基于拓扑优化的车身结构研究---经典
基于多模型拓扑优化方法的车身结构概念设计

基于多模型拓扑优化方法的车身结构概念设计车身结构是汽车的重要组成部分,直接影响着汽车的安全性、舒适性和性能。
随着汽车工业的发展,对车身结构设计的要求也越来越高,需要兼顾轻量化、强度高、刚度好等多种性能指标。
为了满足这些要求,传统的车身结构设计方法已经不能完全满足需求,因此需要引入多模型拓扑优化方法进行概念设计,以提高车身结构设计的效率和性能。
多模型拓扑优化是将多个不同类型的模型(如有限元模型、计算流体动力学模型等)进行集成、联合优化,寻求最优解的一种优化方法。
在车身结构的概念设计中,可以将多种模型集成在一起,联合优化车身结构的拓扑,以实现车身结构在轻量化、强度和刚度等多个性能指标上的最优化。
多模型拓扑优化可以有效地实现车身结构的轻量化设计。
传统的车身结构设计方法往往是基于一种或几种假设条件进行设计,难以兼顾多个性能指标。
而多模型拓扑优化可以将不同类型的模型进行集成,综合考虑多种性能指标,找到最优的车身结构设计方案。
通过优化设计,可以去除冗余的材料,减轻车身结构的重量,提高汽车的燃油经济性和环保性能。
多模型拓扑优化还可以提高车身结构设计的效率。
传统的车身结构设计方法需要多次试验和修改,耗费时间和成本较多。
而多模型拓扑优化可以通过计算机模拟和优化算法,大大提高设计的效率,减少试验和修改的次数,降低设计成本。
通过多模型拓扑优化,可以快速找到最优的车身结构设计方案,加快新车型的研发周期,提高企业的竞争力。
基于多模型拓扑优化的车身结构概念设计方法可以有效地提高车身结构设计的效率和性能,实现车身结构在轻量化、强度和刚度等多个性能指标上的最优化。
随着汽车工业的发展,多模型拓扑优化方法将在车身结构设计领域得到更广泛的应用,为汽车工业的发展带来新的机遇和挑战。
基于多模型拓扑优化方法的车身结构概念设计

基于多模型拓扑优化方法的车身结构概念设计随着汽车工业的发展,汽车的车身结构设计已成为重要的研究方向。
在传统的车身设计过程中,常常采用模块化设计和经验设计的方法,导致车身的结构不够优化。
为了提高车身结构的性能和减轻车身的重量,基于多模型拓扑优化方法的车身结构概念设计应运而生。
多模型拓扑优化方法是指通过使用多种材料和拓扑结构的设计思想和优化算法,对车身结构进行设计和优化。
这种方法将车身结构的拓扑结构和材料的选择作为设计变量,通过优化算法来求解最优的设计方案。
1. 确定设计变量:设计变量是影响车身结构的重要参数,包括材料种类、材料厚度、结构件的尺寸和形状等。
在进行多模型拓扑优化设计时,需要根据具体的设计要求和目标来确定设计变量。
2. 建立车身结构的有限元模型:有限元模型是进行车身结构分析和优化的基础,通过将车身结构离散成一系列有限元单元来建立模型。
有限元模型需要考虑到车身结构的复杂性和受力情况,以保证分析结果的准确性。
3. 定义优化目标和约束条件:优化目标是指在车身结构设计中需要优化的性能指标,例如重量、刚度、强度等。
约束条件是指在优化过程中需要满足的限制条件,例如材料的可用性、制造成本、可靠性等。
通过定义合适的优化目标和约束条件,可以实现车身结构的有效设计和优化。
4. 选择优化算法进行优化:优化算法是进行多模型拓扑优化的关键,常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。
这些优化算法能够基于已有的有限元模型和定义的优化目标来搜索最优的设计方案。
5. 进行优化计算和分析:根据设计变量、优化目标和约束条件,运用选择的优化算法进行优化计算和分析。
通过多次迭代优化,不断改进车身结构的拓扑结构和材料选择,最终得到最优的设计方案。
通过引入多种材料和拓扑结构的设计思想,可以获得更加轻量化和高性能的车身结构。
通过合理的材料选择和结构优化,可以提高车身的强度和刚度,在保证安全性的同时减轻车身的重量。
多模型拓扑优化方法能够提高设计效率和减少设计成本。
基于正交试验的大型客车车身结构多工况拓扑优化研究

基于正交试验的大型客车车身结构多工况拓扑优化研究随着社会的发展,大型客车在公共交通领域所占的重要性不断增加,面对着越来越严苛的环保和安全要求,其设计结构也不断升级。
而车身结构的优化设计是重要的研究方向之一,能够有效降低车身结构的重量、提高领域属性等。
本文基于正交试验的实验设计方法,对大型客车车身结构在多工况下进行拓扑优化研究。
正交试验法是一种系统的试验设计方法,通过少量试验次数就可确定多个因素对结果的影响,从而系统的分析优化问题和选择最佳方案。
将该方法应用在大型客车车身结构拓扑优化中,可以节省大量试验成本和时间,提高研究效率。
本文选取了大型客车车身结构优化过程中的重要参数进行分析,包括车身侧面2D模型、最大的主拱弓截面形状、前轮弹簧承载点位置、后轮悬挂单元参数等。
在进行正交试验的实验设计过程中,选取了四个因素进行研究,每个因素选择了三个不同的水平值。
通过正交试验设计表将这些水平值组合,得到12组实验,同时设置了多工况载荷,分析车身结构在不同工况下的受力变化情况,以实现全面分析和综合评价车身结构的工作性能。
通过对实验进行数据分析和处理,得出对大型客车车身结构优化的建议,包括:增加前轮弹簧承载点支撑的刚度增加车身的稳定性和承载能力;优化后悬挂单元参数,减小车身的横向摆动,提高舒适性;采用梯形横梁结构,减小车身重量,提高燃油经济性。
最终将这些优化方案进行综合,得到了一组最佳的车身结构设计方案。
在大型客车车身结构优化研究中,正交试验法是一种非常有效的设计方法,具有高效、全面、精确等优点。
通过减少试验次数,加快研究进程,同时可提供更加准确和全面的实验数据,为优化车身结构提供科学依据和理论支持。
此外,正交试验法还可以帮助研究人员寻找到主要影响车身结构性能的关键因素,进而优化方案的选择和设计。
在实验设计过程中,将多个参数进行组合测试,通过数据分析,发现每个因素的主要作用及其相互作用,可以帮助研究人员更准确地确定每个因素对车身结构的影响程度,并判定各个因素之间的相关性。
基于多模型拓扑优化方法的车身结构概念设计

基于多模型拓扑优化方法的车身结构概念设计
车身结构是汽车的重要组成部分,直接影响到汽车的安全性、刚性和轻量化程度。
基于多模型拓扑优化方法的车身结构概念设计是一种运用计算机辅助设计方法,结合多模型和拓扑优化技术,对车身结构进行概念设计和优化的方法。
本文将介绍基于多模型拓扑优化方法的车身结构概念设计的基本原理和方法,并探讨其在汽车制造业中的应用前景。
车身结构概念设计是汽车设计工程中的重要环节。
在概念设计阶段,设计师需要根据汽车的功能需求和市场定位,确定车身结构的整体布局和关键节点的设计要求。
传统的设计方法主要依靠设计师的经验和感性判断,存在着主观性强、效率低、不可追溯等问题。
而基于多模型拓扑优化方法的车身结构概念设计是一种基于数学模型和计算机技术的新型设计方法,可以有效地解决传统方法存在的问题。
基于多模型拓扑优化方法的车身结构概念设计的基本原理是将车身结构分解为多个子模型,并对每个子模型进行拓扑优化。
通过对子模型进行拓扑优化,可以得到具有最优结构性能的子模型。
然后,将各个子模型进行组合,得到整体的车身结构。
基于多模型拓扑优化方法的车身结构概念设计具有许多优点。
它能够提高车身结构的性能和轻量化程度。
通过对车身的拓扑形态进行优化,可以得到结构材料分布合理、重量轻、刚性好的车身结构。
它能够提高设计效率和准确性。
通过计算机辅助设计和优化,可以快速获得最优的车身结构。
基于多模型拓扑优化方法的车身结构概念设计具有较好的可追溯性和可扩展性。
设计过程完全可逆,设计参数可以灵活调节,能够满足不同的设计要求。
基于多模型拓扑优化方法的车身结构概念设计

基于多模型拓扑优化方法的车身结构概念设计随着汽车工业的快速发展,车身结构的设计变得越来越重要。
车身结构的设计不仅仅关乎汽车外观的美观度,更关乎汽车的安全性、舒适性和燃油效率。
车身结构的概念设计成为了汽车工程领域的一个热门研究方向。
本文基于多模型拓扑优化方法,对车身结构进行概念设计,并分析了其中的关键技术和方法。
1. 背景介绍车身结构是整个汽车的主要组成部分,它承担着支撑车身重量、保护车内乘客、减轻碰撞冲击和提高车辆稳定性等重要功能。
传统的车身结构设计往往是通过试错方法进行的,效率较低且容易导致设计结果不够优化。
基于多模型拓扑优化方法的车身结构概念设计成为了一种新的设计思路。
2. 多模型拓扑优化方法多模型拓扑优化方法是一种将多种优化模型相结合的优化方法,它可以充分发挥各种优化模型的优势,有效地解决复杂问题。
在车身结构设计中,可以将多模型拓扑优化方法应用于不同的设计阶段,如材料选择、结构形状和尺寸优化等。
通过多模型拓扑优化方法,可以找到最优的车身结构设计方案,以满足不同的设计要求。
3. 车身结构概念设计流程(1)需求分析:首先需要对车身结构设计的需求进行分析,包括安全性、舒适性、燃油效率等方面的要求,并进行整体设计目标的确定。
(2)模型建立:在确定设计目标后,需要建立车身结构的初始模型。
可以利用CAD软件建立初始模型,并对整体结构进行初步的优化。
(4)优化求解:通过多模型拓扑优化方法,可以获得最优的车身结构设计方案。
在优化求解过程中,需要综合考虑各种设计要求,如结构强度、刚度、重量和成本等,以达到最佳的设计效果。
(5)验证评估:对优化后的车身结构设计方案进行验证评估。
可以通过实物模型或数值模拟的方式对设计方案进行验证,以确保其满足实际的应用要求。
4. 关键技术和方法(1)有限元分析:有限元分析是车身结构设计中常用的分析方法,可以对车身结构进行复杂的力学分析。
通过有限元分析,可以获得车身结构在不同工况下的受力情况,为优化设计提供数据支持。
基于拓扑优化的车身结构研究

基于拓扑优化的车身结构研究瞿元王洪斌张林波吴沈荣奇瑞汽车股份有限公司,安徽芜湖,241009摘要:随着CAE技术的发展,虚拟仿真技术在汽车开发中的作用也愈来愈显著。
而前期工程阶段,如何布置出合理的车身骨架架构,一直是个相对空白的地带,也是整车正向开发过程中绕不过的坎。
尽管研发工程师根据经验,参照现有车型的结构特点,也能进行车身骨架架构的设定,但总是缺乏有效手段直观地反映不同车型结构布置的特点。
本文用拓扑优化的方法,从结构基本特征的角度来审视这一问题,并运用该方法对某SUV车身结构进行研究,获得一些直观性的结论。
关键词:车身,前期工程,拓扑优化1、引言随着对整车研发过程认识的加深,以及对正向开发过程的探索,在车型开发前期,对车身结构做出更合理的规划显得愈来愈重要。
常规的研发思路之一是通过参考已有车型的结构,经过适当的修改,形成新的结构,并用于新车型中。
但是对于原始车型的设计思路、结构布置的原因等缺乏系统的理解,或者理解不深,往往在更改过程中产生新的问题。
为了部分解决上述问题,本文从结构拓扑优化的角度,对某SUV车型车身结构的总体布置进行初步探讨,以期加深对结构布置的理解。
2、研究方法概述合理化的车身结构,是满足整车基本性能的重要保障。
为了能够实现结构的最优布置,文献[1]使用了拓扑优化工具来布置车身结构。
其基本思路是从造型以及车内空间布置出发,建立车身空间的基础网格模型,然后根据一定的工况要求,对基础网格进行拓扑分析,并根据拓扑结果建立梁、板壳模型,并进行多项性能的优化,从而实现车身结构的正向开发。
本文借助于该思想,建立研究对象的结构空间包络,并对该包络进行拓扑分析,然后将仿真结果与原始结构进行比较,寻找车身结构中的关键点,推测初始结构可能的布置思想,从而加深对该研究思路的理解。
其基本过程如下图所示:3.2 工况车身在实际使用过程中承受非常复杂的载荷,这些载荷对车身的影响各不相同,有的影响局部,有的影响整个车身。
基于多模型拓扑优化方法的车身结构概念设计

基于多模型拓扑优化方法的车身结构概念设计随着汽车工业的快速发展,车身结构的设计和优化变得越来越重要。
一种新的基于多模型拓扑优化方法的车身结构概念设计,成为了研究人员和汽车制造商们关注的焦点。
本文将介绍这种方法的基本原理和优势,以及它在车身结构设计中的应用。
一、多模型拓扑优化方法的基本原理多模型拓扑优化方法是一种将多种模型和拓扑优化技术相结合的新型设计方法。
它主要包括以下几个步骤:1. 数据采集和建模:需要采集和整理车身结构相关的数据,包括材料性能、受力情况、外形设计等。
然后,利用建模软件构建车身结构的数学模型。
2. 多模型拓扑优化:在建立好的数学模型的基础上,采用多种拓扑优化模型,通过仿真和计算,得到不同的设计方案。
3. 综合分析和评价:将得到的不同设计方案进行综合分析和评价,找出最优的设计方案。
4. 优化方案实施:将得到的最优设计方案实施到车身结构中,并进行实验验证。
多模型拓扑优化方法的基本原理是将多种优化模型相结合,通过多种优化方法得到更加全面和可靠的设计方案,从而提高车身结构的性能和质量。
多模型拓扑优化方法相比传统的单一模型优化方法,具有以下优势:1. 更全面的设计方案:多模型拓扑优化方法能够得到更多样化的设计方案,覆盖更多的设计空间,从而可以得到更加全面和多样的设计方案。
2. 更灵活的设计过程:多模型拓扑优化方法可以结合多种设计方法和优化技术,设计过程更加灵活,能够满足不同的设计需求和设计目标。
4. 更快速的设计周期:多模型拓扑优化方法能够加快设计过程,缩短设计周期,提高了车身结构的设计效率。
多模型拓扑优化方法在车身结构设计中具有广泛的应用前景。
它可以应用于车身结构的各个方面,包括结构强度优化、刚度优化、减重优化等。
1. 结构强度优化:通过应用多模型拓扑优化方法,可以对车身结构的强度进行优化设计,提高其抗压、抗弯和抗拉等方面的性能,使得车身结构更加稳固和可靠。
3. 减重优化:在汽车轻量化的趋势下,减重优化也是车身结构设计的重要方面。
基于多模型拓扑优化方法的车身结构概念设计

基于多模型拓扑优化方法的车身结构概念设计
随着汽车产业的不断发展,车身结构设计已成为汽车设计过程中的重要环节。
在设计过程中,如何优化车身结构成为了设计师们需要考虑的主要问题之一。
近年来,多模型拓扑优化方法逐渐成为优化车身结构的重要手段之一。
多模型拓扑优化方法是将不同材料之间的结构优化问题转化为一种数学问题,通过更加有效地使用计算机资源,可以大幅提高结构设计效率。
该方法主要采用基于有限元的数值计算技术,通过对结构形态的控制来达到优化结构的目的。
在车身结构的概念设计过程中,多模型拓扑优化方法应用广泛,可以为设计师提供直观的结构设计方案,并指导其进行优化设计。
其主要步骤包括以下几个方面:
首先,对车身结构进行划分,确定结构的不同功能区域,例如车身前端、中段和后端等。
然后,通过结构优化算法,将不同区域的结构与材料进行匹配,同时考虑结构强度、稳定性和耐久性等因素,以提高车身整体性能。
在具体实施过程中,设计师需要通过一系列的数学模型,将车身结构的几何形态、材料物性参数和载荷等条件输入到优化算法中,并根据分析结果,选择最合适的结构形态。
在进行优化过程中,需要考虑材料适用性、成本和生产技术等方面的因素,以达到可行的设计方案。
总之,多模型拓扑优化方法在车身结构概念设计中具有重要的应用前景,可以大幅提高设计效率,同时也为汽车行业的可持续发展提供了新的技术支持。
未来,随着计算机计算能力的不断提高和新材料技术的不断发展,多模型拓扑优化方法将在汽车设计领域发挥越来越重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于拓扑优化的车身结构研究瞿元王洪斌张林波吴沈荣奇瑞汽车股份有限公司,安徽芜湖,241009摘要:随着CAE技术的发展,虚拟仿真技术在汽车开发中的作用也愈来愈显著。
而前期工程阶段,如何布置出合理的车身骨架架构,一直是个相对空白的地带,也是整车正向开发过程中绕不过的坎。
尽管研发工程师根据经验,参照现有车型的结构特点,也能进行车身骨架架构的设定,但总是缺乏有效手段直观地反映不同车型结构布置的特点。
本文用拓扑优化的方法,从结构基本特征的角度来审视这一问题,并运用该方法对某SUV车身结构进行研究,获得一些直观性的结论。
关键词:车身,前期工程,拓扑优化1引言随着对整车研发过程认识的加深,以及对正向开发过程的探索,在车型开发前期,对车身结构做出更合理的规划显得愈来愈重要。
常规的研发思路之一是通过参考已有车型的结构,经过适当的修改,形成新的结构,并用于新车型中。
但是对于原始车型的设计思路、结构布置的原因等缺乏系统的理解,或者理解不深,往往在更改过程中产生新的问题。
为了部分解决上述问题,本文从结构拓扑优化的角度,对某SUV 车型车身结构的总体布置进行初步探讨,以期加深对结构布置的理解。
2研究方法概述合理化的车身结构,是满足整车基本性能的重要保障。
为了能够实现结构的最优布置,文献[1]使用了拓扑优化工具来布置车身结构。
其基本思路是从造型以及车内空间布置出发,建立车身空间的基础网格模型,然后根据一定的工况要求,对基础网格进行拓扑分析,并根据拓扑结果建立梁、板壳模型,并进行多项性能的优化,从而实现车身结构的正向开发。
本文借助于该思想,建立研究对象的结构空间包络,并对该包络进行拓扑分析,然后将仿真结果与原始结构进行比较,寻找车身结构中的关键点,推测初始结构可能的布置思想,从而加深对该研究思路的理解。
其基本过程如下图所示:图1 研究思路3某SUV车身结构研究本文选取的研究对象是某比较受欢迎的城市SUV,通过对其结构的研究,有利于了解其总体结构的布置原理。
本文采用上文提到的方法,对该车型结构进行剖析。
3.1 研究对象及结构包络图2显示为该SUV车型的结构模型,经过适当处理,产生图3的结构包络模型,可以用该结构包络进行后面的结构拓扑分析。
该结构包络模型完全包含了原结构的布置空间,材料为普通钢材。
考虑到整车在前后碰撞过程中需要纵向刚度比较好,将前后纵梁以及后轮罩直接设定为非设计空间,其余网格均作为设计空间。
图2 某SUV结构有限元模型图3 某SUV结构包络模型3.2 工况车身在实际使用过程中承受非常复杂的载荷,这些载荷对车身的影响各不相同,有的影响局部,有的影响整个车身。
在实际研发过程中,不可能对所有可能的工况进行考察,而且,不同的设计阶段,考察的指标也不相同。
在概念设计阶段,更重要的是保证车身的总体结构刚度,避免后期产生较大变更,导致项目延期或者增加较多的开发成本。
本文主要考察某SUV车型结构布置特点,因此,主要考虑NVH以及碰撞两个方面的工况。
其具体考察工况如下表1所示,4个NVH工况,主要考察整体刚度以及前后端的弯曲性能;4个碰撞方面的工况,主要考察车身承受不同方向的撞击。
表1 主要考察工况[1]对于NVH类的工况,其导致的车身变形都是非常小的,所以,在拓扑优化过程中,不需要考虑结构失效问题。
而Safety工况对车身的影响都是大变形、非线性的,还有接触力存在。
考虑到前后纵梁作为非设计空间,可以看做是刚度很硬的结构,这样对车身其他部位而言,Safety工况的影响将限定在线性范围内。
因此,在进行车身拓扑优化的时候,上述工况均作为小变形来处理。
为了更好地反映不同工况对车身结构布置的影响,对以上8种工况组合成4种研究方案,分别为(1)Safety工况单独考察;(2)NVH工况单独考察;(3)NVH和Safety同时考察;(4)先Safety工况然后NVH工况。
如表1所示,8种工况中,每个工况在不同考察方案中的权重比率一致,比如对第一种方案,表1中5-8号工况的权重比例为:15:10:10:5,具体权重根据上述比例分配来设定,其余类同。
3.3 优化目标与约束对于一个优化问题而言,设计变量、约束与优化目标是其主要元素。
对于本文的优化问题而言,其设计变量为单元密度,约束分别是体积分数和对称约束,而优化的目标为考察工况下车身结构的柔度最小化,其中,体积分数是指剔除初始非设计体积的当前总体积与初始总体积的比值,而对称约束是指相对于车身XZ平面,车身结构左右对称。
以上优化问题可简化描述成如下形式[2]:目标:最小化,i表示设计变量数,j表示考察工况数,为第j个工况下的柔度,为第j个工况的权重;约束:体积分数,车身对称约束;设计变量:,其中表示第i个单元的单元密度。
3.4优化结果与结构分析为了能够获取上述不同方案下的结构拓扑布置,采用OPTISTRUCT软件对上述结构进行优化计算[3],并将结果分别与该SUV的结构布置进行比较。
对于车身结构而言,一般可分成前舱、顶盖、地板、侧围、后围等结构部分。
考虑到部分结构模块的复杂性以及碰撞分析的非线性,所以在下面对比过程中,主要考察对象为顶盖、下部车身、侧围、防火墙这四个部分。
3.4.1 顶盖对于车顶盖结构而言,四种方案中,方案2-4涉及NVH工况,且扭转工况所占比重较大,为了获得较高的抗扭转能力,主要结构成斜网状分布,结果如图4所示。
方案1为安全工况,载荷以纵、横分布为主,所以顶盖材料主要呈横向(Y向)分布,顶部横梁分布于B柱后侧③以及后背门上部②。
方案2为完全NVH工况,除了前顶横梁①以及后部横梁外②,中间梁均为网状,而前后顶横梁①②对于车身抗扭能力具有重要作用。
方案3中同时考虑了安全性能与NVH要求,前后横梁依然是重要结构,同时在B柱上部后侧同方案1一样,存在一根横向布置梁③。
方案4中,将方案1(安全工况)中的主要横梁设定为非设计空间,然后进行NVH工况优化,从结果看,顶盖材料分布与方案3相近。
从4个方案的结果可以看出,对于车身顶盖而言,前后横梁①②以及B柱上部横梁③对车身主要结构的贡献相对比较大,在结构布置的时候,需要重点关注。
其结果同原结构比较来看,前后横梁相互对应,其他中间横梁对整车刚度的作用比较小,其主要作用表现为对顶盖外钣金的支撑以及抗雪压等。
①前顶横梁;②后顶横梁;③B柱上横梁;图 4 顶盖结构拓扑图3.4.2 下部车身下部车身共考察9个部位梁的分布,如下图5所示。
方案1主要体现了①②④⑧⑨五个横梁,横梁⑤⑥较原始结构有偏移,拆分成了3个横梁。
从SUV的地板纵梁布置看,其结构形式明显不同于一般贯通式布置,其纵梁②与整车X向呈一定角度,且中止于前地板中横梁⑤,该纵梁的布置在方案1中得到较显著提示,其拓扑材料的分布与SUV的该纵梁分布相同,同样止于前地板中横梁⑤附近。
后地板前横梁⑦对碰撞安全的影响不明显,拓扑结果中在该位置没有材料布置,而横梁⑧与⑨的作用显著。
方案2中主要考察NVH性能,从结果看,前地板材料以中通道为中心连接梁,呈网状分布,说明该部位的Y向横梁的作用相对弱化,只有如结果所示的布置才能最大化扭转刚度;在后地板部位,横梁⑧⑨位置清晰,其中横梁⑧前部材料呈X状分布,前点部位对应原型结构的横梁⑦,后点部位连接横梁⑧,说明这两个横梁对刚度的贡献比较大,尽管横梁⑦与所给的拓扑材料分布有差别。
该布置方式也符合一般的认知,从车身实际情况看,该部位也是设计重点关注部位之一,车身整体扭转刚度的提升、路试开裂问题的解决,都需要在这里开展更多的工作。
①防火墙;②前地板侧纵梁;③前地板;④前地板前横梁;⑤前地板中横梁;⑥前地板后横梁;⑦后地板前横梁;⑧后地板中横梁;⑨后地板后横梁;图 5 下部车身结构拓扑图方案3综合考虑的Safety与NVH工况,从结果可以看出,梁①-⑤、⑧⑨均可以较清晰地体现,梁⑥在方案中有所体现,不过位置较原型结构而言,偏靠前一些。
而梁⑦与纵梁搭接处形成了X型交叉结构,与方案2相同,说明,该处位置主要体现了刚度方面的要求。
对于前排驾乘舱地板部位而言,交叉型的梁布置结构有利于提升整体的扭转刚度,对比到原型结构可以看出,原型结构中前地板纵梁布置不同于一般的垂直布置,呈现一定角度的交错分布结构,同时兼顾了方案1中的前地板纵梁的分布,从拓扑结果来看,该SUV的前地板梁的布置考虑比较综合,兼顾多个性能。
方案4将方案1中部分梁结构设定为非设计空间,然后按照NVH工况进行优化分析。
从结果看,①和⑨是必要的整体结构,②在该方案中也有一定体现,但是梁的长度相对较短,截止于梁④。
方案中梁③较原结构有变化,斜向连接于①④之间。
后地板部位梁的布置同方案2和3,均会形成X结构。
从上述方案来看,SUV的地板结构布置考虑性能比较综合,对于该尺寸的车身结构布置而言,前后纵梁的不贯通设计也符合拓扑结构的布置。
梁④和⑦、⑧是地板横梁中非常重要的结构,梁②-③、⑤-⑥的具体布置,需要根据实际需要,进行适当的调整,保证车身Safety和NVH的性能综合平衡。
3.4.3侧围对于侧围结构而言,从下图6比较看,4种组合方案对侧围结构的影响主要体现在车身后部三角窗处,方案1(安全工况)的布置与其他三种方案略有差别,材料分布上只有三角窗前、后梁①②以及与轮罩的连接件④。
其他方案中,除了原型中的梁①-④的布置比较清晰,梁③下部的材料也有所布置,从而可以提供比较好的NVH性能,这在方案1中没有得到反映,说明这些材料分布对NVH性能而言,具有更多正向作用。
①三角窗前梁;②三角窗后梁;③三角窗下梁;④三角窗与轮罩连接件;图 6 侧围结构拓扑图3.4.4 防火墙对于防火墙结构而言,主要承担碰撞以及扭转载荷。
从图7所示拓扑结果来看,防火墙的材料呈网状分布,其中方案1能比较清晰地看到梁①-③的分布,其他方案中,只有梁②③比较清晰可见。
①防火墙横梁;②纵梁;③流水槽横梁;图7防火墙结构拓扑图4 总结通过材料布置的拓扑分析,可以看出,该SUV车身原结构在布置上比较符合较佳的材料分布。
初步获得下列直观性结论:(1)对车顶盖结构而言,前后顶部横梁对车身具有比较重要的影响,尤其是后顶部横梁;B柱上部顶横梁对顶部Safety具有重要影响;(2)对于下部车身而言,除防火墙部位以及后围横梁外,驾乘舱下部的座椅横梁以及后轮罩部位的横梁,无论是Safety工况还是NVH工况,都比较重要;(3)地板纵梁的布置可以是非贯通式的,其走势上也并非一定要与整车X向一致,可以与门槛梁的走向成一定角度;地板梁一定程度的网状布置,对提升抗扭性能有正向作用;(4)后侧围三角窗部位结构对安全和NVH都比较重要;(5)对于防火墙布置而言,网状的结构对NVH性能有正向作用。
本文所述方法在有效性方面还需要更多的研究例证。
而且,对于Safety工况进行了线性化处理,所得结果是否符合碰撞安全的设计理念还需要进一步研究。