新人教版七年级数学上册专题训练:角的计算(含答案)
新人教版七年级数学上册专题训练:角的计算(含答案)

专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AO E 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。
人教版数学七年级上册4.3.1《角》同步练习(有答案)

人教版数学七年级上册 4.3.1《角》同步练习(有答案)《角》同步练习一、选择题1.下列关于角的说法正确的是( )A .两条射线组成的图形叫角B .角的大小与这个角的两边长短无关C .延长一个角的两边D .角的两边是射线,所以角不可以度量2.关于平角、周角的说法正确的是( )A .平角是一条直线B .周角是一条射线C .反向延长射线OA ,就成一个平角D .两个锐角的和不一定小于平角3.在钝角∠AOB 内部引出两条射线OC 、OD ,则图中共有角( )A .3个B .4个C .5个D .6个4.如图所示,下列表示β∠的方法中,正确的是( )A .C ∠B .D ∠C .ADB ∠D .BAC ∠5.下列各角中,是钝角的是( )A .41平角B .32平角C .31平角D .41周角 6.如图下列表示角的方法,错误的是( ).A .1∠与AOB ∠表示同一个角B .AOC ∠也可用O ∠来表示C .图中AOB ∠、AOC ∠、BOC ∠D .β∠表示的是BOC ∠5.用度、分、秒表示52.73°为____度____分____秒.6.15°48′36″=_____________°.7.在图中,用三个大写字母表示1 ∠为________;2 ∠为________;3 ∠为________;4 ∠为________.8.在AOB ∠内部过顶点O 引3条射线,则共有___________个角,如果引出99条射线,则共有_____________个角.9.计算90°-57°34′44″的结果为_______________.10.如图,AOB ∠是直角,2:1:,38=∠∠︒=∠COB COD AOC ,则____=∠DOB 度.11.在图中,A 、B 、C 三点分别代表邮局,医院、 学校中的某一处,邮局和医院分别在学校的北偏 西方向,邮局又在医院的北偏东方向,那么图中A 点应该是___________,B 点是_________,C 点是_________.三、解答题1.钟表2时15分时,你知道时针与分针的夹角是多少度吗?2.用剪刀沿直线剪掉长方形的一个角,数一数,还剩多少个角?3.如图,从一点O 出发引射线OA 、OB 、OC 、OD 、OE ,请你数一数图中有多少个角.4.计算:(1)77°52′+32°43′-21°17′;(2)37°15′×3;(3)175°52′÷3.(4)23°45′+24°16′(5)53°25′28″×5(6)15°20′÷65.如图,在AOB∠内部,从顶点O引出3条射线OC、OD、OE,则图形中共有几个角?如果从O点引出几条射线,有多少个角?你能找出规律吗?6.如图,已知OE是AOC∠的平分线.∠的角平分线,OD是BOC(1)若︒,AOC,求DOE∠20110BOC==∠︒∠的度数;(2)若︒∠的度数.AOB,求DOE∠90=7.如图,指出OA表示什么方向的一条射线?并画出表示下列方向的射线:(1)南偏东60°(2)北偏西40°(3)南北方向8.时钟的时针从2点半到2点54分共转了多大角度?9.已知线段a、b、∠α用尺规画一个△ABC,使αBCaAB,,.b=B=∠=∠10.小明在宾馆大厅内看到反映世界几个大城市当前时刻的时钟如下(如图),请你分别写出每个钟面上时针和分针的夹角.11.一天24小时,时钟的分针与时针共组成多少次平角?多少次周角?12.如图,若放置一枝铅笔,使笔尖朝AB方向并重合于AB,以A为旋转中心,按逆时针方向旋转∠A的大小,与AF重合;再以F为中心,按逆时针方向旋转F的大小,与EF重合……这样连续都按逆时针方向旋转过去,最后与AB重合,这时笔尖的方向仍是朝向AB,你知道铅笔一共转过了多少度吗?这个实验能说明六边形内角和的度数吗?13.你知道下图中有多少三角形吗?参考答案一、选择题1.B 2.C 3.D 4.C 5.B 6.B 7.C 8.B 9.C 10.D11.D二、填空题1.1°,60′,60″2.153.954.4,45,05.52,43,486.15.817.∠BDE ;∠DBE ;∠ABC ;∠ACB8.10 50509.32°25′16″10.26°11.邮局,医院,学校三、解答题1.22.5°2.3个或4个或5个3.10个4.(1)89°18′;(2)112°45′;(3)58°38′(4)48°1′ (5)267°7′20″ (6)2°33′20″5.共有10个角;从O 点出发引出几条射线,能组)1(-n 个基本角,则共有角的个数为:)1(21123)2()1(-=++++-+-n n n n 个角. 6.(1)先求︒=∠=∠︒=∠1021,55BOC COD COE 故︒=︒-︒=∠451055DOE (2)有BOC COD AOC COE ∠=∠∠=∠21,21 则︒=∠=∠-∠=∠4521)(21AOB BOC AOC DOE 7.北偏东60°(图略)8.12°9.略10.从左至右依次为:150°、120°、30°,120°、90°、60°11.22次,22次12.720°,六边形内角和为720°13.78个《角的度量》典型例题例1 如图,你知道以A为顶点的角有哪些吗?除了以A为顶点的角外,图中还有哪些角?你会将它们表示出来吗?例2(1)下图中能用一个大写字母表示的角是___________.(2)以A为顶点的角有_____________个,它们是________________.例3 (1)把25.72°分别用度、分、秒表示.(2)把45°12′30″化成度.例4 计算:(1)53°39′+36°40′;(2)92°3′-48°34′;(3)53°25′28″×5;(4)15°20′÷6.例5 当时钟表面3时25分时,你知道时针与分针所夹角的度数是多少?参考答案例1解:以A为顶点的角有∠∠∠、、、,其他的角有∠、、DACEAC∠DAEBACBAD∠BAEα∠β、2、1C、B.∠∠∠∠、∠、说明:(1)在数以A为顶点的角的个数时,先选定一边为始边(如AB),确定以始边为一边的角的个数,再依次把后面的边看作起始边,数出角的个数,相加即可得角的总数.本题中以AB为始边的角有3个(如图1),以AD为始边的角有两个(如图2),以AE为始边的角有1个(如图3),在数角时注意要向同一个方向数,以免重复,这与线段的数法类似;(2)目前我们所说的角一般都是指小于平角的角.所以以D为顶点的平角和以E为顶点的平角不包括在内.(3)角的表示方法共有四种,可根据需求灵活选定;①用三个大写字母表示角,此时表示角的顶点的字母应写在中间(如∠BAD);②用一个大写字母表示角,适用于以某一点为顶点的角只有一个(如∠B或∠C);③用希腊字母α、γβ、等表示角,此时要在所表示的角的顶点处加上连接两边的弧线,以明确所表示的是图中的哪个角(如∠α或∠β);④用数字表示角(如∠1或∠2).图1 图2 图3例2 分析:第(1)题中,能用一个大写字母表示的这个角必须是独立的一个角,所以只能是C∠、;第(2)题中,以A为顶点的角,必须含A,而且AB∠为公共端点,这样的角有6个,以AC为一边的角:CAB∠、,∠、CAE∠CAD以AE为边且不重复的角:EAB∠、,以AD为边且不重复的角:DABEAD∠∠.答案:(1)C∠、;B∠(2)6个DAB EAB EAD CAB CAD CAE ∠∠∠∠∠∠、、、、、.说明:要正确写出答案,首先要弄清角的定义是什么,其次是熟悉表示角的方法,特别对于(2),还要仔细、认真地找出所有的角.例3 分析:第(1)题中25.72°含有两部分25°和0.72°,只要把0.72°化成分、秒即可,第(2)题中,45°21′30″含有三部分45°,12′和30″,其中45°已经是度,只要把12′和30″化成度即可.解:(1)0.72°=0.72×61′=43.2′0.2′=0.2×60″=12″所以25.72°=25°43′12″(2)5.0)601(3003'='⨯='' 21.0)601(5.125.12≈⨯=' 所以45°12′30″=45.21°说明:①是由高级单位向低级单位化:②是由低级单位向高级单位化.它们都必须是逐级进行的,“越级”化单位容易出错而且还要熟记他们之间的换算关系.例4 解:(1)53°39′+36°40′=89°+79=90°19′;(2)92°3′-48°34′=91°63′-48°34′=43°29′;(3)53°25′28″×5=265°+125′+140″=267°7′20″;(4)15°20′÷6=2°+(3×60′+20′)÷6=2°33′20″.说明:角度的运算规律为:(1)加减法时将同一单位进行加减,加法够60进1,减法不够减要借1为60;(2)乘法时将数与度、分、秒分别相乘,然后从小到大逢60进1;(3)除法时用度先除,把余数化为分,再加上原来的分,用这个数除以除数,把余数化成秒,再加上原来的秒,再用这个数除以除数,如果除不尽就按题意要求,进行四舍五入;(4)度、分、秒之间的互化有:由低级单位向高级单位转化,使用的公式是'⎪⎭⎫ ⎝⎛=''︒⎪⎭⎫ ⎝⎛='6011,6011.例如30°42′,可化为30.7°;另一种是由高级单位向低级单位转化,使用的公式是1°=60′,11 / 111′=60″,例如2.45°可化为2°27′,在度、分、秒的互化过程中要逐级进行,不要“跳级”,以免出错.例5 解:法一:从3时整开始,分针转过了6°×25=150°,时针转过了0.5°×25= 5.12,因为3点整时两针夹角为90°,所以3时25分时两针夹角为150°-90°-12.5°= 5.47.法二:3时25分时,分针在钟面“5”字上,时针从“3”字转过了0.5°×25= 5.12.又“3”、“5”两字之间夹角为60°,所以3时25分时两针夹角为60°-12.5°= 5.47.法三:设所求夹角度数为x °,将分针视作在追赶并超过时针,它们的速度分别是 6/min 和0.5°/min ,则由题意,得方程x +=⨯-9025)5.06(,5.47=x .说明:(1)此题是角的度量的实际应用,它能加深我们对角的意义的理解.解题的关键是明确钟面上分针1分钟转过的角度是6°,时针1分钟转过的角度是分针转过角度的121,即0.5°;(2)解题时要注意分针在运动时,时针也在运动,而不能认为时针静止;(3)这类题型可视作时针和分针在作相对运动,可以参照环形线路上的行程问题列方程(组)求解,也可以以钟面上“格”作单位,即分针和时针每分钟走1格和121格.。
人教版2020年七年级数学上册小专题练习十七《角-解答题专练》(含答案)

人教版2020年七年级数学上册小专题练习十七《角-解答题专练》1.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.2.如图,∠AOB=72°30′,射线OC在∠AOB内,∠BOC=30°.(1)∠AOC=_______;(2)在图中画出∠AOC的一个余角,要求这个余角以O为顶点,以∠AOC的一边为边.图中你所画出的∠AOC的余角是∠______,这个余角的度数等于______.3.如图,O是直线AB上一点,OC为任一条射线,OD平分∠AOC;OE平分∠BOC.(1)图中∠BOD的邻补角为_________;∠AOE的邻补角为____________。
(2)如果∠COD=25°,那么∠COE= ;如果∠COD=60°,那么∠COE= ;(3)试猜想∠COD与∠COE具有怎样的数量关系,并说明理由.4.如图,将两块直角三角尺的直角顶点C叠放在一起.(1)判断∠ACE与∠BCD的大小关系,并说明理由;(2)若∠DCE=30°,求∠ACB的度数;(3)猜想:∠ACB与∠DCE有怎样的数量关系,并说明理由.5.①如图1,点A、C、B在同一直线上,CD平分∠ACB,∠ECF=90°.回答下列问题:(1)写出图中所有的直角;(2)写出图中与∠ACE相等的;(3)写图中∠DCE所有的余角;(4)写图中∠ACE所有的余角;(5)写图中∠FCD的补角;(6)写图中∠DCE的补角;②如图2,已知点A、O、B在一条直线上,∠COD=90°,OE平分∠AOC,OF平分∠BOD,求∠EOF的度数.6.如图,已知∠AOM与∠MOB互为余角,且∠BOC=30°,OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果已知∠AOB=80°,其他条件不变,求∠MON的度数;(3)如果已知∠BOC=60°,其他条件不变,求∠MON的度数;(4)从(1)(2)(3)中你能看出什么规律?7.如图,已知∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小.(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?8.已知如图,∠BOC和∠AOC的比是3:2,OD平分∠AOB,∠COD=10°,求∠AOB的度数.9.如图,已知OD平分∠AOB,射线OC在∠AOD内,∠BOC=2∠AOC,∠AOB=114°.求∠COD的度数.10.如图,∠AOB=90°,∠AOC为∠AOB外的一个锐角,且∠AOC=30°,射线OM平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中∠AOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1),(2),(3)的结果中,你能看出什么规律?(5)线段的计算与角的计算存在着紧密的联系,它们之间可以互相借鉴解法.请你模仿(1)~(4)设计一道以线段为背景的计算题,并写出其中的规律.参考答案1.解:(1)北偏东70°;(2)因为∠AOB=55°,∠AOC=∠AOB,所以∠BOC=110°.又因为射线OD是OB的反向延长线,所以∠BOD=180°,∠COD=180°﹣110°=70°.因为∠COD=70°,OE平分∠COD,所以∠COE=35°又因为∠AOC=55°.所以∠AOE=∠AOC +∠COE =90°.2.解:(1)42°30′;(2)如图,AOD或COE,47°30′;3.解:(1)∠AOD;∠BOE;(2)65°;30°;(3)∠COD+∠COE=90°.理由如下:因为OD平分∠AOC,OE平分∠BOC.所以∠COD=∠AOC,∠COE=∠BOC.所以∠COD+∠COE=∠AOC+∠BOC==∠AOB=×180°=90°.4.解:(1)∠ACE=∠BCD,理由如下:∵∠ACE+∠DCE=90°,∠BCD+∠DCE=90°,∴∠ACE=∠BCD;(2)由余角的定义,得∠ACE=90°﹣∠DCE=90°﹣30°=60°,由角的和差,得∠ACB=∠ACE+∠BCE=60°+90°=150°;(3)∠ACB+∠DCE=180°,理由如下:由角的和差,得∠ACB=∠BCE+∠ACE,∠ACB+∠DCE=∠BCE+(∠ACE+DCE)=∠BCE+∠ACE=180°.5.解:①∵CD平分∠ACB,∠ECF=90°,∴∠ACD=∠BCD=90°,∴∠ACE=∠FCD,∠BCF=∠ECD,(1)图中所有的直角有:∠ACD,∠BCD,∠ECF;(2)与∠ACE相等的角有∠DCF;(3)∠DCE所有的余角有∠ACE,∠DCF;(4)∠ACE所有的余角有∠DCE,∠BCF;(5)∠FCD的补角∠BCE;(6)∠DCE的补角∠ACF.故答案为:∠ACD,∠BCD,∠ECF;∠DCF;∠ACE,∠DCF;∠DCE,∠BCF;∠BCE;∠ACF.;(2)∵∠COD=90°,∴∠AOC+∠BOD=90°,∵OE平分∠AOC,OF平分∠BOD,∴∠COE+∠DOF=(∠AOC+∠BOD)==45°,∴∠EOF=∠COE+∠DOF+∠COD=135°.6.解:(1)因为OM平分∠AOC,所以∠MOC=0.5∠AOC.因为ON平分∠BOC,所以∠NOC=0.5∠BOC,所以∠MON=∠MOC-∠NOC=0.5∠AOC-0.5∠BOC=0.5∠AOB.而∠AOB=∠AOM+∠MOB=90°,所以∠MON=45°.(2)当∠AOB=80°,其他条件不变时,∠MON=0.5×80°=40°.(3)当∠BOC=60°,其他条件不变时,∠MON=45°.(4)分析(1)(2)(3)的结果和(1)的解答过程可知:∠MON的大小总等于∠AOB的一半,而与锐角∠BOC的大小无关.7.解:8.解:∵∠BOC和∠AOC的比是3:2,∴设∠BOC=3x,则∠AOC=2x,则∠AOB=5x,∵OD平分∠AOB,∴∠AOD=x,则x﹣2x=10,解得:x=20,则∠AOB=100°.9.【解答】解:∵OD平分∠AOB,∠AOB=114°,∴∠AOD=∠BOD==57°.∵∠BOC=2∠AOC,∠AOB=114°,∴∠AOC=.∴∠COD=∠AOD﹣∠AOC=57°﹣38°=19°.10.解:(1)因为∠AOB=90°,∠AOC=30°,所以∠BOC=120°.因为OM平分∠BOC,所以∠COM=∠BOC=60°.因为ON平分∠AOC,所以∠CON=∠AOC=×30°=15°,所以∠MON=∠COM-∠CON=60°-15°=45°(2)当∠AOB=α,其它条件不变时,仿(1)可得∠MON=α(3)仿(1)可求得∠MON=∠COM-∠CON=45°(4)从(1)(2)(3)的结果中,可以得出一般规律:∠MON的大小总等于∠AOB的一半,与锐角∠AOC的大小无关(5)问题可设计为:已知:线段AB=a,延长AB到点C,使BC=6,点M,N分别为AC,BC的中点,求MN的长.规律是:MN的长度总等于AB的长度的一半,而与BC的长度无关。
(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)

(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.1︒等于()A.10'B.12'C.60'D.100' 2.“V”字手势表达胜利,必胜的意义.它源自于英国,“V”为英文Victory(胜利)的首字母.现在“V"字手势早已成为世界用语了.如图的“V”字手势中,食指和中指所夹锐角a的度数为()A.25B.35C.45D.553.下列说法中正确的是()A.射线AB与射线BA是同一条射线B.两条射线组成的图形叫做角C.各边都相等的多边形是正多边形D.连接两点的线段的长度叫做两点之间的距离4.下列角中,能用1∠,ACB∠三种方法表示同一个角的是()∠,CA.B.C.D .5.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,12740'∠=︒,则2∠的余角是( )A .1720'︒B .3220︒'C .3320'︒D .5820︒'6.如图,下列说法中错误的是( ).A .OA 方向是北偏东20︒B .OB 方向是北偏西15︒C .OC 方向是南偏西30︒D .OD 方向是东南方向二、填空题7.如图所示,120AOD ∠=︒,50AOB ∠=︒,OC 平分BOD ∠,那么BOC ∠=__________.8.计算:45396541︒'︒'+=________.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)9.计算:(1)1003441'︒-︒=_________;(2)23252455''︒+︒=_________;(3)1366435428''''︒-︒=_________.10.如图,写出图中以A 为顶点的角______.三、解答题11.读句画图如图,点,,A B C 是同一平面内三个点,借助直尺、刻度尺、量角器完成(以答题卡上印刷的图形为准):(1)画图:①画射线AB ;①画直线BC ;①连接AC 并延长到点D ,使得CD CA =.(2)测量:ABC ∠约为_________°(精确到1︒).12.【观察思考】如图,五边形ABCDE 内部有若干个点,用这些点以及五边形ABCDE 的顶点ABCDE 把原五边形分割成一些三角形(互相不重叠).【规律总结】(1)填写下表:(2)【问题解决】原五边形能否被分割成2022个三角形?若能,求此时五边形ABCDE 内部有多少个点;若不能,请说明理由.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)1.C【分析】根据1°=60′即可得到答案.【详解】解:1°=60′,故选:C.【点睛】本题考查了度、分、秒之间的换算,能正确进行度、分、秒之间的换算是解此题的关键,注意:1°=60′.2.B【分析】根据图形和各个角度的大小得出即可.【详解】解:根据图形可以估计①α约等于35°,故选:B.【点睛】本题考查了估算角的度数的大小的应用,主要考查学生观察图形的能力.3.D【分析】直接利用角的定义以及正多边形的定义、两点之间距离定义分别分析得出答案.【详解】解:A、射线AB与射线BA不是同一条射线,故此选项错误;B、有公共端点是两条射线组成的图形叫做角,故此选项错误;C、各边都相等、各角都相等的多边形是正多边形,故此选项错误;D、连接两点的线段的长度叫做两点之间的距离,故此选项正确.故选:D.【点睛】此题主要考查了角的定义以及正多边形的定义、两点之间距离定义,正确掌握相关定义是解题关键.4.C【分析】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,据此分析即可【详解】根据角的表示方法,顶点只存在一个角时,可以用一个字母表示角,A、B、D选项中,点C为顶点的角存在多个,故不符合题意故选C【点睛】本题考查了角的表示方法,掌握角的表示方法是解题的关键.角的表示方法有三种:(1)用三个字母及符号“①”来表示.中间的字母表示顶点,其它两个字母分别表示角的两边上的点.(2)用一个数字表示一个角.(3)用一个字母表示一个角.具体用哪种方法,要根据角的情况进行具体分析,总之表示要明确,不能使人产生误解.5.B【分析】根据余角的定义可得①2的余角即①EAC ,然后利用角的运算列式计算求解,注意1°=60′.【详解】解:由题意可得:①2+①EAC =90°①①2的余角是①EAC①①EAC =601602740'3220'︒-∠=︒-︒=︒故选:B .【点睛】本题考查余角的概念及角的和差运算,掌握概念及角度制的运算是解题关键. 6.A【分析】由方位角的含义逐一判断各选项即可得出答案.【详解】解:OA 方向是北偏东70︒,故A 错误;OB 方向是北偏西15︒,故B 正确;OC 方向是南偏西30︒,故C 正确;OD 方向是东南方向,故D 正确;故选:A .【点睛】本题考查的是方位角,掌握方位角的含义是解题的关键.7.35°【分析】由已知可求BOD ∠的大小,根据角平分线的概念可求BOC ∠的大小.【详解】①120AOD ︒∠=,50AOB ︒∠=,①70BOD AOD AOB ︒∠=∠-∠=,①OC 平分BOD ∠, ①1352BOC BOD ︒∠=∠=, 故答案为:35︒.【点睛】本题主要考查了角的认识,角平分线的概念,熟练掌握角的相关概念是解题的关键. 8.111°20´.【分析】两个度数相交,度与度,分与分对应相加,分的结果若满60,则转化为度.【详解】45°39´+65°41´=111°20´,故答案为111°20´.【点睛】本题考查度角分的换算,学生们要知道角度之间的运算是60进制.(人教版)初中七年级数学上册《角》同步练习试题(含答案解析)9. 6519'︒ 4820'︒ 921132'''︒【分析】(1)根据角的各单位之间的是60进位,可以把100︒写成9060'︒,然后再用度减度,分减分,进行计算即可;(2)按照度加度,分加分计算即可;(3)根据角的各单位之间的是60进位,可以把1366'︒写成13565'60''︒,然后再用度减度,分减分,秒减秒进行计算即可【详解】(1)1003441'9960'3441'6519'︒-︒=︒-︒=︒;(2)2325'2455'4780'4820'︒+︒=︒=︒;(3)1366'4354'28''︒-︒=13565'60''4354'28''︒-︒9211'32''=︒.故答案为:①6519'︒,①4820'︒,①921132'''︒.【点睛】本题考查的度、分、秒的计算,掌握度、分、秒的换算方法是解题关键.10.①DAC ①DAB ①CAB【分析】根据角的表示方法即可求解.【详解】写出图中以A 为顶点的角①DAC 、①DAB 、①CAB.故答案为①DAC ,①DAB ,①CAB.【点睛】此题考查的是角的表示方法,角可用三个大写字母表示,顶点字母写在中间,每边上的点写在两旁;也可以用一个大写字母表示,在角的顶点处有多个角时,不可以用一个字母表示这个角.11.(1)①见解析;①见解析;①见解析;(2)50【分析】(1)根据题目要求结合概念作图可得;(2)利用量角器测量可得.【详解】解:(1)如图所示: ①射线AB 即为所求;①直线BC 即为所求;①线段CD=CA 即为所求(2)ABC ∠约为50°故答案为:50【点睛】本题主要考查作图,解题的关键是掌握直线、射线、线段的概念及角的定义和测量.12.(1)11,2n+3;(2)不能,理由见解析.(1)根据图形特点找出五边形ABCDE内点的个数与分割成的三角形的个数的关系,【分析】总结规律即可;(2)根据规律列出方程,解方程得到答案.(1)有1个点时,内部分割成5个三角形;有2个点时,内部分割成5+2=7个三角形;有3个点时,内部分割成5+2×2=9个三角形;有4个点时,内部分割成5+2×3=11个三角形;…以此类推,有n个点时,内部分割成5+2×(n−1)=(2n+3)个三角形;故答案为11,2n+3;(2)令2n+3=2022,即2n=2019,显然这个方程没有整数解,①原五边形不能被分割成2022个三角形.【点睛】本题考查图形类规律探索,熟练掌握不完全归纳的方法及求一元一次方程整数解的方法是解题关键.。
人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合练习题汇编1.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)当∠BOC=140°时,求∠AOM的度数;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=x度时,则∠MON=度.(请直接写出答案)2.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线,∠EOC=65°,∠DOC=25°,求∠AOB的度数.3.如图,已知射线OC在∠AOB内,OM和ON分别平分∠AOC和∠BOC.(1)若∠AOC=50°,∠BOC=30°,求∠MON的度数.(2)探究∠MON与∠AOB的数量关系.4.如图,已知A、O、B三点在一条直线上,OC平分∠AOD,∠AOC+∠EOB=90°.(1)求∠COE的度数;(2)判断∠DOE和∠EOB之间有怎样的关系,并说明理由.5.填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC因为OE是∠BOC的平分线,所以∠COE=所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+ =°6.如图,O为直线AB上一点,∠BOE=80°,直线CD经过点O.。
七年级数学角度的计算(专题)(含答案)

角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。
人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。
人教版七年级数学上册期末压轴题突破训练:角的相关计算 含答案

亲爱的同学,“又是一年芳草绿,依旧十里杏花红”。
当春风又绿万水千山的时候,我们胜利地完成了数学世界的又一次阶段性巡游。
今天,让我们满怀信心地面对这张试卷,细心地阅读、认真地思考,大胆地写下自己的理解,盘点之前所学的收获。
请同学们认真、规范答题!老师期待与你一起分享你的学习成果!人教版七年级数学上册期末压轴题突破训练角的相关计算1.已知:OC是∠AOB内部一条射线,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图①所示,若A,O,B三点共线,则∠MON的度数是,此时图中共有对互余的角.(2)如图②所示,若∠AOB=110,求∠MON的度数.(3)直接写出∠MON与∠AOB之间的数量关系.2.已知,如图1,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若MOC=28°,求∠BON的度数;(2)若将三角形MON绕点O旋转到如图2所示的位置,若∠BON=100°,则∠MOC 的度数为;(3)若将三角形MON绕点O旋转到如图3所示的位置,试写出∠BON和∠MOC之间的数量关系,并说明理由.3.(1)如图2,将直角三角形纸板绕O点顺时针旋转,∠DOE=90°,当OD恰好平分∠AOC时,指出∠COE与∠BOE之间的数量关系,并说明理由;(2)如图2,在(1)的条件下,作OM平分∠AOE,ON平分∠BOD,求∠MON的度数;(3)当直角三角形纸板旋转到如图3位置,∠DOE=90°,若∠COE=2∠AOD﹣30°,那么∠COD﹣2∠BOE的值是多少?4.点O在直线PQ上,过点O作射线OC,使∠POC=130°,将一直角三角板的直角顶点放在点O处.(1)如图①所示,将直角三角板AOB的一边OA与射线OP重合,则∠BOC=°.(2)将图①中的直角三角板AOB绕点O旋转一定角度得到如图②所示的位置,若OA 平分∠POC,求∠BOQ的度数.(3)将图①中的直角三角板AOB绕点O旋转一周,存在某一时刻恰有OB⊥OC,求出所有满足条件的∠AOQ的度数.5.已知:点O为直线AB上一点,过点O作射线OC,∠BOC=100°.(1)如图1,求∠AOC的度数;(2)如图2,过点O作射线OD,使∠COD=90°,作∠AOC的平分线OM,求∠MOD 的度数;(3)如图3,在(2)的条件下,作射线OP,若∠BOP与∠AOM互余,请画出图形,并求∠COP的度数.6.如图,OC,OB,OD是∠EOA内三条射线,OB平分∠DOA,OC平分∠EOA.(1)已知∠EOD=80°,∠AOB=20°,求∠BOC的度数.(2)设∠EOD=α,用含α的代数式表示∠BOC.(3)若∠EOD与∠BOC互余,求∠BOC的度数.7.如图1,将一副三角板的直角顶点C叠放在一起.观察分析:(1)若∠DCE=35°,则∠ACB=;若∠ACB=150°,则∠DCE=;猜想探究:(2)请你猜想∠ACB与∠DCE有何关系,并说明理由;拓展应用:(3)如图2,若将两个同样的三角尺60°锐角的顶点A重合在一起,请你猜想∠DAB 与∠CAE有何关系,请说明理由;(4)如图3,如果把任意两个锐角∠AOB、∠COD的顶点O重合在一起,已知∠AOB =α,∠COD=β(α、β都是锐角),请你直接写出∠AOD与∠BOC的关系.8.已知:如图所示,OD平分∠BOC,OE平分∠AOC.若∠BOC=70°,∠AOC=50°.(1)求出∠AOB及其补角的度数;(2)求出∠DOC和∠AOE的度数,并判断∠DOE与∠AOB是否互补,并说明理由;(3)若∠BOC=α,∠AOC=β,则∠DOE与∠AOB是否互补,并说明理由.9.已知直线AB与CD相交于点O,且∠AOD=90°,现将一个直角三角尺的直角顶点放在点O处,把该直角三角尺OEF绕着点O旋转,作射线OH平分∠AOE.(1)如图1所示,当∠DOE=20°时,∠FOH的度数是.(2)若将直角三角尺OEF绕点O旋转至图2的位置,试判断∠FOH和∠BOE之间的数量关系,并说明理由.(3)若再作射线OG平分∠BOF,试求∠GOH的度数.10.已知:如图,OB、OC分别为定角(大小不会发生改变)∠AOD内部的两条动射线,(1)当OB、OC运动到如图1的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,求∠AOD的度数.(2)在(1)的条件下(图2),射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,求∠POQ的度数.11.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)若直角△DOE的边OD在射线OB上(图1),求∠COE的度数;(2)将直角△DOE绕点O按逆时针方向转动,使得OE所在射线平分∠AOC(图2),说明OD所在射线是∠BOC的平分线;(3)将直角△DOE绕点O按逆时针方向转动到某个位置时,恰好使得∠COD:∠AOE =1:2,求∠BOE的度数.12.已知:如图1,OB、OC分别为锐角∠AOD内部的两条动射线,当OB、OC运动到如图的位置时,∠AOC+∠BOD=100°,∠AOB+∠COD=40°,(1)求∠BOC的度数;(2)如图2,射线OM、ON分别为∠AOB、∠COD的平分线,求∠MON的度数.(3)如图3,若OE、OF是∠AOD外部的两条射线,且∠EOB=∠COF=90°,OP平分∠EOD,OQ平分∠AOF,当∠BOC绕着点O旋转时,∠POQ的大小是否会发生变化,若不变,求出其度数,若变化,说明理由.参考答案1.解:(1)∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠AOM=∠COM,∠CON=∠BON,∴∠MON=∠MOC+∠NOC====90°;∴∠AOM+∠BON=90°,∴图中互余的角有:∠AOM与∠BON,∠AOM与∠CON,∠COM与∠CON,∠COM 与∠BON共4对,故答案为:90°;4;(2)∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠MON=∠MOC+∠NOC=====55°;(3)∠MON=.2.解:(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°;(2)∵∠BON=100°,∴∠AON=80°,∴∠AOM=90°﹣∠AON=10°,∠AOC=40°,∴∠MOC=∠AOM+∠AOC=50°.故答案为:50°;(3)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∠BON=2∠MOC.3.解:(1)∠COE=∠BOE,理由如下:∵∠DOE=90°,∴∠DOC+∠COE=90°,∴∠AOD+∠BOE=90°,∵OD平分∠AOC,∴∠AOD=∠DOC,∴∠COE=∠BOE;(2)∵OM平分∠AOE,ON平分∠BOD,∴∠BOM=180°﹣∠AOE,∠BON=∠BOD,∠MON=∠BOM﹣∠BON=180°﹣(∠AOE+∠BOD)=180°﹣×270°=45°;(3)在旋转的过程中,那么∠COD﹣2∠BOE的值发生不变化,.∵在(1)的条件下,若∠COE=2∠AOD﹣30°,∴90°+∠COD=2∠AOD﹣30°∴∠COD=2∠AOD﹣120°=2(180°﹣∠BOD)﹣120°=240°﹣2∠BOD,∵∠BOE=90°﹣∠BOD,∴∠COD﹣2∠BOE=(240°﹣2∠BOD)﹣2(90°﹣∠BOD)=60°,∴∠COD﹣2∠BOE的值不变为60°.4.解:(1)∵∠AOB=90°,∠POC=130°,∴∠BOC=∠POC﹣∠AOB=130°﹣90°=40°,故答案为:40;(2)∵OA平分∠POC,∴∠POA=∠POC=65°,∴∠POB=∠POA+∠AOB=65°+90°=155°,∴∠BOQ=180°﹣∠POB=25°;(3)当OB在OC的右边时,如图,则∠AOQ=180°﹣∠POC=50°,当OB在OC的左边时,如图,则∠AOQ=∠POC=130°.5.解:(1)∠AOC=180°﹣∠BOC=180°﹣100°=80°;(2)由(1)得∠AOC=80°,∵∠COD=90°,∴∠AOD=∠COD﹣∠AOC=10°,∵OM是∠AOC的平分线,∴∠AOM=∠AOC=×80°=40°,∴∠MOD=∠AOM+∠AOD=40°+10°=50°;(3)由(2)得∠AOM=40°,∵∠BOP与∠AOM互余,∴∠BOP+∠AOM=90°,∴∠BOP=90°﹣∠AOM=90°﹣40°=50°,①当射线OP在∠BOC内部时(如图1),∠COP=∠BOC﹣∠BOP=100°﹣50°=50°;②当射线OP在∠BOC外部时(如图2),∠COP=∠BOC+∠BOP=100°+50°=150°.综上所述,∠COP的度数为50°或150°.6.解:(1)∵OB平分∠DOA,OC平分∠EOA.∴∠AOB=∠BOD=∠AOD,∠EOC=∠AOC=∠EOA,∵∠EOD=80°,∠AOB=20°,∴∠EOA=80°+20°×2=120°,∴,∠EOC=∠AOC=∠EOA=60°,∴∠BOC=∠AOC﹣∠AOB=60°﹣20°=40°.(2)∵∠BOC=∠AOC﹣∠AOB=∠DOE﹣∠COD﹣∠BOD=∠DOE﹣∠BOC,∴2∠BOC=∠DOE,∴∠BOC=∠DOE=α,(3)∵∠EOD与∠BOC互余,∴∠EOD+∠BOC=90°,∵∠BOC=∠DOE,∴∠BOC=×90°=30°.7.解:(1)(1)若∠DCE=35°,∵∠ACD=90°,∠DCE=35°,∴∠ACE=90°﹣35°=55°,∵∠BCE=90°,∴∠ACB=∠ACE+∠BCE=55°+90°=145°;若∠ACB=150°,∵∠BCE=90°,∴∠ACE=150°﹣90°=60°,∵∠ACD=90°,∴∠DCE=90°﹣60°=30°,故答案为:145°,30°;(2)∠ACB+∠DCE=180°,理由:∵∠ACE+∠ECD=90°,∠ECD+∠DCB=90°,∴∠ACE+∠ECD+∠ECD+∠DCB=180°,∵∠ACE+∠ECD+∠DCB=∠ACB,∴∠ACB+∠ECD=180°;(3)∠DAB+∠EAC=120°,理由:∵∠DAE+∠EAC=60°,∠EAC+∠CAB=60°,∴∠DAE+∠EAC+∠EAC+∠CAB=120°,∵∠DAE+∠EAC+∠CAB=∠DAB,∴∠DAB+∠EAC=120°;(4)∠AOD+∠BOC=α+β,理由是:∵∠AOD=∠DOC+∠COA=β+∠COA,∴∠AOD+∠BOC=β+∠COA+∠BOC,=β+∠AOB,=α+β.8.解:(1)∠AOB=∠BOC+∠AOC=70°+50°=120°,其补角为180°﹣∠AOB=180°﹣120°=60°,(2)∠DOE与∠AOB互补,理由如下:∵∠DOC=∠BOC=×70°=35°,∠COE=∠AOC=×50°=25°.∴∠DOE=∠DOC+∠COE=35°+25°=60°.∴∠DOE+∠AOB=60°+70°+50°=180°,∴∠DOE与∠AOB互补.(3)∠DOE与∠AOB不一定互补,理由如下:∵∠DOC=∠BOC=α,∠COE=∠AOC=β,∴∠DOE=∠DOC+∠COE=α+β=(α+β),∴∠DOE+∠AOB=(α+β)+(α+β)=(α+β),∵α+β的度数不确定∴∠DOE与∠AOB不一定互补.9.解:(1)因为∠AOD=90°,∠DOE=20°所以∠AOE=∠AOD+∠DOE=110°因为OH平分∠AOE所以∠HOE=AOE=55°所以∠FOH=90°﹣∠HOE=35°;故答案为35°;(2)∠BOE=2∠FOH,理由如下:设∠AOH=x,因为OH平分∠AOE所以∠HOE=∠AOH=x所以∠FOH=90°﹣∠HOE=90°﹣x∠BOE=180°﹣∠AOE=180°﹣2x所以∠BOE=2∠FOH;(3)如图3,当OE落在∠BOD内时,OF落在∠AOD内因为OH平分∠AOE所以∠HOE=∠AOH=AOE因为OG平分∠BOF∠FOG=∠GOB=BOF所以∠GOH=∠GOF﹣∠FOH=BOF﹣(∠AOH﹣∠AOF)=(180°﹣∠AOF)﹣AOE+∠AOF=90°﹣AOF﹣(90°+∠AOF)+∠AOF =90°﹣AOF﹣45°﹣AOF+∠AOF=45°;所以∠GOH的度数为45°;如图4,当OE落在其他位置时因为OH平分∠AOE所以∠HOE=∠AOH=AOE因为OG平分∠BOF∠FOG=∠GOB=BOF所以∠GOH=∠GOF+∠FOH=BOF+∠AOH+∠AOF=(180°﹣∠AOF)+AOE+∠AOF=90°﹣AOF+(90°﹣∠AOF)+∠AOF=90°﹣AOF+45°﹣AOF+∠AOF=135°;所以∠GOH的度数为135°;综上所述:∠GOH的度数为45°或135°.10.解:(1)当OB、OC运动到如图1的位置时,∵∠AOC+∠BOD=100°,∴∠AOC+∠COD+∠BOC=100°∠AOD+∠BOC=100°①∵∠AOB+∠COD=40°,∴∠AOD﹣∠BOC=40°②①+②得2∠AOD=140°∴∠AOD=70°.∴∠BOC=30°答:∠AOD的度数为70°.(2)在(1)的条件下(图2),∵射线OM、ON分别为∠AOB、∠COD的平分线,∴∠CON=COD,∠BOM=AOB∴∠MON=∠CON+∠BOM+∠BOC=(∠AOB+∠COD)+∠BOC=×40°+30°=50°.答:∠MON的度数为50°.(3)在(1)的条件下(图3),OE、OF是∠AOD外部的两条射线,∠EOB=∠COF=90°,∵OP平分∠EOD,OQ平分∠AOF,∴∠POD=EOD∠AOQ=AOF∴∠POQ=∠AOD+∠POD+∠AOQ=70°+(∠EOD+∠AOF)=70°+(∠EOB﹣∠BOD+∠COF﹣∠AOC)=70°+[(90°+90°﹣(∠BOD+∠AOC)]=70°+90°﹣100°=110°.答:∠POQ的度数为110°.11.解:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=∠COA,∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=2x°,∵∠DOE=90°,∠BOC=60°,∴3x=30或2x+90﹣x=120,∴x=10或30,∴∠AOE=20°或60°,∴∠BOE=160°或120°.12.解:(1)∵∠AOC+∠BOD=100°,∴∠AOB+∠BOC+∠BOC+∠COD=100°,又∵∠AOB+∠COD=40°,∴2∠BOC=100°﹣40°=60°,∴∠BOC=30°,答:∠BOC的度数为30°;(2)∵OM是∠AOB的平分线,∴∠AOM=∠BOM=∠AOB,又∵ON是∠COD的平分线,本文使用Word编辑,排版工整,可根据需要自行修改、打印,使用方便。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新人教版七年级数学上册专题训练:角的
计算(含答案)
专题训练角的计算
类型1 利用角度的和、差关系
要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。
1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。
解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。
又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。
2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。
1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。
2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。
解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。
所以 $\angle DAC=4\times18°=72°$。
因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。
2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。
解得$\angle BCD=15°$。
所以 $\angle ACD=\angle ACB+\angle BCD=90°+15°=105°$。
类型2 利用角平分线的性质
角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算。
3.如图,点A,O,E 在同一直线上,$\angle AOB=40°$,$\angle EOD=28°46'$,OD平分$\angle COE$,求 $\angle
COB$ 的度数。
解:因为 $\angle EOD=28°46'$,OD平分$\angle COE$,
所以 $\angle COE=2\angle EOD=2\times28°46'=57°32'$。
又因为$\angle AOB=40°$,所以 $\angle COB=180°-\angle AOB-\angle COE=180°-40°-57°32'=82°28'$。
4.已知 $\angle AOB=40°$,OD 是 $\angle BOC$ 的平分线。
1) 如图1,当 $\angle AOB$ 与 $\angle BOC$ 互补时,求$\angle COD$ 的度数。
2) 如图2,当 $\angle AOB$ 与 $\angle BOC$ 互余时,求$\angle COD$ 的度数。
解:(1) 因为 $\angle AOB$ 与 $\angle BOC$ 互补,所以$\angle AOB+\angle BOC=180°$。
又因为 $\angle AOB=40°$,所以 $\angle BOC=180°-40°=140°$。
因为 OD 是 $\angle
BOC$ 的平分线,所以 $\angle COD=\angle BOC=70°$。
2) 因为 $\angle AOB$ 与 $\angle BOC$ 互余,所以 $\angle AOB+\angle BOC=90°$。
由于∠AOB为60°,OC是其平分线,所以∠AOC也为60°。
在图中补全后,根据直角三角形的性质,得到∠EOC为30°,因为∠AOE为平角,所以∠AOE为150°。
当∠AOB为α时,由于OC是其平分线,所以∠AOC也为α。
又因为∠EOC为90°,所以∠EOA为90°-α,由于
∠AOE为平角,所以∠AOE为90°+α。
如图1,角AOE的度数为∠AOE=∠EOC+∠AOC=90°+30°=120°;如图2,角AOE的度数为∠AOE=∠EOC-
∠AOC=90°-30°=60°。
计算下列整式的加减运算:
1) 2ab+3ab-ab;解:原式=3ab。
2) 2(a-1)-(2a-3)+3;解:原式=4.
3) 2(2a+9b)+3(-5a-4b);解:原式=-11a+6b。
4) 3(x+2x-1)-(3x+4x-2);解:原式=2x-1.
5) (2x-y+4x)-4(x-y+2);解:原式=2x-y+3.
6) 3(x-xy-2xy)-2(-x+2xy-3);解:原式=5x-7xy +6.
7) -(2x+3xy-1)+(3x-3xy+x-3);解:原式=2x-
6xy-2.
8) (4ab-b)-2(a+2ab-b);解:原式=-2a+b。
9) -3(2x-xy)+4(x+xy-6);解:原式=-2x+7xy-24.
10) 2a-[-5ab+(ab-a)]-2ab;解:原式=3a+2ab。