|y 1-y 2|=y 1+y 22-4y 1y 2=4k21+2k22+4k 21+2k 2=43, 所以k 4+k 2-2=0,解得k =±1,所以直线l 的方程为x -y +1=0或x +y +1=0.1.已知点F 1,F 2是椭圆x 2+2y 2=2的左、右焦点,点P 是该椭圆上的一个动点,那么|PF 1→+PF 2→|的最小值是( )A .0B .1C .2D .2 2答案 C解析 解法一:设P (x 0,y 0),则PF 1→=(-1-x 0,-y 0),PF 2→=(1-x 0,-y 0),所以PF 1→+PF 2→=(-2x 0,-2y 0),所以|PF 1→+PF 2→|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.因为点P 在椭圆上,所以0≤y 20≤1,所以当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C .解法二:由PF 1→+PF 2→=PO →+OF 1→+PO →+OF 2→=2PO →,所以|PF 1→+PF 2→|=2|P O →|=2x 20+y 20,因为点P 在椭圆上,所以x 20+2y 20=2,且0≤y 20≤1,则2x 20+y 20=22-2y 20+y 20=2-y 20+2,当y 20=1时,|PF 1→+PF 2→|取最小值2.故选C .2.已知F 是椭圆x 29+y 25=1的左焦点,P 是此椭圆上的动点,A (1,1)是一定点,求|PA |+|PF |的最大值和最小值.解 由题意知a =3,b =5,c =2,F (-2,0).设椭圆右焦点为F ′,则|PF |+|PF ′|=6,所以|PA |+|PF |=|PA |-|PF ′|+6.当P ,A ,F ′三点共线时,|PA |-|PF ′|取到最大值|AF ′|=2,或者最小值-|AF ′|=- 2.所以|PA |+|PF |的最大值为6+2,最小值为6- 2.3.在椭圆x 218+y 28=1上求一点,使它到直线2x -3y +15=0的距离最短.解 设所求点坐标为A (32cos θ,22sin θ),θ∈R , 由点到直线的距离公式得d =|62cos θ-62sin θ+15|22+-32=⎪⎪⎪⎪⎪⎪-12sin ⎝ ⎛⎭⎪⎫θ-π4+1513,当θ=2k π+3π4,k ∈Z 时,d 取到最小值31313,此时A 点坐标为(-3,2). 答题启示椭圆中距离的最值问题一般有三种解法:(1)利用椭圆的定义结合平面几何知识求解(适用于所求的表达式中隐含有长轴或者离心率e );(2)根据椭圆标准方程的特点,把距离问题转化为二次函数求最值的问题(适用于定点在椭圆的对称轴上);(3)用椭圆的参数方程设动点的坐标,转化为三角问题求解. 对点训练1.(2020·青海西宁复习检测)在平面直角坐标系xOy 中,P 是椭圆y 24+x 23=1上的一个动点,点A (1,1),B (0,-1),则|PA |+|PB |的最大值为( )A .5B .4C .3D .2答案 A解析 ∵椭圆的方程为y 24+x 23=1,∴a 2=4,b 2=3,c 2=1,∴B (0,-1)是椭圆的一个焦点,设另一个焦点为C (0,1),如图所示,根据椭圆的定义知,|PB |+|PC |=4,∴|PB |=4-|PC |,∴|PA |+|PB |=4+|PA |-|PC |≤4+|AC |=5,即|PA |+|PB |的最大值为5.2.设P ,Q 分别为圆x 2+(y -6)2=2和椭圆x 210+y 2=1上的点,则P ,Q 两点间的最大距离是( )A .5 2B .46+ 2C .7+ 2D .6 2答案 D解析 解法一:设椭圆上任意一点为Q (x ,y ),且-10≤x ≤10,-1≤y ≤1,则圆心(0,6)到点Q 的距离d =x 2+y -62=-9y 2-12y +46=-9⎝ ⎛⎭⎪⎫y +232+50, 当y =-23时,d max =52,P ,Q 两点间的最大距离d ′=d max +2=6 2.解法二:易知圆心坐标为M (0,6),|PQ |的最大值为|MQ |max +2,设Q (10cos θ,sin θ), 则|MQ |=10cos 2θ+sin θ-62=-9sin 2θ-12sin θ+46 =-9⎝⎛⎭⎪⎫sin θ+232+50,当sin θ=-23时,|MQ |max =52,所以|PQ |max =52+2=6 2.故选D .3.如图,焦点在x轴上的椭圆x24+y2b2=1的离心率e=12,F,A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则PF→·PA→的最大值为________.答案 4解析设P点坐标为(x0,y0).由题意知a=2,因为e=ca=12,所以c=1,所以b2=a2-c2=3.所以椭圆方程为x24+y23=1.所以-2≤x0≤2,-3≤y0≤ 3.因为F(-1,0),A(2,0),PF→=(-1-x0,-y0),PA→=(2-x0,-y0),所以PF→·PA→=x20-x0-2+y20=14x20-x0+1=14(x0-2)2.即当x0=-2时,PF→·PA→取得最大值4.1、在最软入的时候,你会想起谁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.已知F1,F2是椭圆C的两个焦点,P是C上的一点.若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()
A.1- B.2-
C. D. -1
答案:D
解析:在Rt△PF1F2中,∠PF2F1=60°,不妨设椭圆焦点在x轴上,且焦距|F1F2|=2,则|PF2|=1,|PF1|= ,
由椭圆的定义可知,方程 + =1中,2a=1+ ,2c=2,
8.已知直线l:y=kx与椭圆C: + =1(a>b>0)交于A,B两点,其中右焦点F的坐标为(c,0),且AF与BF垂直,则椭圆C的离心率的取值范围为()
A. B.
C. D.
答案:C
解析:由AF与BF垂直,运用直角三角形斜边的中线即为斜边的一半,可得|OA|=|OF|=c,由|OA|>b,即c>b,可得c2>b2=a2-c2,即c2> a2,可得 <e<1.故选C.
A. + =1 B. + =1
C. + =1 D. + =1
答案:A
解析:设椭圆的标准方程为 + =1(a>b>0).由点P(2, )在椭圆上知 + =1.又|PF1|,|F1F2|,|PF2|成等差数列,则|PF1|+|PF2|=2|F1F2|,即2a=2×2c, = ,又c2=a2-b2,联立 得a2=8,b2=6,故椭圆方程为 + =1.
40分钟单元基础小练32椭圆的定义、标准方程及性质
一、选择题
1.椭圆 +y2=1的离心率为()
A. B.
C. D.2
答案:B
解析:由题意得a=2,b=1,则c= ,所以椭圆的离心率e= = ,故选B.
2.若椭圆mx2+ny2=1的离心率为 ,则 =()
A. B.
C. 或 D. 或
答案:D
解析:若焦点在x轴上,则方程化为 + =1,依题意得 = ,所以 = ;若焦点在y轴上,则方程化为 + =1,同理可得 = .所以所求值为 或 .
答案: +y2=1
解析:连接QF,因为Q在线段PF的垂直平分线上,所以|QP|=|QF|,得|QE|+|QF|=|QE|+|QP|=|PE|=4.又|EF|=2 <4,得Q的轨迹是以E,F为焦点,长轴长为4的椭圆即 +y2=1.
14.如果方程x2+ky2=2表示焦点在x轴上,且焦距为 的椭圆,则椭圆的短轴长为________.
3.过椭圆4x2+y2=1的一个焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一个焦点F2构成的△ABF2的周长为()
A.2 B.4
C.8 D.2
答案:B
解析:因为椭圆方程为4x2+y2=1,所以a=1.根据椭圆的定义,知△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=4.
可得|PB|= ,|BF2|=1,
故|AB|=a+1+1=a+2,
tan∠PAB= = = ,解得a=4,
所以e= = .
故选D.
二、填空题
13.如图,已知圆E:(x+ )2+y2=16,点F( ,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.则动点Q的轨迹Γ的方程为________.
9.以椭圆上一点和两个焦点为顶点的三角形的面积的最大值为1,则椭圆长轴长的最小值为()
A.1B.
C.2D.2
答案:D
解析:设a,b,c分别为椭圆的长半轴长、短半轴长、半焦距,依题意知, ×2cb=1⇒bc=1,2a=2 ≥2 =2 ,当且仅当b=c=1时,等号成立.故选D.
10.过点(3,2)且与椭圆3x2+8y2=24有相同焦点的椭圆方程为()
得a= ,c=1,
所以离心率e= = = -1.故选D.
5.已知点P 是椭圆 +y2=1(a>1)上的点,A,B是椭圆的左、右顶点,则△PAB的面积为()
A.2B.
C. D.1
答案:D
解析:由题可得 + =1,∴a2=2,解得a= (负值舍去),则S△PAB= ×2a× =1,故选D.
6.已知F1,F2分别是椭圆 + =1(a>b>0)的左、右焦点,P为椭圆上一点,且 ·( + )=0(O为坐标原点).若| |= | |,则椭圆的离心率为()
化简得(2-r2)k2-4k+(2-r2)=0,则k1k2=1.
A. + =1 B. + =1
C. + =1 D. + =1
答案:C
解析:椭圆3x2+8y2=24的焦点为(± ,0),可得c= ,设所求椭圆的方程为 + =1,可得 + =1,又a2-b2=5,得b2=10,a2=15,所以所求的椭圆方程为 + =1.故选C.
11.一个椭圆的中心在原点,焦点F1,F2在x轴上,P(2, )是椭圆上一点,且|PF1|,|F1F2|,|PF2|成等差数列,则椭圆的方程为()
A. - B.
C. - D.
答案:A
解析:以OF1,OP为邻边作平行四边形,根据向量加法的平行四边形法则,由 ·( + )=0知此平行四边形的对角线互相垂直,则此平行四边形为菱形,∴|OP|=|OF1|,∴△F1PF2是直角三角形,即PF1⊥PF2.设|PF2|=x,则
∴ ∴e= = = - ,故选A.
7.若点O和点F分别为椭圆 + =1的中心和左焦点,点P为椭圆上的任意一点,则 · 的最大值为()
A.2B.3
C.6D.8
答案:C
解析:由椭圆 + =1可得F(-1,0),点O(0,0),设P(x,y)(-2≤x≤2),则 · =x2+x+y2=x2+x+3 = x2+x+3= (x+2)2+2,-2≤x≤2,当且仅当x=2时, · 取得最大值6.
12.已知F1,F2是椭圆C: + =1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为 的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()
A. B.
C. D.
答案:D
解析:
如图,作PB⊥x轴于点B.
由题意可设|F1F2|=|PF2|=2,则c=1,
由∠F1F2P=120°,
答案:
解析:方程x2+ky2=2可化为 + =1,则 2+ =2⇒ = ,∴短轴长为2× = .
15.已知P为椭圆 + =1(a>b>0)上一点,F1,F2是其左、右焦点,∠F1PF2取最大值时cos∠F1PF2= ,则椭圆的离心率为________.
答案:
解析:易知∠F1PF2取最大值时,点P为椭圆 + =1与y轴的交点,由余弦定理及椭圆的定义得2a2- =4c2,即a= c,所1与圆M:x2+y2+2 x+2-r2=0(0<r< ),过椭圆C的上顶点P作圆M的两条切线分别与椭圆C相交于A,B两点(不同于P点),则直线PA与直线PB的斜率之积等于________.
答案:1
解析:由题可得,圆心为M(- ,0),P(0, ).设切线方程为y=kx+ .由点到直线的距离公式得,d= =r,
相关文档
最新文档