(完整版)完全平方公式和平方差公式的专项复习
平方差公式与完全平方公式(复习)

专题一平方差公式与完全平方公式(复习)学习目标掌握平方差公式和完全平方公式的特征,并能运用两个公式进行化简和运算。
学习重点利用平方差公式、完全平方公式进行化简和运算学习难点利用平方差公式、完全平方公式进行因式分解。
学习过程一、知识回顾1、识记两个公式平方差公式:。
文字叙述:两个数的与这两个数的等于完全平方公式:。
文字叙述:两数和的平方等于这两个数的加上2、因式分解的定义公因式确定:(1)(2)(3)因式分解的方法:(1)提法(2)套法因式分解的步骤:把一个多项式因式分解,一般先,再。
进行多项式因式分解时,必须把每一个因式都分解到注:怎样验证因式分解的正确性?练习:请你从下列各式中,任选两式作差,并将得到的式子进行因式分解。
24a,2)9b(yx ,1,2二、典型例题例1:计算(1)(2m-3)(2m+3)(2)(a-2b+3c)(a+2b+3c).(3)20052-2006×2004例2:因式分解(1)16-4a 4 (2)42242y y x x +-(3)22341ab b a a -+- (4)222224)(b a b a -+例3:已知,8=+n m ,15=mn 求22n mn m +-的值三:达标测试(一、选择题)1、下列两个多项式相乘,不能用平方差公式的是( )A 、)32)(32(b a b a ++-B 、)32)(32(b a b a --+-C 、)32)(32(b a b a --+D 、)32)(32(b a b a ---2、下列运算正确的是( )A 、a b a b a 2)(222++=+B 、222)(b a b a -=-C 、6)2)(3(2+=++x x xD 、22))((n m n m n m +-=+-+3、下列四个多项式是完全平方式的是( )A 、22y xy x ++B 、222y xy x --C 、22424n mn m ++D 、2241b ab a ++ 4、若22169y mxy x ++是完全平方式,则m =( )A 、12B 、24C 、±12D 、±245、已知5-=+y x ,6=xy ,则22y x +的值为( )A 、12B 、13C 、37D 、16(二、填空题)6、分解因式: x 2+y 2-2xy=7、已知x +y =1,那么221122x xy y ++的值为_______. 8、在多项式4x 2+1中添加 ,可使它是完全平方式(填一个即可),然后将得到的三项式分解因式是(三、计算)9、)53)(53(y x y x -+ 10、4(x+1)2-(2x+5)(2x-5)11、2275.7275.82⨯-⨯ 12、121211222112+⨯-(四、分解因式)13、2)2()2(---a a a 14、2241y x +-15、6xy 2-9x 2y-y 3 16、(2a-b)2+8ab17、先化简,再求值:223(2)()()a b ab b b a b a b --÷-+- 其中112a b ==-,.。
平方差公式与完全平方公式试题(含答案)

乘法公式的复习一、复习:(a+b)(a-b)=a 2-b 2(a+b)2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3归纳小结公式的变式,准确灵活运用公式: ① 位置变化,x y y x x 2y 2 ② 符号变化,x y x yx2y 2 x 2y 2③ 指数变化,x 2y 2x 2y 2x 4y 4 ④ 系数变化,2ab 2ab 4a2b 2 ⑤ 换式变化,xy zmxyzmxy 2zm 2x 2y 2z m z m x 2y 2z 2zmzm m 2x 2y 2z 22zmm 2 ⑥ 增项变化,x yz xyzx y 2z 2 x y xy z 2 x 2xyxy y 2z 2x 22xyy 2z 2 ⑦ 连用公式变化,x yxy x 2y 2x 2y 2x 2y 2x 4y 4 ⑧ 逆用公式变化,xy z 2x y z 2xyzxyzx y z x y z2x 2y 2z4xy4xz例1.已知2=+b a ,1=ab ,求22b a +的值。
解:∵=+2)(b a222b ab a ++ ∴22b a +=ab b a 2)(2-+∵2=+ba ,1=ab ∴22b a +=21222=⨯-例2.已知8=+b a ,2=ab ,求2)(b a -的值。
解:∵=+2)(b a 222b ab a ++ =-2)(b a 222b ab a +- ∴-+2)(b a=-2)(b a ab 4 ∴-+2)(b a ab 4=2)(b a -∵8=+ba ,2=ab ∴=-2)(b a 562482=⨯-例3:计算19992-2000×1998〖解析〗此题中2000=1999+1,1998=1999-1,正好符合平方差公式。
解:19992-2000×1998 =19992-(1999+1)×(1999-1) =19992-(19992-12)=19992-19992+1 =1例4:已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值。
平方差与完全平方公式专练

平方差与完全平方公式专练一、平方差公式平方差公式是指一个差的平方可以展开为两个数的平方的差。
即对于任意实数a和b,有(a+b)(a-b)=a^2-b^2下面通过一些例题来让我们更好地理解和运用平方差公式。
例题1:计算下列各式的值:(1)(6+3)(6-3)(2)(5+2)(5-2)(3)(9+4)(9-4)解答:(1)(6+3)(6-3)=6^2-3^2=36-9=27(2)(5+2)(5-2)=5^2-2^2=25-4=21(3)(9+4)(9-4)=9^2-4^2=81-16=65例题2:已知两个数字的和为17,差为7,求这两个数字。
解答:设两个数字分别为x和y,根据题意可以得到两个方程:x+y=17x-y=7我们可以使用平方差公式对第二个方程进行变形:(x+y)(x-y)=(17)(7)可以得到:x^2-y^2=119将第一个方程代入上述方程中:17^2-y^2=119289-y^2=119y^2=289-119y^2=170y=±√170代入第一个方程中可以解得:x=17-y如果y=√170,则x=17-√170如果y=-√170,则x=17+√170所以。
通过以上例题的练习,我们可以发现平方差公式在解决方程和计算中的巧妙运用,可以简化计算过程,提高解题效率。
二、完全平方公式完全平方公式是指一个二次多项式可以写成一个二次项的平方。
即对于任意实数a和b,有a^2 + 2ab + b^2 = (a + b)^2下面通过一些例题来让我们更好地理解和运用完全平方公式。
例题1:计算下列各式的值:(1)2^2+2(2)(3)+3^2(2)(-5)^2+2(-5)(4)+4^2(3)12^2+2(12)(5)+5^2解答:(1)2^2+2(2)(3)+3^2=(2+3)^2=5^2=25(2)(-5)^2+2(-5)(4)+4^2=(-5+4)^2=(-1)^2=1(3)12^2+2(12)(5)+5^2=(12+5)^2=17^2=289例题2:已知一个二次多项式x^2+10x+k是一个完全平方,求k的值。
七年级下册数学复习——平方差公式、完全平方公式

2.2 平方差公式、完全平方公式知识要点:✧平方差公式:22()()a b a b a b +-=- ✧完全平方公式:222222()2,()2x y x xy y x y x xy y +=++-=-+ ✧ 常用变形:x 2+y 2=(x+y )2-2xy ; x 2+y 2=(x -y )2+2xy ;(x+y )2 =(x -y )2+4xy ; (x -y )2=(x+y )2 — 4xy ; (x+y )2 —(x -y )2=4xy✧ 注意:x 和y 可以表示一个单项式,也可以表示一个多项式,当表示一个多项式时,就将这个多项式视为一个整体。
1. 平方差公式题型1:直接运用公式1)(a+3)(a-3) 2)(1+2c)(1-2c) 3)(-x+2)(-x-2) 4)(2x+12)(2x-12)2. 平方差公式题型2:运用公式使计算简便1)1998×2002 2)498×502 3)1.01×0.99 4)(20-19)×(19-89)3. 平方差公式题型3:两次运用平方差公式1)(a+b )(a-b)(a 2+b 2) 2)(3a+2)(3a-2)(9a 2+4)3)(x-12)(x 2+14)(x+12) 4)))94)(64)(32(2++-a a a4. 平方差公式题型4:需要先变形再利用平方差公式1)(-2x-y )(2x-y) 2)(32)(32)a a --- 3)(ab+1)(1-ab) 4))43)(43(22---x x5. 平方差公式题型5:每个多项式含三项,需要打包1)(a+2b+c )(a+2b-c) 2)(a+b-3)(a-b+3)3)(x-y+z)(x+y-z) 4)(3x-2y+1)(3x+2y-1)6. 完全平方公式变形:1)a 2+b 2=(a+b)2 =(a-b)2 2)(a-b )2=(a+b)2 ; (a+b)2=(a-b)23)(a+b)2 +(a-b )2= 4)(a+b)2 —(a-b )2=7. 完全平方公式题型1:直接利用公式2)12(--t 2)2332(y x + (0.02x+0.1y)28. 完全平方公式题型2:括号中的多项式含有三项,需要打包(1)(2x+y-z)2 (2)(a+2b-2)29. 完全平方公式题型3:运用公式使计算简便(1)1022 (2)197210. 其他题型1) 若622=-n m ,且3=-n m ,则=+n m .2) 若m - n= 8,mn=30,则m 2+n 2=___________3) 若016822=+-+-n n m ,则______________,==n m 。
平方差与完全平方专题(含标准答案)

乘法公式的复习一、复习:(a+b)(a-b)=a2-b 2 (a+b )2=a 2+2ab+b 2(a-b)2=a 2-2ab+b 2(a+b)(a 2-ab+b 2)=a 3+b 3(a-b)(a 2+ab+b 2)=a 3-b 3概括小结公式的变式,正确灵巧运用公式:①地点变化,x y y x x 2y 2②符号变化,x yx yx 2y 2x 2y 2③指数变化,x 2y 2x 2y 2x 4y 4④系数变化,2ab2ab 4a 2 b 2⑤换式变化,xyzm x yzmxy 2 zm 2x 2y 2zmzm2 y 2 22x z zmzmm2 y 2 22x z 2zmm⑥增项变化, xyzxyzxy 2z 2 xyxy z 222 2xyxyyz22xyy 2z 2连用公式变化,xyxyx 2y 2x 2y 2x 2y 2 x 4y 4⑧逆用公式变化,xyz2xyz2xyz xyz xyz xyz2x 2y2z4xy4xz例1.已知a b 2,ab 1,求a2b2的值。
1/20解:∵(ab)2a22abb2∴a2b2=(a b)22ab∵ab2,ab1∴a2b2=22212例2.已知ab8,ab2,求(a b)2的值。
解:∵(a b)2a22ab b2(ab)2a22ab b2∴(a b)2(a b)24ab∴(a b)24ab=(a b)2∵ab8,ab2∴(ab)2824256例3:计算19992-2000×1998〖分析〗本题中2000=1999+1,1998=1999-1,正好切合平方差公式。
解:19992-2000×1998=19992-(1999+1)×(1999-1)=199922222-(1999-1)=1999-1999+1=1例4:已知a+b=2,ab=1,求a2+b2和(a-b)2的值。
〖分析〗本题可用完整平方公式的变形得解。
解:a2+b2=(a+b)2-2ab=4-2=2a-b)2=(a+b)2-4ab=4-4=0例5:已知x-y=2,y-z=2,x+z=14。
(完整版)实用版平方差、完全平方公式专项练习题(精品)

③( 3- x)( x+3) =x 2- 9;④(- x+y ) ·( x+y ) =-( x - y)( x+y ) =- x2- y 2.
A. 1 个
B.2 个
C.3 个
D.4 个
4.若 x2- y2=30 ,且 x - y= - 5,则 x+y 的值是( )
A.5 二、填空题
B.6
C.- 6
D .- 5
其中 x=1.5
1.平方差公式( a+b)(a- b) =a2- b2 中字母 a, b 表示( )
A .只能是数
B.只能是单项式
C.只能是多项式 D.以上都可以
2.下列多项式的乘法中,可以用平方差公式计算的是(
)
(3) (2a b) 2
(2a b)(a b) 2(a
2b )( a
2b) ,其中 a
较小的正方形的面积,差是 _____.
三、计算题
- 2-
9.利用平方差公式计算: 20 2 ×21 1 . 33
10.计算:( a+2)( a2+4)( a4+16)( a-2).
二、提高题
1.计算: ( 1)( 2+1)( 22+1)( 24+1) … (22n+1) +1 ( n 是正整数);
2、已知 (a b)2 16, ab 4, 求 a2 b2 与 (a b)2 的值。 3
- 3-
练一练 1 .已知 (a b) 5, ab 3 求 (a b)2 与 3(a2 b2) 的值。 2 .已知 a b 6, a b 4 求 ab 与 a2 b2 的值。
3、已知 a b 4, a2 b2 4 求 a2b 2 与 (a b)2 的值。
完全平方公式和平方差公式的专项复习

问题(1)若△ABC旳三边长 都是正整数,且满足 ,请问△ABC是什么形状?
(2)若 ,求 旳值.
(3)已知 是△ABC旳三边长,满足 ,求 旳范畴.
(4)已知 ,则 .
变式2.阐明不管 、 取什么有理数,多项式 旳值总是正数。
变式3.已知 、 满足 ,则代数式 旳值为
例5因式分解
5.若 、 为有理数,且 ,则 =。
1.(1) (2)
(3)
变式1已知多项式2x3-x2+m有一种因式(2x+1),求m旳值.
例6.既有足够旳2×2,3 ×3旳正方形和2×3旳矩形图片A、B、C(如图),先从中各选用若干个图片拼成不同旳图形,请你在下面给出旳方格纸(每个小正方形旳边长均为1)中,按下列规定画出一种拼法旳示意图(规定每两个图片之间既无缝隙,也不重叠,画图时必须保存作图痕迹).
(1)选用A型、B型两种图片各1块,C型图片2块,拼成一种正方形;
(2)选用A型图片4块、B型图片1块,C型图片4块,拼成一种正方形;
(3)选用A型图片3块、B型图片1块,再选用若干块C型图片,拼成一种矩形.
变式1.已知3种形状旳长方形和正方形纸片(如图1):用它们拼成一种长为(3a+2b)、宽为(a+b)旳长方形,各需多少块?并画出图形.
【真题预测重现】
多项式 加上一种单项式后,使它能成为一种整式旳完全平方,则加上旳单项式可以是____________(填上你觉得对旳旳一种即可,不必考虑所有旳也许状况)。
【乘胜追击(课堂巩固)】
1.已知 、 为有理数,设 .计算:
3.计算:
4.计算:
【典例分析&变式练习】
例1.已知a+b=2,ab=1,求a2+b2和(a-b)2旳值
初一奥数专题讲义——完全平方公式与平方差公式

完全平方公式与平方差公式一.知识要点1.乘法公式就是把一些特殊的多项式相乘的结果加以总结,直接应用。
公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。
公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。
2.基本公式完全平方公式:(a±b)2=a2±2ab+b22 23(1(24由(由5(a+b(a-a n-b n能被a-b整除,a2n+1+b2n+1能被a+b整除,a2n-b2n能被a+b及a-b整除。
二.例题精选例1.已知x、y满足x2+y2+54=2x+y,求代数式xyx y的值。
例2.整数x,y满足不等式x2+y2+1≤2x+2y,求x+y的值。
例3.同一价格的一种商品在三个商场都进行了两次价格调整.甲商场:•第一次提价的百分率为a,第二次提价的百分率为b; 乙商场:两次提价的百分率都是2a b+(a>0,•b>0); 丙商场:第一次提价的百分率为b,第二次提价的百分率为a,•则哪个商场提价最多?说明理由. 例4.计算:(1)6(7+1)(72+1)(74+1)(78+1)+1;(2)1.345×0.345×2.69-1.3453-1.345×0.3452.例5222()例6例7例8数.12A.x 3A 45(2)19492-19502+19512-19522+……+19972-19982+19992=_________。
6.已知a+1a=5,则=4221a a a ++=_____。
7.已知两个连续奇数的平方差为•2000,•则这两个连续奇数可以是______.8.已知a 2+b 2+4a -2b+5=0,则a ba b +-=_____.9.若代数式b x x +-62可化为1)(2--a x ,则b ﹣a 的值是. 10.已知a 、b 、c 均为正整数,且满足a 2+b 2=c 2,又a 为质数.证明:(1)b 与c 两数必为一奇一偶;(2)2(a+b+1)是完全平方数. 参考答案: 一.例题精选例1.提示:由已知得(x-1)2+(y-12)2=0,得x=1,y=12,原式=13例2.原不等式可化为(x-1)2+(y-1)2≤1,且x 、y 为整数,(x-1)2≥0,(y-1)2≥0,•10x -=11x -=±10x -=解得x y =⎧⎨⎩例3例4.(2)设例5. 例6.P <Q ;差值法:P -例7.例8因(x 12+x 22+…+x 102)-(y 12+y 22…+y 102)=(x 12-y 12)+(x 22-y 22)+…+(x 102-y 102) =(x 1+y 1)(x 1-y 1)+(x 2+y 2)(x 2-y 2)+…+(x 10+y 10)(x 10-y 10) =9[(x 1+x 2+…+x 10)-(y 1+y 1+…+y 10)]=0二.同步练习9.121)(222-+-=--a ax x a x ,这个代数式于b x x +-62相等,因此对应的系数相等,即﹣2a =﹣6,解得a =3,b a =-12,将a =3代入得b =8,因此b ﹣a =5. 10.解:(1)因(c+b)(c-b)=a 2,又c+b 与c-b 同奇同偶,c+b>c-b,故a•不可能为偶质数2,a应为奇质数,c+b与c-b同奇同偶,b与c必为一奇一偶.(2)c+b=a2,c-b=1,两式相减,得2b=a2-1,于是2(a+b+1)=2a+2b+2=2a+a2-1+2=(a+1)2,为一完全平方数.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典例分析&变式练习】
例1.已知a+b=2,ab=1,求a 2+b 2和(a-b)2的值
变式1.a +a 1=5,求(1)a 2+21a ,(2)(a -a
1)2的值
变式2.已知0132=+-x x )0(≠x ,求:2
21x x +的值
变式3.已知012=-+x x ,求3223++x x 的值。
变式4.已知252
2=+y x ,7=+y x ,且y x >,则y x -的值等于
例2.计算:))(())((2113232121n n n n a a a a a a a a a a a a +++++-++++++--ΛΛΛΛ
变式1.计算:)12)(12)(12)(12)(12(16842+++++
变式2简便运算:2222222222100999897654321-+-++-+-+-Λ
例题4若一个三角形的边长分别为a 、b 、c ,且满足:0222222=--++bc ab c b a ,判断此三角形的形状,并说明理由。
变式1:若2222690m mn n n ++-+=,求m 和n 的值.
问题(1)若△ABC 的三边长a b c 、、都是正整数,且满足22661830a b a b c +--++-=,请问△ABC
是什么形状?
(2)若224212120x y xy y +-++=,求y x 的值.
(3)已知a b c 、、是△ABC 的三边长,满足2212852a b a b +=+-,求c 的范围.
(4)已知24,6130a b ab c c -=+-+=,则a b c ++= .
变式2.说明不论x 、y 取什么有理数,多项式32222++-+y x y x 的值总是正数。
变式3.已知x 、y 满足y x y x +=++24
522,则代数式y x xy +的值为
例5因式分解
1. (1)22252b ab a ++ (2)1222++-a b a
(3)4)3)(2(2-+++x x x
变式1 已知多项式2x 3-x 2+m 有一个因式(2x+1),求m 的值.
例6.现有足够的2×2,3 ×3的正方形和2×3的矩形图片A 、B 、C (如图),先从中各选取若干个图片拼成不同的图形,请你在下面给出的方格纸(每个小正方形的边长均为1)中,按下列要求画出一种拼法的示意图(要求每两个图片之间既无缝隙,也不重叠,画图时必须保留作图痕迹).
(1) 选取A 型、B 型两种图片各1块,C 型图片2块,拼成一个正方形;
(2) 选取A 型图片4块、B 型图片1块,C 型图片4块,拼成一个正方形;
(3) 选取A 型图片3块、B 型图片1块,再选取若干块C 型图片,拼成一个矩形.
变式1.已知3种形状的长方形和正方形纸片(如图1):用它们拼成一个长为(3a+2b )、宽为(a+b )的长方形,各需多少块?并画出图形.
【真题重现】
多项式912x +加上一个单项式后,使它能成为一个整式的完全平方,则加上的单项式可以是____________(填上你认为正确的一个即可,不必考虑所有的可能情况)。
【乘胜追击(课堂巩固)】
1.已知x 、y 为有理数,设xy M 2=,22y x N +=,则M 、N 的大小关系是
【总结&反思】
【课后作业】
2. 计算:)2004
11)(200311()411)(311)(211(22222-----
Λ
3. 计算:158422
1)211)(211)(211)(211(+++++
4. 计算:)13()13)(13)(13(200442++++Λ
5. 若a 、b 为有理数,且0442222=+++-a b ab a ,则22ab b a += 。