2020中考数学方程组复习
2020年中考数学考点提分专题二方程(组)(解析版)

2020年中考数学考点提分专题二方程(组)(解析版)必考点1 一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x 是未知数,a 、b 是已知数,a ≠0) (2)一元一次方程的最简形式:ax=b (其中x 是未知数,a 、b 是已知数,a ≠0) (3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
【典例1】(2019·四川中考真题)关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .4必考点2 一元一次方程的应用【典例2】(2019·黑龙江中考模拟)一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店( )A .不盈不亏B .盈利20元C .亏损10元D .亏损30元 【举一反三】1.(2019·浙江中考真题)已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=必考点3 二元一次方程组:一般形式:⎩⎨⎧=+=+222111c y b x a c y b x a (212121,,,,,c c b b a a 不全为0)解法:代入消远法和加减消元法【典例3】(2019·四川中考真题)方程组10216x y x y +=⎧⎨+=⎩的解是_______.必考点4 一元二次方程组的应用【典例4】(2019·四川中考真题)《九章算术》第七卷“盈不足”中记载:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译为:“今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱。
问人数、物价各多少?”根据所学知识,计算出人数、物价分别是() A .1,11B .7,53C .7,61D .6,50【举一反三】2. (2019·浙江中考真题)中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为( )A .46383548x y x y +=⎧⎨+=⎩B .46483538y x y x +=⎧⎨+=⎩C .46485338x y x y +=⎧⎨+=⎩D .46483538x y x y +=⎧⎨+=⎩必考点5 分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(Word版含答案)

2020年中考数学总复习《方程(组)与不等式(组)》单元测试卷(总分:120分)一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是( )A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是( )A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为( )A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是( )A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是( )A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是( )A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠0 7.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是( )A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为( )A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是( )A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B⎩⎪⎨⎪⎧x +y =3016x +12y =400 C.⎩⎪⎨⎪⎧12x +16y =400x +y =400 D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为( )A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64 二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为 . 12.不等式2-2x <x -4的解集为 .13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为 . 14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为 .15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则 2 020-a -b 的值是 .16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为 . 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②18.(6分)解方程:x 2+1=2(x +1).19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW公司计划2020年生产的手机全部使用自主研发的“QL”系列芯片.从2019年起逐年扩大“QL”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m的值.答案解析一、选择题(每小题3分,共30分)1.已知实数a ,b.若a >b ,则下列结论正确的是(D)A .a -5<b -5B .2+a <2+b C.a 3<b3 D .3a>3b2.方程x +5=3x +1的解是(A)A .x =2B .x =-2C .x =4D .x =-4 3.用配方法解方程x 2-2x -1=0时,配方后所得的方程为(B)A .(x +1)2=2 B .(x -1)2=2 C .(x +1)2=0 D .(x -1)2=0 4.方程x -2=x(x -2)的解是(D)A .x =1B .x 1=0,x 2=2C .x =2D .x 1=1,x 2=2 5.分式方程1x =2x +3的解是(A)A .x =3B .x =2C .x =1D .x =-2 6.关于x 的一元二次方程kx 2+2x -1=0有两个不相等的实数根,则k 的取值范围是(D)A .k >-1B .k ≥-1C .k ≠0D .k >-1且k ≠07.一元二次方程3x 2-1=2x +5两个实数根的和与积分别是(C)A.32,-2 B .-23,2 C.23,-2 D .-32,2 8.不等式组⎩⎪⎨⎪⎧12x +1≥-3,x -2(x -3)>0的最大整数解为(C)A .x =8B .x =6C .x =5D .x =4 9.某班为奖励在校运动会上取得较好成绩的运动员,花了400元钱购买了甲、乙两种奖品共30件,其中甲种奖品每件16元,乙种奖品每件12元,求甲、乙两种奖品各购买了多少件?若购买甲种奖品x 件,乙种奖品y 件,则列方程正确的是(B)A.⎩⎪⎨⎪⎧x +y =3012x +16y =400B.⎩⎪⎨⎪⎧x +y =3016x +12y =400C.⎩⎪⎨⎪⎧12x +16y =400x +y =400D.⎩⎪⎨⎪⎧16x +12y =300x +y =400 10.用一条长40 cm 的绳子围成一个面积为64 cm 2的长方形.设长方形的长为x cm ,则可列方程为(A)A .x(20-x)=64B .x(20+x)=64C .x(40-x)=64D .x(40+x)=64二、填空题(每小题3分,共18分)11.已知关于x 的方程2x +a -5=0的解是x =2,则a 的值为1. 12.不等式2-2x <x -4的解集为x >2.13.关于x 的一元二次方程(a +1)x 2-ax +a 2-1=0的一个根为0,则另一个根为12.14.如果⎩⎪⎨⎪⎧x =12,y =-1是方程组⎩⎪⎨⎪⎧ax -3y =5,2x +by =2的解,那么a -b 的值为5.15.若关于x 的一元二次方程ax 2+bx +5=0(a ≠0)的解是x =1,则2 020-a -b 的值是2__025.16.暑假期间,几名同学共同租一辆面包车去某地旅游,面包车的租价为120元,出发时又有2名同学参加进来,结果每位同学少分摊3元,则原来旅游同学的人数为8. 三、解答题(共52分)17.(6分)解方程组:⎩⎪⎨⎪⎧2x -3y =3,①x +2y =-2.②解:①-②×2,得 -7y =7,∴y =-1.③ 将③代入②,得x =0.∴原方程组的解为⎩⎪⎨⎪⎧x =0,y =-1.18.(6分)解方程:x 2+1=2(x +1).解:x 2-2x -1=0. (x -1)2=2.∴x 1=1+2,x 2=1- 2.19.(8分)解不等式组⎩⎪⎨⎪⎧5x -1>3x -4,23-x ≥-13,并把不等式组的解集在数轴上表示出来. 解:不等式组的解集为-32<x ≤1.在数轴上表示不等式组的解集如图所示.20.(10分)为顺利通过“国家文明城市”验收,某市政府拟对城区部分路段的人行道路地砖、绿化带、排水管道等公用设施全面更新改造,根据市政建设的需要,需在40天内完成工程,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程的时间的2倍.若甲、乙两个工程队合作只需10天完成.(1)甲、乙两个工程队单独完成此项工程各需多少天?(2)若甲工程队每天的工程费用是4.5万元,乙工程队每天的工程费用是2.5万元.请你设计一种方案,既能使工程按时完工,又能使工程费用最少.解:(1)设甲、乙工程队单独完成此项工程各需x 天,2x 天,根据题意,得 1x +12x =110. 解得x =15,2x =30.答:甲、乙工程队单独完成此项工程各需15天,30天. (2)分三种情况讨论:①甲单独做费用:4.5×15=67.5(万元); ②乙单独做费用:2.5×30=75(万元);③甲、乙合作完成费用:(4.5+2.5)×10=70(万元). ∵75>70>67.5,∴甲工程队单独做既能使工程按时完工,又能使工程费用最小,为67.5万元.21.(10分)某特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售量可增加20千克.若该专卖店销售这种核桃想要平均每天获利2 240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为了尽可能让利于顾客,赢利市场,该店应按原售价的几折出售?解:(1)设每千克核桃应降价x 元,依题意,得 (60-40-x)(100+x2·20)=2 240,解得x =4或x =6.答:每千克核桃应降价4元或6元.(2)由(1)可知,每千克核桃应降价4元或6元, 为了尽可能让利于顾客,每千克核桃应降价6元, 此时售价为60-6=54(元),5460×100%=90%.答:该店应按原售价的九折出售.22.(12分)小明所在的学校为了加强学生体育锻炼,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买2个篮球和3个足球共需310元;购买5个篮球和2个足球共需500元.(1)每个篮球和足球各需多少元?(2)根据学校的实际情况,需从该商店一次性购买篮球和足球共60个,要求购买篮球和足球费用不超过4 000元,那么最多可以购买多少个篮球?解:(1)设每个篮球x 元,每个足球y 元,由题意,得⎩⎪⎨⎪⎧2x +3y =310,5x +2y =500,解得⎩⎪⎨⎪⎧x =80,y =50. 答:每个篮球80元,每个足球50元. (2)设购买z 个篮球,由题意,得 80z +50(60-z)≤4 000,解得z ≤3313.∵z 为整数, ∴z 最大取33.答:最多可以购买33个篮球.23.(10分)李宁准备完成题目:解二元一次方程组⎩⎪⎨⎪⎧x -y =4,□x +y =-8,发现系数“□”印刷不清楚.(1)他把“□”猜成3,请你解二元一次方程组⎩⎪⎨⎪⎧x -y =4,3x +y =-8;(2)张老师说:“你猜错了,我看到该题标准答案的结果x ,y 是一对相反数.”通过计算说明原题中“□”是几?解:(1)⎩⎪⎨⎪⎧x -y =4,①3x +y =-8,②②+①,得4x =-4.解得x =-1.把x =-1代入①,得-1-y =4.解得y =-5. ∴方程组的解是⎩⎪⎨⎪⎧x =-1,y =-5.(2)设“□”为a ,∵x ,y 是一对相反数,∴把x =-y 代入x -y =4,得-y -y =4. 解得y =-2.∴x =2. ∴方程组的解是⎩⎪⎨⎪⎧x =2,y =-2.代入ax +y =-8,得2a -2=-8.解得a =-3.∴原题中“□”是-3.24.(10分)HW 公司2018年使用自主研发生产的“QL ”系列甲、乙、丙三类芯片共2 800万块,生产了2 800万部手机,其中乙类芯片的产量是甲类芯片的2倍,丙类芯片的产量比甲、乙两类芯片产量的和还多400万块.这些“QL ”芯片解决了该公司2018年生产的全部手机所需芯片的10%.(1)求2018年甲类芯片的产量;(2)HW 公司计划2020年生产的手机全部使用自主研发的“QL ”系列芯片.从2019年起逐年扩大“QL ”芯片的产量,2019年、2020年这两年,甲类芯片每年的产量都比前一年增长一个相同的百分数m%,乙类芯片的产量平均每年增长的百分数比m%小1,丙类芯片的产量每年按相同的数量递增.2018年到2020年,丙类芯片三年的总产量达到1.44亿块.这样,2020年的HW 公司的手机产量比2018年全年的手机产量多10%,求丙类芯片2020年的产量及m 的值.解:(1)设2018年甲类芯片的产量为x 万块,由题意,得 x +2x +(x +2x)+400=2 800. 解得x =400.答:2018年甲类芯片的产量为400万块.(2)2018年丙类芯片的产量为3x +400=1 600(万块),设丙类芯片的产量每年增加的数量为y 万块,则1 600+1 600+y +1 600+2y =14 400. 解得y =3 200.∴丙类芯片2020年的产量为1 600+2×3 200=8 000(万块).2018年HW 公司手机产量为2 800÷10%=28 000(万部).根据题意,得400(1+m%)2+2×400(1+m%-1)2+8 000=28 000×(1+10%),设m%=t ,化简,得3t 2+2t -56=0.解得t =4或t =-143(舍去). ∴m%=4.∴m =400.答:丙类芯片2020年的产量为8 000万块,m =400.。
2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)

2020年中考数学复习-第13讲-《方程类应用题专项》(含答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2020年数学中考复习每日一练第十三讲《方程类应用题专项》1.为实施乡村振兴战略,解决某山区老百娃出行难的问题,当地政府决定修建一条高速公路,其中一段长为146米的山体隧道贯穿工程由甲、乙两个工程队负责施工,甲工程队独立工作2天后,乙工程队加入,两个工程队又联合工作了1天,这3天共掘进26米,已知甲工程队平均每天比乙工程队多掘进2米.(1)求甲、乙两个工程队平均每天分别掘进多少米?(2)若甲、乙两个工程队按此施工速度进行隧道贯穿工程,剩余工程由这两个工程队联合施工,求完成这项隧道贯穿工程一共需要多少天?2.某市居民使用自来水,每户每月水费按如下标准收费:月用水量不超过8立方米,按每立方米a元收取;月用水量超过8立方米但不超过14立方米的部分,按每立方米b元收取;月用水量超过14立方米的部分,按每立方米c 元收取.下表是某月部分居民的用水量及缴纳水费的数据.用水量(立方米) 2.51561210.3 4.791716水费(元)533.41225.621.529.418.439.436.4(1)①a=,b=,c=;②若小明家七月份需缴水费31元,则小明家七月份用水米3;(2)该市某用户两个月共用水30立方米,设该用户在其中一个月用水x立方米,请列式表示这两个月该用户应缴纳的水费.3.七年级学生小聪和小明完成了数学实验《钟面上的数学》后,制作了一个模拟钟面,如图所示,点O为模拟钟面的圆心,M、O、N在一条直线上,指针OA、OB分别从OM、ON出发绕点O转动,OA顺时针转动,OB逆时针转动,OA 运动速度为每秒转动15°,OB运动速度为每秒转动5°,设转动的时间为t 秒(t>0),请你试着解决他们提出的下列问题:(1)当t=3秒时,求∠AOB的度数;(2)当OA与OB第三次重合时,求∠BOM的度数;(3)在OA与OB第四次重合前,当t=时,直线MN平分∠AOB.4.为加快“智慧校园”建设,某市准备为试点学校采购一批A,B两种型号的一体机,经过市场调查发现,每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)列二元一次方程组解决问题:求每套A型和B型一体机的价格各是多少万元?(2)由于需要,决定再次采购A型和B型一体机共1100套,此时每套A型体机的价格比原来上涨25%,每套B型一体机的价格不变.设再次采购A型一体机m(m≤600)套,那么该市至少还需要投入多少万元?5.某水果店2400元购进一批葡萄,很快售完;又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)求第一批葡萄每件进价多少元?(2)若以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价至少打几折(利润=售价﹣进价)6.数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:记录天平左边天平右边状态14个一次性纸杯平衡记录一6个乒乓球,1个10克的砝码平衡记录二8个乒乓球7个一次性纸杯,1个10克的砝码请算一算,一个乒乓球的质量是多少克一个这种一次性纸杯的质量是多少克解:(1)设一个乒乓球的质量是x克,则一个这种一次性纸杯的质量是克;(用含x的代数式表示)(2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.7.一列火车匀速行驶,经过一条长300m的隧道需要20s的时间,隧道的项上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,假设这列火车的长度为am.(1)设从车头经过灯下到车尾经过灯下火车所走的这段时间内火车的平均速度为Pm/s,从车头进入隧道到车尾离开隧道火车所走的这段时间内火车的平均速度为Qm/s,计算:5P﹣2Q(结果用含a的式子表示).(2)求式子:8a﹣380的值.8.A,B两点在数轴上的位置如图,点A对应的数值为﹣5,点B对应的数值为11.(1)现有两动点M和N,点M从A点出发以2个单位长度秒的速度向左运动,点N从点B出发以6个单位长度/秒的速度同时向右运动,问:运动多长时间满足MN=56?(2)现有两动点C和D,点C从A点出发以1个单位长度/秒的速度向右运动,点D从点B出发以5个单位长度/秒的速度同时向左运动,问:运动多长时间满足AC+BD=3CD9.随着人们“节能环保,绿色出行”意识的增强,越来越多的人喜欢骑自行车出行,同时也给自行车商家带来商机.某自行车行销售A型,B型两种自行车,经统计,2019年此车行销售这两种自行车情况如下:A自行车销售总额为8万元.每辆B型自行车的售价比每辆A型自行车的售价少200元,B型自行车销售数量是A自行车的1.25倍,B自行车销售总额比A型自行车销售总额多12.5%.(1)求每辆B型自行车的售价多少元.(2)若每辆A型自行车进价1400元,每辆B型自行车进价1300元,求此自行车行2019年销售A,B型自行车的总利润.10.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6000元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少8元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的每件售价少10元,且这批T恤衫全部售出后,商店获利不少于6700元,则甲种T恤衫每件售价至少多少元?11.列一元一次方程解应用题目前节能灯在城市已基本普及,某商场计划购进甲、乙两种节能灯共1200只,甲型节灯进价25元/只,售价30元/只;乙型节能灯进价45元/只,售价60元/只.(1)如何进货,进货款恰好为46000元?(2)为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折?12.在数轴上有三个点A,B,C,O为原点,点A表示数a,点B表示数b,点C表示数c.且a、c满足|a+6|+(c﹣3)2=0.(1)填空:a=;c=.(2)点O把线段AB分成两条线段,其中一条是另一条线段的3倍,则b的值为:.(3)若b为2,动点P从点A出发,以每秒2个单位长度速度沿数轴负方向运动,同时,动点Q从点C出发,以每秒3个单位长度速度沿数轴正方向运动,求运动多少秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍?13.“十一”期间,小聪跟爸爸一起去A市旅游,出发前小聪从网上了解到A 市出租车收费标准如下:行程(千米)3千米以内满3千米但不超过8千米的部分8千米以上的部分收费标准(元)10元 2.4元/千米3元/千米(1)若甲、乙两地相距8千米,乘出租车从甲地到乙地需要付款多少元?(2)小聪和爸爸从火车站乘出租车到旅馆,下车时计费表显示17.2元,请你帮小聪算一算从火车站到旅馆的距离有多远?(3)小聪的妈妈乘飞机来到A市,小聪和爸爸从旅馆乘出租车到机场去接妈妈,到达机场时计费表显示70元,接完妈妈,立即沿原路返回旅馆(接人时间忽略不计),请帮小聪算一下乘原车返回和换乘另外的出租车,哪种更便宜?14.2019年度双十一在九龙坡区杨家坪的各大知名商场举行“国产家用电器惠民抢购日”优惠促销大行动,许多家用电器经销商都利用这个契机进行打折促销活动.商社电器某国产品牌经销商的某款超高清大屏幕Led液晶电视机每套成本为4000元,在标价6000元的基础上打9折销售.(1)现在该经销商欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于30%(2)据媒体爆料,有一些经销商先提高商品价格后再降价促销,存在欺诈行为.重百电器另一个该品牌的经销商也销售相同的超高清大屏幕Led液晶电视机,其成本、标价与商社电器的经销商一致,以前每周可售出20台,现重百的经销商先将标价提高(2m﹣12)%,再大幅降价150m元,使得这款电视机在2019年11月11日那一天卖出的数量就比原来一周卖出的数量增加了m%,这样一天的利润达到22400元,求m的值.(利润=售价﹣成本)15.某地区两类专车的打车方式:华夏专车神州专车里程费 1.8元/千米2元/千米时长费0.3元/分钟0.6元/分钟无远途费0.8元千米(超过7千米部分)起步价无10元华夏专车:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千加收0.8元.神州专车:车费由里程费、时长费、起步价三部分构成,其中里程费按行车的实际里程计算;时长按行车的实际时间计算;起步价与行车距离无关.解决问题:(假设行车过程没有停车等时,且平均车速为0.5千米/分钟)(1)小明在该地区出差,乘车距离为10千米,如果小明使用华夏专车,需要支付的打车费用为元;(2)小强在该地区从甲地采坐神州专车到乙地,一共花费42元,求甲乙两地距离是多少千米?(3)神州专车为了和华夏专车竞争客户,分别推出了优惠方式,华夏专车对于乘车路程在7千米以上(含7千米)的客户每次收费立减9元;神州打车车费5折优惠.对采用哪一种打车方式更合算提出你的建议.16.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?17.某商场用25000元购进A、B两种新型护眼台灯共50盏,这两种台灯的进价、标价如下表所示:A型B型类型价格进价(元/盏)400650标价(元/盏)600m(1)A、B两种新型护眼台灯分别购进多少盏?(2)若A型护眼灯按标价的9折出售,B型护眼灯按标价的8折出售,那么这批台灯全部售完后,商场共获利7200元,请求出表格中m的值.18.随着经济水平的不断提高,越来越多的人选择到电影院去观看电影,体验视觉盛宴,并且更多人通过淘票票,猫眼等网上平台购票,快捷且享受更多优惠,电影票价格也越来越便宜.电影《我和我的祖国》从网上平台购买1张电影票的价格比在现场购买一张电影票的价格少10元,从网上平台购买4张电影票的价格和现场购买2张电影票的价格共为200元.(1)请问《我和我的祖国》的电影票在网上平台和现场购票单价各为多少元?(2)“国庆”当天,某电影院仍然以这两种方式销售电影票,它们的单价都不变,当天网上平台和现场售出电影票数为500张,经统计,当天售出电影票总票数中有a%通过网上平台售出,其余均由电影院现场售出,且当天票房总收益为17000元,求a的值.19.某工厂接受了20天内生产1200台GH型电子产品的总任务.已知每台GH 型产品由4个G型装置和3个H型装置配套组成.工厂现有80名工人,每个工人每天能加工6个G型装置或3个H型装置.工厂将所有工人分成两组同时开始加工,每组分别加工一种装置,并要求每天加工的G、H型装置数量正好组成GH型产品.(1)按照这样的生产方式,工厂每天能配套组成多少套GH型电子产品?(2)工厂补充40名新工人,这些新工人只能独立进行G型装置的加工,且每人每天只能加工4个G型装置,则补充新工人后每天能配套生产多少产品补充新工人后20天内能完成总任务吗20.某糕点厂生产大小两种月饼,下表是A型、B型、C型三种月饼礼盒中装有大小两种月饼数量和需要消耗的面粉总重量的统计表面粉总重量(g)大月饼数量(个)小月饼数量(个)A型月饼礼盒58086B型月饼礼盒48066C型月饼礼盒420a b(1)直接写出制作1个大月饼要用g面粉,制作1个小月饼要用g面粉;(2)直接写出a=,b=.(3)经市场调研,该糕点厂要制作一批C型月饼礼盒,现共有面粉63000g,问制作大小两种月各用多少面粉,才能生产最多的C型月饼礼盒?参考答案1.解:(1)设乙工程队平均每天掘进x米,则甲工程队平均每天掘进(x+2)米,依题意有2(x+2)+(x+x+2)×1=26解得:x=5,x+2=5+2=7.故甲工程队平均每天掘进7米,乙工程队平均每天掘进5米;(2)设完成这项隧道贯穿工程一共需要y天,依题意有(7+5)y=146﹣26,解得y=10.答:完成这项隧道贯穿工程一共需要10天.2.解:(1)①根据表格可知:a==2,b==2.4,c==3,②由表格可知小明家七月份用水超过14立方米,设七月份用水x立方米,3(x﹣14)+(14﹣8)×2.4+8×2=31,解得:x=14.2,(2)若0<x≤8,则22≤30﹣x<30,所缴纳的水费为:2x+30.4+3(30﹣x﹣14)=(﹣x+78.4)元,若8<x≤14,则16≤30﹣x<22,所缴纳的水费为:16+2.4(x﹣8)+30.4+3(30﹣x﹣14)=(﹣0.6x+75.2)元,若14<x<16,则14<30﹣x<16,所缴纳的水费为:30.4+3(x﹣14)+30.4+3(30﹣x﹣14)=66.8元.若16≤x<22,则8<30﹣x<14,所缴纳的水费为:30.4+3(x﹣14)+16+2.4(x﹣30﹣8)=(0.6x+57.2)元,若22≤x<30,则0<30﹣x≤8,所缴纳的水费为:30.4+3(x﹣14)+2(30﹣x)=(x+48.4)元,综上所述,若0<x≤8,所缴纳的水费为(﹣x+78.4)元,若8<x≤14,所缴纳的水费为(﹣0.6x+75.2)元,若14<x<16,所缴纳的水费为66.8元.若16≤x<22,所缴纳的水费为(0.6x+57.2)元,若22≤x<30,所缴纳的水费为(x+48.4)元,故答案为:(1)①2,2.4,3.②14.23.解:(1)当t=3秒时,∴∠AOM=15°×3=45°,∠BON=5°×3=15°,∴∠AOB=180°﹣45°﹣15°=120°;(2)设t秒后第三次重合,由题意得15t+5t=360×2+180,解得t=45,5×45°﹣180°=45°.答:∠BOM的度数为45°;(3)在OA与OB第一次重合前,直线MN不可能平分∠AOB;在OA与OB第一次重合后第二次重合前,∠BON=5t,∠AON=15t﹣180,依题意有5t=15t﹣180,解得t=18;在OA与OB第二次重合后第三次重合前,直线MN不可能平分∠AOB;在OA与OB第三次重合后第四次重合前,∠BON=360﹣5t,∠AON=15t﹣720,依题意有360﹣5t=15t﹣720,解得t=54.故当t=18或54秒时,直线MN平分∠AOB.故答案为:18或54秒.4.解:(1)设每套A型一体机的价格为x万元,每套B型一体机的价格为y 万元.由题意可得:,解得:,答:每套A型一体机的价格是1.2万元,B型一体机的价格是1.8万元;(2)设该市还需要投入W万元,由题意得:W=1.2×(1+25%)m+1.8×(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小.∵m≤600,∴当m=600时,W有最小值,W最小=﹣0.3×600+1980=1800,答:该市至少还需要投入1800万元.5.解:(1)设第一批葡萄每件进价x元,根据题意,得:×2=,解得x=120.经检验,x=120是原方程的解且符合题意.答:第一批葡萄每件进价为120元.(2)设剩余的葡萄每件售价打y折.根据题意,得:×150×80%+×150×(1﹣80%)×0.1y﹣5000≥640,解得:y≥7.答:剩余的葡萄每件售价最少打7折.6.解:(1)根据题意知,这种一次性纸杯的质量是或.故答案是:或;(2)根据题意得,6x+10=16x﹣206x﹣16x=﹣20﹣10﹣10x=﹣30x=3.当x=3时,(克).答:一个乒乓球的质量是3克,一个这种一次性纸杯的质量是2克.7.解:(1)依题意,得:P=,Q=,∴5P﹣2Q=﹣=.(2)∵火车匀速行驶,∴P=Q,即=,∴a=300,∴8a﹣380=2020.8.解:(1)设运动时间为x秒时,MN=56.依题意,得:(6x+11)﹣(﹣2x﹣5)=56,解得:x=5.答:运动时间为5秒时,MN=56.(2)当运动时间为t秒时,点C对应的数为t﹣5,点D对应的数为﹣5t+11,∴AC=t,BD=5t,CD=|t﹣5﹣(﹣5t+11)|=|6t﹣16|.∵AC+BD=3CD,∴t+5t=3|6t﹣16|,即t+5t=3(6t﹣16)或t+5t=3(16﹣6t),解得:t=4或t=2.答:运动时间为2秒或4秒时,AC+BD=3CD.9.解:(1)设每辆B型自行车的售价为x元,则每辆A型自行车的售价为(x+200)元.依题意,得方程两边乘x(x+200),得80000×1.25x=80000×(1+12.5%)(x+200)解得x=1800经检验,x=1800是原分式方程的解,且符合实际意义.答:每辆B型自行车的售价为1800元.(2)每辆A型自行车的售价为1800+200=2000元,销售数量为80000÷2000=40辆;B型自行车的总销售额为80000×(1+12.5%)=90000元,销售数量为40×1.25=50辆.总利润为(80000+90000)﹣(1400×40+1300×50)=49000元.答:此自行车行2019年销售A,B型自行车的总利润为.49000元10.解:(1)设购进乙x件,则购进甲1.5x件,,解得,x=100,经检验x=100是原方程的解,∴1.5x=1.5×100=150,答:甲购进150件,乙购进100件.(2)设甲每件售价m元,则150m+100(m+10)﹣7800﹣6000≥6700,解得:m≥78,答:甲每件售价至少78元.11.解:(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200﹣x)只,由题意,得25x+45(1200﹣x)=46000解得:x=400购进乙型节能灯1200﹣x=1200﹣400=800(只).答:购进甲型节能灯400只,购进乙型节能灯800只进货款恰好为46000元.(2)设乙型节能灯需打a折,0.1×60a﹣45=45×20%,解得a=9,答:乙型节能灯需打9折.12.解:(1)∵|a+6|+(c﹣3)2=0,∴a+6=0,c﹣3=0,解得:a=﹣6,c=3.故答案为:﹣6;3;(2)由a=6可知OA=6,∴b=6×3=18或b=6÷3=2;故b=18或2;故答案为:18或2;(3)设运动t秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍,根据题意得2t+6+2=3(3t+1),解得t=.即运动秒时,点B把线段PQ分成两条线段且其中一条是另一条线段的3倍.13.解:(1)10+2.4×(8﹣3)=22(元);答:乘出租车从甲地到乙地需要付款22元;(2)设火车站到旅馆的距离为x千米.∵10<17.2<22,∴3≤x≤8.10+2.4(x﹣3)=17.2∴x=6.答:从火车站到旅馆的距离有6千米;(3)设旅馆到机场的距离为x千米,∵70>22,∴x>8.10+2.4(8﹣3)+3(x﹣8)=70∴x=24.所以乘原车返回的费用为:10+2.4×(8﹣3)+3×(24×2﹣8)=142(元);换乘另外车辆的费用为:70×2=140(元)所以换乘另外出租车更便宜.14.解:(1)设降价x元,列不等式(6000×0.9﹣x)≥4000(1+30%)解得:x≤200答:最多降价200元,才能使得利润不低于30%;(2)根据题意得:整理得:3m2﹣8m﹣640=0解得:m1=16,m2=﹣(舍去)∴m=16答:m的值为16.15.解:(1)使用华夏专车,乘车距离为10千米,需要支付的打车费用为:1.8×10+0.8×(10﹣7)+10÷0.5×0.3=18+2.4+6=26.4(元)故答案为:26.4;(2)设甲乙两地距离是x千米,则10+2x+×0.6=42整理得:3.2x=32x=10∴甲乙两地距离是10千米.(3)设行驶x千米,打车费用为W元当0<x≤7时,华夏专车车费W1=1.8x+×0.3=2.4x当x>7时,华夏专车车费W2=1.8x+×0.3+0.8(x﹣7)﹣9=3.2x﹣14.6神州专车车费W3=(2x+×0.6+10)×0.5=1.6x+5①W1=W3时,2.4x=1.6x+5,解得:x=6.25;W=W3时,3.2x﹣14.6=1.6x+5,解得:x=12.25.2②W1>W3时,2.4x>1.6x+5,解得:x>6.25;W>W3时,3.2x﹣14.6>1.6x+5,解得:x>12.25.2③W1<W3时,2.4x<1.6x+5,解得:x<6.25;W<W3时,3.2x﹣14.6<1.6x+5,解得:x<12.25.2综上所述,当x=6.25或12.25时,两者都可选;当6.25<x<7或x>12.25时,选神州专车;当0<x<6.25或7<x<12.25时,选华夏专车.16.解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得:﹣=4,解得:x=25,经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25×2=50(m2),答:甲、乙两工程队每天能完成绿化的面积分别是50m2、25m2;(2)设应安排甲队工作y天,根据题意得:0.35y+×0.25≤8,解得:y≥20,答:至少应安排甲队工作20天.17.解:(1)设A型台灯购进x盏,B型台灯购进(50﹣y)盏.根据题意得:400x+600(50﹣x)=25000.解得:x=25.则50﹣x=25,答:A型台灯购进25盏,B型台灯购进25盏;(2)25×(600×90%﹣400)+25×(m×80%﹣650)=7200.解得m=997.5.18.解:(1)设在网上平台购票单价为x元,则在现场购票单价为(x+10)元.根据题意得:4x+2(x+10)=200,解得:x=30,∴x+10=40.答:在网上平台购票单价为30元,在现场购票单价为40元.(2)根据题意得:500×a%×30+500×(1﹣a%)×40=17000,解得:a=60.答:a的值为60.19.解:(1)设安排x名工人生产G型装置,则安排(80﹣x)名工人生产H 型装置,依题意,得:,解得:x=32,∴=48.答:按照这样的生产方式,工厂每天能配套组成48套GH型电子产品.(2)设安排y名工人生产H型装置,则安排(80﹣y)名工人及40名新工人生产G型装置,依题意,得:,解得:y=72,∴=y=72.∵72×20=1440>1200,∴补充新工人后20天内能完成总任务.答:补充新工人后每天能配套生产72套产品,补充新工人后20天内能完成总任务.20.解:(1)制作1个大月饼要用的面粉数量为:(580﹣480)÷(8﹣6)=50(g);制作1个小月饼要用的面粉数量为:(480﹣50×6)÷6=30(g),故答案为:50;30;(2)根据题意得50a+30b=420,∵a,b为整数,∴a=6,b=4.故答案为:6;4(3)设用xg面粉制作大月饼,则利用(63000﹣x)g制作小月饼,根据题意得出,解得:x=45000,则63000﹣4500=18000(g).答:用45000g面粉制作大月饼,18000g制作小月饼,才能生产最多的盒装月饼.。
人教版中考数学考点系统复习 第二章 方程(组)与不等式(组) 第一节 一次方程(组)及其应用

∴原方程组的解为y=1,将y=1 代入 2kx-3y<5 得 2×k×2-3<5,解得 k<2.
命题点 2:一次方程(组)的应用(近 3 年考查 15 次)
7.(数学文化)(2021·武汉第 7 题 3 分)我国古代数学名著《九章算术》
中记载:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价
32 人.2 艘大船与 1 艘小船一次共可以满载游客 46 人.则 1 艘大船与 1
艘小船一次共可以满载游客的人数为
( B)
A.30
B.26
C.24
D.22
11.★(2022·武汉第 10 题 3 分)幻方是古老的数学问题,我国古代的《洛 书》中记载了最早的幻方——九宫格.将 9 个数填入幻方的空格中,要 求每一横行、 每一竖列以及两条对角线上的 3 个数之和相等,例如图① 就是一个幻方.图②是一个未完成的幻方,则 x 与 y 的和是 ( D ) A.9 B.10 C.11 D.12
14.(2020·仙桃第 12 题 3 分)篮球联赛中,每场比赛都要分出胜负,每 队胜 1 场得 2 分,负 1 场得 1 分.某队 14 场比赛得到 23 分,则该队胜 了__99__场.
15.(2020·黄冈第 19 题 6 分)为推广黄冈各县市名优农产品,市政府组 织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买 6 盒 羊角春牌绿茶和 4 盒九孔牌藕粉,共需 960 元,如果购买 1 盒羊角春牌 绿茶和 3 盒九孔牌藕粉共需 300 元,请问每盒羊角春牌绿茶和每盒九孔 牌藕粉分别需要多少元?
【分层分析】设购进创意文具袋 x 个,由题干信息①得购进笔记本为
((2x2+x+10)个,由题干信息②可列方程为 xx++(2(x2+x1+0)1=0)190.
福建省2020届中考数学总复习:章检测试卷二 方程(组)与不等式(组)

福建省20届中考数学总复习:章检测卷二 方程(组)与不等式(组)(时间:60分钟 分值:100分)一、选择题(每小题4分,共40分)1.若x =1是方程ax +2x =3的解,则a 的值是(B)A .-1B .1C .-3D .32.已知a <b ,下列式子不成立的是(C)A .a -5<b -5B .3a<3bC .-a +1<-b +1D .-12a>-12b 3.若关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧2x +5y =2,7x +4y =m -8 的解x ,y 互为相反数,则m 的值为(C) A .4 B .5C .6D .8 4.关于x 的一元二次方程 x 2-(m +2)x +m =0的根的情况是(A)A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定5.一元二次方程-x 2+2x =0的根为(B)A .-2B .0,2C .0,-2D .2 6.若关于x 的分式方程x +m 4-x 2+x x -2=1有增根,则m 的值是(A) A .m =2或m =6B .m =2C .m =6D .m =2或m =-6 7.不等式组⎩⎪⎨⎪⎧x -1<2,2x≥4的解集为(A) A .2≤x<3B .2<x<3C .x<3D .x≥28.小张早晨去学校共用时15分,他跑了一段,走了一段,他跑步的平均速度是250米/分,步行的平均速度是80米/分,他家离学校的距离是2 900米.设他跑步的时间为x 分,根据题意,可列出的方程是(A)A .250x +80(15-x)=2 900B .80x +250(15-x)=2 900C .80x +250x =2 900D .250x +80(15+x)=2 9009.某公司2018年获利润1 000万元,计划到2020年年利润达到1 210万元.设该公司的年利润平均增长率为x ,下列方程正确的是(A)A .1 000(1+x)2=1 210B .1 210(1+x)2=1 000C .1 000(1+2x)=1 210D .1 000+1 000(1+x)+1 000(1+x)2=1 21010.现有甲、乙两种机器人都被用来搬运某体育馆室内装潢材料.甲型机器人比乙型机器人每小时少搬运30千克,甲型机器人搬运600千克所用的时间与乙型机器人搬运800千克所用的时间相同,两种机器人每小时分别搬运多少千克?设甲型机器人每小时搬运x 千克,根据题意,可列方程为(A)A.600x =800x +30B.600x =800x -30C.600x +30=800xD.600x -30=800x 二、填空题(每小题4分,共24分)12.不等式2+3x≤5的解集为 x≤1 .13.分式方程 2x +3=1x -1的解是 x =5 . 14.某楼盘准备以每平方米6 500元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米5 265元的均价开盘销售,则平均每次下调的百分率是 10% .15.关于x 的一元二次方程 -x 2+3x +m =0有两个相等的实数根,则m 的值为 -94 . 16.若a 是方程 x 2-3x +1=0的根,则a 2-3a +3a a 2+1= 0 . 17.已知A ,B 两地相距120 km.甲、乙两辆汽车同时从A 地出发去B 地.已知甲车的速度是乙车速度的1.2倍,结果甲车比乙车提前20分钟到达,则甲车的速度是 72 km/h.三、解答题(本大题共7小题,共36分)18.(4分)解方程组:⎩⎪⎨⎪⎧x +y =5,2x +3y =12. 解:⎩⎪⎨⎪⎧x +y =5 ①,2x +3y =12 ②, ②-①×2,得y =2,把y =2代入①,得x =3,则方程组的解为⎩⎨⎧x =3,y =2.19.(4分)解方程:x x +1-1=2x 3x +3. 解:去分母得3x -3x -3=2x ,解得x =-32,检验:当x =-32时,3(x +1)≠0,则x =-32是分式方程的解. 故分式方程的解为x =-32. 20.(5分)解不等式组⎩⎪⎨⎪⎧1-x≤-2,3(x -1)<x +5,并把解集在数轴上表示出来. 第20题图解:⎩⎪⎨⎪⎧1-x ≤-2 ①,3(x -1)<x +5 ②,解不等式①,得x≥3,解不等式②,得x<4,则不等式组的解集是3≤x<4,不等式组的解集在数轴上表示如答图.第20题答图21.(5分)中国古代数学著作《算法统宗》中有这样一题:“三百七十八里关,初日健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是:有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.请你求出此人第六天的路程.解:设第六天走的路程为x 里,则第五天走的路程为2x 里.依此往前推,第一天走的路程为32x 里.依题意,得x +2x +4x +8x +16x +32x =378,解得x =6.答:此人第六天走的路程为6里.22.(6分)小丽买苹果和桃子,如果买4千克苹果和2千克桃子,共花费18元;如果买2千克苹果和4千克桃子,共花费16.8元.苹果和桃子每千克各多少元?解:设苹果每千克x 元,桃子每千克y 元.由题意,得⎩⎪⎨⎪⎧4x +2y =18,2x +4y =16.8, 解得⎩⎪⎨⎪⎧x =3.2,y =2.6. 答:苹果每千克3.2元,桃子每千克2.6元.23.(6分)开学初,某文化用品商店减价促销,全场8折.购买规格相同的铅笔套装,折价后用32元买到的数量刚好比按原价用50元买到的数量少2套.求原来每套铅笔套装的价格.解:设原来每套铅笔套装的价格是x 元,则现在每套铅笔套装的价格是0.8x 元.依题意,得50x -2=320.8x, 解得x =5.检验:当x =5时,0.8x≠0,故x =5是原方程的解,且符合题意.答:原来每套铅笔套装的价格是5元.24.(8分)某建设工地一个工程有大量的沙石需要运输.建设公司车队有载重量为8吨和10吨的卡车共12辆,全部车辆一次能运输110吨沙石.(1)求建设公司车队载重量为8吨和10吨的卡车各有多少辆;(2)随着工程的进展,车队需要一次运输沙石超过160吨,为了完成任务,准备新增购这两种卡车共6辆,车队最多新购买载重量为8吨的卡车多少辆?解:(1)设建设公司车队载重量为8吨的卡车有x 辆,载重量为10吨的卡车有y 辆.根据题意,得⎩⎪⎨⎪⎧x +y =12,8x +10y =110,解得⎩⎪⎨⎪⎧x =5,y =7. 答:建设公司车队载重量为8吨的卡车有5辆,载重量为10吨的卡车有7辆.(2)设载重量为8吨的卡车增加z 辆,则载重量为10吨的卡车增加(6-z)吨. 依题意,得8(5+z)+10(7+6-z)>160,解得z <5.∵z>0且为整数,∴z 的最大值为4.答:车队最多新购买载重量为8吨的卡车4辆.。
2020年中考数学复习每日一练 第九讲 《二元一次方程组》(包含答案)

2020年数学中考复习每日一练第九讲《二元一次方程组》一.选择题1.下列方程组中,是二元一次方程组的是()A.B.C.D.2.已知方程组中的x,y互为相反数,则n的值为()A.2 B.﹣2 C.0 D.43.已知是方程mx﹣y=2的解,则m的值是()A.﹣1 B.﹣C.1 D.54.若关于x,y的二元一次方程组的解满足x+y=7,则k的值是()A.1 B.2 C.3 D.45.学校八年级师生共468人准备到飞翔教育实践基地参加研学旅行,现已预备了49座和37座两种客车共10辆,刚好坐满,设49座客车x辆,37座客车y辆,根据题意可列出方程组()A.B.C.D.6.若是关于x,y的方程组的解,则a+b的值为()A.6 B.10 C.8 D.47.二元一次方程3x+2y=17的正整数解的个数是()A.2个B.3个C.4个D.5个8.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x负的场数为y,则可列方程组为()A.B.C.D.9.已知关于x,y的二元一次方程组,给出下列结论中正确的是()①当这个方程组的解x,y的值互为相反数时,a=﹣2;②当a=1时,方程组的解也是方程x+y=4+2a的解;③无论a取什么实数,x+2y的值始终不变;④若用x表示y,则y=﹣;A.①②B.②③C.②③④D.①③④10.点P(x,y)是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组的解(a为任意实数),则当a变化时,点P一定不会经过()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题11.已知(m﹣2)x|m|﹣1﹣3﹣3y=1是关于x,y的二元一次方程,则m=.12.已知x,y满足方程组,则x2﹣4y2的值为.13.已知(x+y+2)2+=0,则的值是.14.将一摞笔记本分给若干个同学,每个同学分8本,则差了7本.若设共有x个同学,y 本笔记本,则可列方程为.15.秋天到了,花溪区高坡乡美景如画,其中露营基地吸引了不少露营爱好者,露营基地为了接待30名露营爱好者,需要搭建可容纳3人或2人的帐篷若干,若所搭建的帐篷恰好能容纳这30名露营爱好者,则不同的搭建方案有种.16.春节即将来临时,某商人抓住商机购进甲、乙、两三种糖果,已知销售甲糖果的利润率为10%,乙糖果的利润率为20%,丙糖果的利润率为30%,当售出的甲、乙、丙糖果重量之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙糖果重量之比为3:2:1时,商人得到的总利率为20%.那么当售出的甲、乙、丙糖果重量之比为5:1:1时,这个商人得到的总利润率为.17.某班的一个综合实践活动小组去甲、乙两个超市调查去年和今年“元旦”期间的销售情况,下面是调查后小明与其它两位同学进行交流的情景.小明说:“去年两超市销售额共为150万元,今年两超市销售额共为170万元”,小亮说:“甲超市销售额今年比去年增加10%小颖说:“乙超市销售额今年比去年增加20%根据他们的对话,得出今年甲超市销售额为万元18.“格子乘法”作为两个数相乘的一种计算方法最早在15世纪由意大利数学家帕乔利提出,在明代的《算法统宗》一书中被称为“铺地锦”.如图1,计算47×51,将乘数47计入上行,乘数51计入右行,然后以乘数47的每位数字乘以乘数51的每位数字,将结果计入相应的格子中,最后按斜行加起来,得2397.(1)如图2,用“格子乘法”表示25×81,则m的值为.(2)如图3,用“格子乘法”表示两个两位数相乘,则a的值为.三.解答题19.解方程组:(1)(2)20.已知关于x,y的二元一次方程组的解满足x=y,求m的值.21.为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元.(1)求文具袋和圆规的单价.(2)学校准备购买文具袋20个,圆规100个,文具店给出两种优惠方案:方案一:每购买一个文具袋赠送1个圆规.方案二:购买10个以上圆规时,超出10个的部分按原价的八折优惠,文具袋不打折.学校选择哪种方案更划算?请说明理由.22.(列二元一次方程组求解)班长安排小明购买运动会的奖品,下面对话是小明买回奖品时与班长的对话情境:小明说:“买了两种不同的笔记本共50本,单价分别是5元和9元,我给了400元,现在找回88元.”班长说:“你肯定搞错了.”小明说:“我把自己口袋里的18元一起当作找回的钱款了.”班长说:“这就对啦!”请根据上面的信息,求两种笔记本各买了多少本?23.某城市为创建国家卫生城市,需要购买甲、乙两种类型的分类垃圾桶(如图所示),据调查该城市的A、B、C三个社区积极响应号并购买,具体购买的数和总价如表所示.社区甲型垃圾桶乙型垃圾桶总价A10 8 3320B 5 9 2860C a b2820(1)运用本学期所学知识,列二元一次方程组求甲型垃圾桶、乙型垃圾桶的单价每套分别是多少元?(2)按要求各个社区两种类型的垃圾桶都要有,则a=.24.为加快“智慧校园”建设,某市准备为试点学校采购一批A,B两种型号的一体机,经过市场调查发现,每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)列二元一次方程组解决问题:求每套A型和B型一体机的价格各是多少万元?(2)由于需要,决定再次采购A型和B型一体机共1100套,此时每套A型体机的价格比原来上涨25%,每套B型一体机的价格不变.设再次采购A型一体机m(m≤600)套,那么该市至少还需要投入多少万元?参考答案一.选择题1.解:A、不是二元一次方程组,故此选项错误;B、不是二元一次方程组,故此选项错误;C、不是二元一次方程组,故此选项错误;D、是二元一次方程组,故此选项正确;故选:D.2.解:由题意得:x+y=0,即y=﹣x,代入x﹣y=2得:x+x=2,解得:x=,即y=﹣,代入得:n=x﹣2y=+=4,故选:D.3.解:∵是方程mx﹣y=2的解,则3m﹣1=2,解得:m=1.故选:C.4.解:,①﹣②得:3y=3k+6,即y=k+2,把y=k+2代入②得:x=3k﹣3,代入x+y=7得:3k﹣3+k+2=7,解得:k=2,故选:B.5.解:设49座客车x辆,37座客车y辆,根据题意可列出方程组.故选:B.6.解:把代入方程组得:,解得:,则a+b=﹣1+9=8,故选:C.7.解:∵3x+2y=17,∴y=由于x、y都是正整数,所以17﹣3x>0∴x可取1、2、3、4、5.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x=2、4时,y不是正整数舍去.满足条件的正整数解有三对.故选:B.8.解:设这个队胜x场,负y场,根据题意,得.故选:A.9.解:于x,y的二元一次方程组,①+②得,2x+2y=4+2a,即: x+y=2+a,(1)①当方程组的解x,y的值互为相反数时,即x+y=0时,即2+a=0,∴a=﹣2,故①正确,(2)②原方程组的解满足x+y=2+a,当a=1时,x+y=3,而方程x+y=4+2a的解满足x+y=6,因此②不正确,(3)方程组,解得,∴x+2y=2a+1+2﹣2a=3,因此③是正确的,(4)方程组,由方程①得,a=4﹣x﹣3y代入方程②得,x﹣y=3(4﹣x﹣3y),即;y=﹣+因此④是正确的,故选:D.10.解:解方程组得:,∵当x=<0时,解得:a<1,∴此时y=<0,∴当x<0时y<0,∴点P一定不会经过第一象限,故选:A.二.填空题(共8小题)11.解:∵(m﹣2)x|m|﹣1﹣3﹣3y=1是关于x,y的二元一次方程,∴,由①,可得:m≠2,由②,可得:m=±2,∴m=﹣2.故答案为:﹣2.12.解:∵x,y满足方程组,∴x2﹣4y2=(x+2y)(x﹣2y)=8×(﹣3)=﹣24故答案为:﹣24.13.解:∵(x+y+2)2≥0,≥0,且(x+y+2)2+=0 ∴(x+y+2)2=0,=0,即解得:则=故答案为﹣.14.解:设共有x个同学,有y个笔记本,由题意,得y=8x﹣7.故答案是:y=8x﹣7.15.解:设3人的帐篷有x顶,2人的帐篷有y顶,依题意,有:3x+2y=30,整理得y=15﹣1.5x,因为x、y均为非负整数,所以15﹣1.5x≥0,解得:0≤x≤10,从0到5的偶数共有6个,所以x的取值共有6种可能.故答案为:6.16.解:设甲、乙、丙三种蜂蜜的进价分别为a、b、c,丙蜂蜜售出瓶数为cx,由题意得:,解得:,∴===18%,故答案为:18%.17.解:设甲超市去年销售额为x万元,乙超市去年销售额为y万元,根据题意,得10%=0.1,20%=0.2解得所以今年甲超市销售额为100(1+0.1)=110.故答案为110.18.解:(1)如图2,m=0+0+2=2.(2)如图3,设4a的十位数字是m,个位数字是n,则,解得a=3.故答案为:2;3.三.解答题(共6小题)19.解:(1)把①代入②得:2(1﹣2y)+3y=﹣2,解得:y=4,把y=4代入①得:x=1﹣8=﹣7,所以原方程组的解是:;(2)整理得:,②﹣①得:6y=27,解得:y=4.5,把y=4.5代入①得:3x﹣9=9,解得:x=6,所以原方程组的解是:.20.解:∵关于x,y的二元一次方程组的解满足x=y,∴,故=2m,解得:m=10.21.解:(1)设文具袋的单价为x元,圆规的单价为y元.依题意,得解得答:文具袋的单价为15元,圆规的单价为3元.(2)选择方案一的总费用为20×15+3×(100﹣20)=540(元),选择方案二的总费用为20×15+10×3+3×80%×(100﹣10)=546(元),∵540<546,∴选择方案一更划算.22.解:设两种笔记本各买x本、y本,根据题意,得解得答:两种笔记本各买30本,20本.23.解:(1)设甲型垃圾桶的单价每套为x元,乙型垃圾桶的单价每套为y元,根据题意,得解得答:甲型垃圾桶的单价每套为140元,乙型垃圾桶的单价每套为240元;(2)由题意,得140a+240b=2820整理得,7a+12b=141因为a、b都是整数,所以,或答:a的值为3或15.故答案为3或15.24.解:(1)设每套A型一体机的价格为x万元,每套B型一体机的价格为y万元.由题意可得:,解得:,答:每套A型一体机的价格是1.2万元,B型一体机的价格是1.8万元;(2)设该市还需要投入W万元,由题意得:W=1.2×(1+25%)m+1.8×(1100﹣m)=﹣0.3m+1980,∵﹣0.3<0,∴W随m的增大而减小.∵m≤600,∴当m=600时,W有最小值,W=﹣0.3×600+1980=1800,最小答:该市至少还需要投入1800万元.。
【中考数学】2020中考数学总复习-专题二 应用题

栏目索引
例2 (2019苏州)小明用15元买售价相同的软面笔记本,小丽用24元买售价相同 的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且 小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x元,根据题意可 列出的方程为 ( A )
A. 15 = 24
x x3
C. 15 = 24
A. 60 + 60 =12
4 x 4-x
B. 60 + 60 =9
4 x 4-x
C. x604 + x6-04 =12 D. x604 + x6-04 =9
栏目索引
栏目索引
解析 根据顺水航行速度=静水航行速度+水流速度,逆水航行速度=静水航行
速度-水流速度,由水流速度为每小时4千米,该货轮在静水中的速度为每小时x
x 3 x-3
B. 15 = 24
x x-3
D. 15 = 24
x-3 x
解析 设软面笔记本每本售价为x元,则硬面笔记本每本售价为(x+3)元,根据题
意可列出的方程为 15= 24 .故选A.
x x3
栏目索引
变式2-1 (2019长春)为建国70周年献礼,某灯具厂计划加工9 000套彩灯,为尽 快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务. 求该灯具厂原计划每天加工这种彩灯的数量. 解析 设该灯具厂原计划每天加工这种彩灯的数量为的宽应为x m, 根据题意,得(16-2x)(9-x)=112,解得x1=1,x2=16. ∵16>9,∴x=16不符合题意,舍去,∴x=1. 答:小路的宽应为1 m.
栏目索引
命题点二 列一元二次方程解决实际问题
2020中考数学复习-列方程解应用题(方程组)

列方程解应用题(方程组)1、(2020最新预测年潍坊市)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222y x y x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000y x y x 答案B .考点:二元一次方程组的应用.点评:弄清题意,找出相等关系是解决本题的关键.2、(2020最新预测•南宁)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )3、(2020最新预测年黄石)四川雅安地震期间,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的帐篷恰好(即不多不少)能容纳这60名灾民,则不同的搭建方案有A.4种B.11种C.6种D.9种答案:C解析:设建可容纳6的帐篷x个,建容纳4人的帐篷y个,则6x+4y=60(x,y均是非负整数)(1)x=0时,y=15;(2)x=2时,y=12;(3)x=4时,y=9;(4)x=6时,y=6;(5)x=8时,y=3;(6)x=10时,y=0所以,有6种方案。
4、(2020最新预测•内江)成渝路内江至成都段全长170千米,一辆小汽车和一辆客车同时从内江、成都两地相向开出,经过1小时10分钟相遇,小汽车比客车多行驶20千米.设小汽车和客车的平均速度为x千米/小时和y千米/小时,则下列方程组正确的是()5、(2020最新预测四川宜宾)2020最新预测年4月20日,我省芦山县发生7.0级强烈地震,造成大量的房屋损毁,急需大量帐篷.某企业接到任务,须在规定时间内生产一批帐篷.如果按原来的生产速度,每天生产120顶帐篷,那么在规定时间内只能完成任务的90%.为按时完成任务,该企业所有人员都支援到生产第一线,这样,每天能生产160顶帐篷,刚好提前一天完成任务.问规定时间是多少天?生产任务是多少顶帐篷?考点:二元一次方程组的应用.专题:应用题.分析:设规定时间为x天,生产任务是y顶帐篷,根据不提速在规定时间内只能完成任务的90%,即提速后刚好提前一天完成任务,可得出方程组,解出即可.解答:解:设规定时间为x天,生产任务是y顶帐篷,由题意得,,解得:.答:规定时间是6天,生产任务是800顶帐篷.点评:本题考查了二元一次方程组的应用,解答本题的关键是仔细审题,设出未知数,利用等量关系得出方程组,难度一般.6、(2020最新预测•宁夏)雅安地震后,灾区急需帐篷.某企业急灾区之所急,准备捐助甲、乙两种型号的帐篷共1500顶,其中甲种帐篷每顶安置6人,乙种帐篷每顶安置4人,共安置8000人.设该企业捐助甲种帐篷x顶、乙种帐篷y 顶,那么下面列出的方程组中正确的是()7、(2020最新预测•郴州)在一年一度的“安仁春分药王节”市场上,小明的妈妈用280元买了甲、乙两种药材.甲种药材每斤20元,乙种药材每斤60斤,且甲种药材比乙种药材多买了2斤.设买了甲种药材x 斤,乙种药材y 斤,你认为小明应该列出哪一个方程组求两种药材各买了多少斤?( )8、(2020最新预测台湾、13)以下表示小勋到商店购买2个单价相同的布丁和10根单价相同的棒棒糖的经过.根据上文,判断布丁和棒棒糖的单价相差多少元?() A.20 B.30 C.40 D.50考点:二元一次方程组的应用.分析:设布丁的单价为x元/个,棒棒糖y元一个,则2个布丁和12个棒棒糖的价格为200元建立方程为:2x+12y=200.2个布丁和10个棒棒糖的价格为180元建立方程为:2x+10y=180,将两个方程构成房出组求出其解即可.解答:解:设布丁的单价为x元/个,棒棒糖y元一个,由题意,得,解得:,∴布丁和棒棒糖的单价相差:40﹣10=30元.故选B.点评:本题考查列二元一次组接实际问题的运用,二院一次方程的解法的运用,解答时根据单价×数量=总价建立方程是解答本题的关键.9、(2020最新预测台湾、27)图(①)的等臂天平呈平衡状态,其中左侧秤盘有一袋石头,右侧秤盘有一袋石头和2个各10克的砝码.将左侧袋中一颗石头移至右侧秤盘,并拿走右侧秤盘的1个砝码后,天平仍呈平衡状态,如图(②)所示.求被移动石头的重量为多少克?()A.5 B.10 C.15 D.20考点:三元一次方程组的应用.分析:设左天平的一袋石头重x千克,右天平的一袋石头重y千克,被移动的石头重z千克,根据题意及图象可以得出方程x=y+20及x﹣z=y+z+10,由两个方程构成方程组求出其解即可.解答:解:设左天平的一袋石头重x千克,右天平的一袋石头重y千克,被移动的石头重z千克,由题意,得,解得:z=5.故选A.点评:本题考查了列三元一次方程组接实际问题的运用,三元一次方程组的解法的运用,解答时理解图象天平反应的意义找到等量关系是关键.10、(2020最新预测•绥化)某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有2 种租车方案.11、(2020最新预测年江西省)某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x 人,到瑞金的人数为y 人,请列出满足题意的方程组是 .【答案】⎩⎨⎧+==+12,34y x y x .【考点解剖】 本题考查的是列二元一次方程组解应用题(不要求求出方程组的解),准确找出数量之间的相等关系并能用代数式表示.【解题思路】 这里有两个等量关系:井冈山人数+瑞金人数=34,井冈山人数=瑞金人数×2+1.所以所列方程组为34,2 1.x y x y +=⎧⎨=+⎩. 【解答过程】 略.【方法规律】 抓住关键词,找出等量关系【关键词】 列二元一次方程组12、(2020最新预测•绍兴)我国古代数学名著《孙子算经》中有这样一题,今有鸡兔同笼,上有35头,下有94足,问鸡兔各几何?此题的答案是:鸡有23只,兔有12只,现在小敏将此题改编为:今有鸡兔同笼,上有33头,下有88足,问鸡兔各几何?则此时的答案是:鸡有 22 只,兔有 11 只.答:13、(2020最新预测鞍山)如图,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的,另一根露出水面的长度是它的.两根铁棒长度之和为220cm ,此时木桶中水的深度是 cm .考点:二元一次方程组的应用.分析:设较长铁棒的长度为xcm ,较短铁棒的长度为ycm .因为两根铁棒之和为220cm ,故可的方程:x+y=220,又知两棒未露出水面的长度相等,又可得方程x=y ,把两个方程联立,组成方程组,解方程组可得较长的铁棒的长度,用较长的铁棒的长度×可以求出木桶中水的深度.解答:解:设较长铁棒的长度为xcm,较短铁棒的长度为ycm.因为两根铁棒之和为220cm,故可列x+y=220,又知两棒未露出水面的长度相等,故可知x=y,据此可列:,解得:,因此木桶中水的深度为120×=80(cm).故答案为:80.点评:此题主要考查了二元一次方程组的应用,关键是弄清题意,找出合适的等量关系,列出方程组.14、(2020最新预测•苏州)苏州某旅行社组织甲乙两个旅游团分别到西安、北京旅行,已知这两旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人.问甲、乙两个旅游团个有多少人?答:15、(2020最新预测聊城)夏季来临,天气逐渐炎热起来,某商店将某种碳酸饮料每瓶的价格上调了10%,将某种果汁饮料每瓶的价格下调了5%,已知调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,问这两种饮料在调价前每瓶各多少元?考点:二元一次方程组的应用.分析:先设这两种饮料在调价前每瓶各x元、y元,根据调价前买这两种饮料个一瓶共花费7元,调价后买上述碳酸饮料3瓶和果汁饮料2瓶共花费17.5元,列出方程组,求出解即可.解答:解:设这两种饮料在调价前每瓶各x元、y元,根据题意得:,解得:.答:调价前这种碳酸饮料每瓶的价格为3元,这种果汁饮料每瓶的价格为4元.点评:此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的等量关系,列出方程再求解,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.16、(2020最新预测•湖州)为激励教师爱岗敬业,某市开展了“我最喜爱的老师”评选活动.某中学确定如下评选方案:有学生和教师代表对4名候选教师进行投票,每票选1名候选教师,每位候选教师得到的教师票数的5倍与学生票数的和作为该教师的总票数.以下是根据学生和教师代表投票结果绘制的统计表和条形统计图(不完整).学生投票结果统计表(1)若共有25位教师代表参加投票,则李老师得到的教师票数是多少?请补全条形统计图.(画在答案卷相对应的图上)(2)王老师与李老师得到的学生总票数是500,且王老师得到的学生票数是李老师得到的学生票数的3倍多20票,求王老师与李老师得到的学生票数分别是多少?(3)在(1)、(2)的条件下,若总得票数较高的2名教师推选到市参评,你认为推选到市里的是两位老师?为什么?\17、(2020最新预测•六盘水)为了抓住2020最新预测年凉都消夏文化节的商机,某商场决定购进甲,乙两种纪念品,若购进甲种纪念品1件,乙种纪念品2件,需要160元;购进甲种纪念品2件,乙种纪念品3件,需要280元.(1)购进甲乙两种纪念品每件各需要多少元?(2)该商场决定购进甲乙两种纪念品100件,并且考虑市场需求和资金周转,用于购买这些纪念品的资金不少于6000元,同时又不能超过6430元,则该商场共有几种进货方案?(3)若销售每件甲种纪念品可获利30元,每件乙种纪念品可获利12元,在第(2)问中的各种进货方案中,哪种方案获利最大?最大利润是多少元?18、(2020最新预测•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.19、(2020最新预测•莱芜)某学校将周三“阳光体育”项目定为跳绳活动,为此学校准备购置长、短两种跳绳若干.已知长跳绳的单价比短跳绳单价的两倍多4元,且购买2条长跳绳与购买5条短跳绳的费用相同.(1)两种跳绳的单价各是多少元?(2)若学校准备用不超过2000元的现金购买200条长、短跳绳,且短跳绳的条数不超过长跳绳的6倍,问学校有几种购买方案可供选择?20、(2020最新预测•雅安)甲、乙二人在一环形场地上从A 点同时同向匀速跑步,甲的速度是乙的2.5倍,4分钟两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.(列方程(组)求解)21、(2020最新预测•嘉兴)某镇水库的可用水量为12000立方米,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?22、(2020最新预测•温州)某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算△记入总分,根据猜测,求出甲的总分;(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?23、(2020最新预测•攀枝花)某文具店准备购进甲,乙两种铅笔,若购进甲种钢笔100支,乙种铅笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元.(1)求购进甲,乙两种钢笔每支各需多少元?(2)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲中钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种进货方案?(3)若该文具店销售每支甲种钢笔可获利润2元,销售每支乙种钢笔可获利润3元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?24、(2020最新预测•自贡)某校住校生宿舍有大小两种寝室若干间,据统计该校高一年级男生740人,使用了55间大寝室和50间小寝室,正好住满;女生730人,使用了大寝室50间和小寝室55间,也正好住满.(1)求该校的大小寝室每间各住多少人?(2)预测该校今年招收的高一新生中有不少于630名女生将入住寝室80间,问该校有多少种安排住宿的方案?25、(2020最新预测凉山州)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高cm,放入一个大球水面升高cm;(2)如果要使水面上升到50cm,应放入大球、小球各多少个?考点:二元一次方程组的应用;一元一次方程的应用.分析:(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可;(2)设应放入大球m个,小球n个,根据题意列一元二次方程组求解即可.解答:解:(1)设一个小球使水面升高x厘米,由图意,得3x=32﹣26,解得x=2;设一个大球使水面升高y厘米,由图意,得2y=32﹣26,解得:y=3.所以,放入一个小球水面升高2cm,放入一个大球水面升高3cm;(2)设应放入大球m个,小球n个.由题意,得解得:,答:如果要使水面上升到50cm,应放入大球4个,小球6个.点评:本题考查了列二元一次方程组和列一元一次方程解实际问题的运用,二元一次方程组及一元一次方程的解法的运用,解答时认真图画含义是解答本题的关键.26、(2020最新预测•曲靖)某种仪器由1种A部件和1个B部件配套构成.每个工人每天可以加工A部件1000个或者加工B部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A部件和B部件配套?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三节 方程组知识网络一、−−−−→−−−−→代入消元代入消元加减消元加减消元三元一次方程组二元一次方程组一元一次方程 二、−−−→−−−→©ªªª«消元降次一元二次方程二元二次方程组二元一次方程组 典型例题 一、选择题1.方程组712x y xy +=⎧⎨=⎩的一个解是( )A.25x y =⎧⎨=⎩ B.62x y =⎧⎨=⎩ C.43x y =⎧⎨=⎩ D.34x y =-⎧⎨=-⎩ 2.某校初三(2)班40名同学为“希望工程”捐款,共捐款100元.捐款情况如下表:捐款(元) 1 2 3 4 人 数6 7表格中捐款2元和3元的人数不小心被墨水污染已看不清楚.若设捐款2元的有x 名同学,捐款3元的有y 名同学,根据题意,可得方程组A 、272366x y x y +=⎧⎨+=⎩B 、2723100x y x y +=⎧⎨+=⎩C 、273266x y x y +=⎧⎨+=⎩D 、2732100x y x y +=⎧⎨+=⎩3.为了贫困家庭子女能完成初中学业,国家给他们免费提供教科书,下表是某中学免费提供教科书补助的部分情况:若设获得免费提供教科书补助的七年级为x 人,八年级为y 人,根据题意列出方程组为( ) A .4012010994190010095x y x y ++=⎧⎨++=⎩ B .1201099410095x y x y +=⎧⎨+=⎩ C .40109941900x y x y +=⎧⎨+=⎩D .1099440120190010095x y x y ++=⎧⎨++=⎩二、解答题1.已知等式 (2A -7B ) x +(3A -8B )=8x +10对一切实数x 都成立,求A 、B 的值.【解】 由题意有⎩⎨⎧=-=-.1083,872B A B A 解得:⎪⎪⎩⎪⎪⎨⎧-==.54,56B A即A 、B 的值分别为65、45- .2为满足市民对优质教育的需求某中学决定改变办学条件计划拆除一部分旧校舍、建造新校舍。
拆除旧校舍每平米需80元,建造新校舍每平米需700元。
计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除校舍则超过了10%,结果恰好完成了原计划的拆、除的总面积。
(1)求原计划拆建面积各多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?【解】设原计划拆除旧校舍x 平方米,新建校舍y 平方米,本世纪初题意得: (1)⎩⎨⎧=++=+7200%80%)101(7200y x y x 解得⎩⎨⎧==24004800y x(2)实际比原计划拆除与新建校舍节约资金是 (4800×80—2400×700)—〔4800×(1—10%)×80+2400×80%×700〕 =297600用此资金可绿化面积是297600÷200=1488(平方米) 答:原计划拆除旧戌舍4800平方米,新建校舍2400平方米,实际施工中节约的资金可绿化1488平方米3.十堰市东方食品厂2003年的利润(总产值-总支出)为200万元,2004年总产值比2003年增加了20%,总支出减少了10%。
2004年的利润为780万元。
问2003年总产值、总支出各是多少万元?【解】设2003年的总产值为x 万元,则2004年的总产值为(1+20%)x 万元,2003年的总支出为y 万元,则2004年的总支出为(1-10%)y 万元,则有:200(120%)(110%)780x y x y -=⎧⎨+--=⎩∴20001800x y =⎧⎨=⎩答:2003年的总产值为2000万元,总支出为1800万元4.解方程组⎩⎨⎧=-=+.82,7y x y x 【解】①+②,得 3x =15 ∴ x =15 把x =5代入①,得y =2∴⎩⎨⎧==25y x 是原方程组的解 5.某商场购进甲、乙两种服装后,都加价40%标价出售。
“春节”期间商场搞优惠促销,决定将甲、乙两种服装分别按标价的八折和九折出售。
某顾客购买甲、乙两种服装共付款182元,两种服装标价之和为210元,问这两种服装的进价和标价各是多少元?【解】设甲种服装的标价是x 元,则进价是x1.4元;乙种服装的标价是y 元,则进价是y1.4元。
依题意,得:⎩⎪⎨⎪⎧x +y =2100.8x +0.9y =182解之,得:⎩⎪⎨⎪⎧x =70y =140x 1.4=701.4=50(元),y 1.4=1401.4=100(元)6.解方程:113162=---x x 【解】解:6-3(x +1)=x 2-1 x 2+3x -4=0 x +4)(x -1)=0 x 1=-4,x 2=1经检验x=1是增根,应舍去∴原方程的解为x=-47.解方程组20328x y x y -=⎧⎨+=⎩【解】 21x y =⎧⎨=⎩8.解方程组:11233210x y x y +⎧-=⎪⎨⎪+=⎩ 【解】312x y =⎧⎪⎨=⎪⎩ 9.某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【解】设张强第一次购买香蕉x 千克,第二次购买香蕉y 千克.由题意,得 0<x<25.① 当0<x ≤20,y ≤40时,由题意,得⎩⎨⎧=⎩⎨⎧=+=+36142645650y x y x y x = 解得 ② 当0<x ≤20,y>40时,由题意,得⎩⎨⎧=⎩⎨⎧=+=+18232644650y x y x y x = 解得(不合题意,舍去). ③ 当20<x<25时,25<y<30.此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去)综合①②③可知,张强第一次购买香蕉14千克,第二次购买香蕉36千克.10.某家庭装饰厨房需用480块某品牌的同一种规格的瓷砖,装饰材料商场出售的这种瓷砖有大、小两种包装,大包装每包50片,价格为30元;小包装每包30片,价格为20元,若大、小包装均不拆开零售,那么怎样制定购买方案才能使所付费用最少?【解】根据题意,可有三种购买方案;方案一:只买大包装,则需买包数为:48048505=;由于不拆包零卖.所以需买10包.所付费用为30×10=300(元)方案二:只买小包装.则需买包数为:4801630=所以需买1 6包,所付费用为1 6×20=320(元) 方案三:既买大包装.又买小包装,并设买大包装x 包.小包装y 包.所需费用为W 元。
则50304803020x y W x +=⎧⎨=+⎩103203W x =-+ ∵050480x <<,且x 为正整数, ∴x =9时,最小W =290(元).∴购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少.为290元。
答:购买9包大包装瓷砖和l 包小包装瓷砖时,所付费用最少为290元。
11.用8块相同的长方形地砖拼成一块矩形地面,地砖的拼放方式及相关数据如图所示,求每块地砖的长与宽。
【解】设每块地砖的长为xcm ,宽为ycm 根据题意,得解这个方程组,得答:每块地砖的长为45cm,宽为15cm12. 夏季,为了节约用电,常对空调采取调高设定温度和清洗设备两种措施。
某宾馆先把甲、乙两种空调的设定温度都调高1℃,结果甲种空调比乙种空调每天多节电27度;再对乙种空调清洗设备,使得乙种空调每天的总节电量是只将温度调高1℃后的节电量的1.1倍,而甲种空调节电量不变,这样两种空调每天共节电405度。
求只将温度调高1℃后两种空调每天各节电多少度?【解】解法一:设只将温度调高1℃后,甲种空调每天节电x度,乙种空调每天节电y度依题意,得:解得:答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
解法二:设只将温度调高1℃后,乙种空调每天节电x 度则甲种空调每天节电度依题意,得:解得:答:只将温度调高1℃后,甲种空调每天节电207度,乙种空调每天节电180度。
13.解方程组:⎩⎪⎨⎪⎧x +y =93(x +y )+2x =33【解】⎩⎪⎨⎪⎧x +y =9………………①3(x +y )+2x =33……②把(x +y)=9代入②得3×9+2x =33 ∴x =3 把x =3代入①得y =6∴原方程组的解是⎩⎪⎨⎪⎧x =3y =614.某酒店客房部有三人间、双人间客房,收费数据如下表.为吸引游客,实行团体入住五折..优惠措施.一个50人的旅游团优惠期间到该酒店入住,住了一些三人普通间和双人普通间客房.若每间客房正好住满,且一天共花去住宿费1510元,则旅游团住了三人普通间和双人普通间客房各多少间? 【解】设三人普通房和双人普通房各住了x 、y 间,根据题意,得⎩⎨⎧=⨯+⨯=+15105.01405.0150,5023y x y x 解得⎩⎨⎧==.13,8y x答:三人间普通客房、双人间普通客房各住了8、13间.15.【05东营】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付出264元, 请问张强第一次、第二次分别购买香蕉多少千克?【解】设张强第一次购买香蕉x 千克,第二次购买香蕉y 千克,由题意可得0<x <25. 分则① 当0<x ≤20,y ≤40时,由题意可得⎩⎨⎧=+=+.26456,50y x y x 解得⎩⎨⎧==.36,14y x ② 当0<x ≤20,y >40时,由题意可得⎩⎨⎧=+=+.26446,50y x y x 解得⎩⎨⎧==.18,32y x (不合题意,舍去) ③ 当20<x <25时,则25<y <30.此时张强用去的款项为264250505)(555<=⨯=+=+y x y x (不合题意,舍去)由①②③可知张强第一次购买香蕉14千克,第二次购买香蕉36千克.16.解方程组:128x y x y -=⎧⎨+=⎩ 【解】⎩⎨⎧=+=-)2( 82)1(1ΛΛΛΛΛy x y x①+②得; 93=x 3=x把3=x 代人②得 2=y∴原方程组的解为⎩⎨⎧==23y x 17.【05黄石】被誉为城区风景线的杭州东路跨湖段1857米,其各项绿化指标如表中所示,分析下表,回答下列下列问题:(1)已知杭州东路全长4744米,在各树行距(两树之间的水平距离)不变的情况下,请你用统计方法估计全线栽植的香樟、棕榈各多少株(结果保留整数)?(2)杭州东路全线绿化工程是分期完成的,每千米的绿化投资成本一定。