代数推理题怎么解
代数推理题

代数推理题
摘要:
1.代数推理题的概述
2.代数推理题的解题技巧
3.代数推理题的实际应用
正文:
一、代数推理题的概述
代数推理题是一种数学题目,主要涉及到代数知识的应用。
在解决这类题目时,我们需要运用逻辑思维和数学知识,通过代数运算和推理,找到题目中未知数的值。
这类题目不仅可以提高我们的数学能力,还有助于培养我们的逻辑思维和解决问题的能力。
二、代数推理题的解题技巧
1.熟悉基本的代数运算法则,如加法、减法、乘法、除法等。
2.了解代数方程式的基本形式,如一元一次方程、一元二次方程等。
3.掌握解方程的方法,如消元法、代入法、公式法等。
4.学会利用代数运算规律和性质进行推理,如乘法分配律、结合律等。
5.注意题目中的约束条件,充分运用已知条件进行推理。
6.保持耐心和仔细,避免因粗心大意而产生的错误。
三、代数推理题的实际应用
代数推理题在实际生活中的应用非常广泛,如数学建模、计算机编程、经济学分析等。
掌握好代数推理题的解题技巧,有助于我们在实际问题中更好地运用数学知识,提高工作效率和解决问题的能力。
总之,代数推理题是一种重要的数学题目类型,掌握好它的解题技巧,不仅可以提高我们的数学能力,还有助于培养我们的逻辑思维和解决问题的能力。
代数推理题

代数推理题摘要:一、代数推理题的定义和作用1.代数推理题的定义2.代数推理题的作用二、代数推理题的解题方法1.分析题目,提取关键信息2.运用代数知识和方法3.验证答案,确保正确性三、代数推理题的实践应用1.实际问题中的代数推理题2.提高解决问题的能力和思维敏捷性四、总结1.代数推理题的重要性2.培养良好的逻辑思维习惯正文:代数推理题是一种以代数知识为基础,通过逻辑推理来解决问题的题目。
它主要考察学生对代数知识的掌握程度,以及运用代数方法分析问题和解决问题的能力。
代数推理题不仅可以帮助学生巩固课堂所学知识,还能提高他们的思维敏捷性和解决问题的能力。
要解答代数推理题,首先需要对题目进行仔细分析,提取关键信息。
这包括理解题意,找出已知条件,明确要求解的问题等。
在分析题目时,要确保不遗漏任何重要信息。
接下来,根据已知的条件和问题,运用代数知识和方法进行求解。
这可能包括列方程、解方程、配方、因式分解等代数操作。
在解题过程中,要注意步骤的清晰和正确性,避免出现错误。
当得出答案后,还需要验证答案的正确性。
这可以通过将答案代入原方程或条件中,检验是否满足要求。
如果答案正确,则完成解题过程;如果答案错误,需要返回分析阶段,找出错误的原因并进行修正。
代数推理题在实际问题中也有广泛应用,例如在物理、化学、生物等自然科学领域,以及在经济、社会、科技等方面的问题中,都需要通过代数推理来解决问题。
掌握代数推理题的解题方法,有助于提高我们解决实际问题的能力和思维敏捷性。
总之,代数推理题在数学学习和实际应用中都具有重要意义。
代数推理问题的思维方略

代数推理问题的思维方略
抽象代数是一种在研究特定数学模型和数学结构时使用的数学theory分析方法。
它专门用于推理各种实际的或抽象的情况,比如群、环、领域和各种数学关系。
抽象代数推理通常要求解决者考虑多个因素,通过建立模型分析每个因素的影响,然后从模型中派生出更加局部化的论证和结论。
思考启发式的抽象代数推理首先要求玩家关注这些因素之间的关系,通过掌握它们之间的差异来建立这种关系,仔细观察模型和它们之间的关系,有利于完成推理任务。
为了提高推理水平,完成抽象代数推理问题有以下简单步骤:
1. 分析问题:首先要仔细分析问题,了解所面临的问题是什么,省略任何概念关键点和前提条件,以便创造一个准确的抽象模型。
2. 建立模型:根据分析的结果建立一个抽象的模型,把模型中的每个因素划分到不同的子模型中,并仔细分析每个子模型,包括它们之间的关系和差异性。
3. 解决子问题:将模型中每个子问题用有效的方法解决,把每个解决的结果和模型的特性连接起来,就可以得出最后的结果。
4. 确认结果:最后,必须确认结果有效,可以通过再次分析来确认,或者可以使用数学技巧,如武力方程,库尔斯公式等,来确认结果的正确性。
抽象代数推理在数学解决方案和数学建模任务中扮演着重要角色,它可以帮助研究者以更高的效率和更强大的能力来解决各种复杂的数学问题。
所以,学习抽象代数推理的思想,不仅对于数学问题的解决大有裨益,也可以指导我们思考和解决实际问题。
二次函数代数推理综合问题解析

二次函数代数推理综合问题解析二次函数是一种常见的二次曲线,其一般形式为:y = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。
在代数推理的综合问题中,有一些与二次函数相关的问题需要解析。
下面将介绍几个常见的二次函数代数推理综合问题,并给出解析。
问题一:已知二次函数y = ax^2 + bx + c的顶点坐标为(2,3),且过点(-1,0),求该函数的表达式。
解析:由题可知,二次函数的顶点坐标为(2,3),则顶点坐标中的x坐标为2,代入函数表达式可以得到:3=a*2^2+b*2+c另外,已知过点(-1,0),把该点的坐标代入函数表达式可以得到:0=a*(-1)^2+b*(-1)+c将上述两个方程组成一个方程组:4a+2b+c=3----(1)a-b+c=0----(2)解决方程组(1)和(2),可以采用消元法或代入法:将公式(2)的c解出来得到c=-a+b,代入公式(1)可以得到:4a+2b+(-a+b)=3,整理得到3a+3b=3,整理为a+b=1由公式a+b=1可以得到a=1-b,代入公式(2)可以得到(1-b)-b+c=0,整理得到c=2b-1综上所述,函数表达式为:y = (1 - b)x^2 + bx + (2b - 1)。
问题二:已知二次函数y = ax^2 + bx + c的两个零点为-2和5,求该函数的表达式。
解析:已知二次函数的两个零点为-2和5,可得到两个方程:a*(-2)^2+b*(-2)+c=0a*5^2+b*5+c=0整理得到:4a-2b+c=0----(3)25a+5b+c=0----(4)解决方程组(3)和(4),可以采用消元法或代入法:将公式(3)的c解出来得到c=2b-4a,代入公式(4)可以得到:25a+5b+(2b-4a)=0,整理得到-21a+7b=0,整理为-3a+b=0。
由公式-3a+b=0可以得到b=3a,代入公式(3)可以得到4a-2(3a)+c=0,整理得到c=2a。
代数推理题

代数推理题1. 引言代数推理题是数学中一个重要的领域,它涉及到使用代数运算和逻辑推理来解决问题。
在本文中,我们将介绍代数推理题的基本概念、解题方法以及一些常见的例子。
2. 基本概念2.1 代数运算符在代数推理题中,我们经常使用一些基本的代数运算符,包括加法、减法、乘法和除法。
这些运算符可以用来处理数字和变量,并进行各种组合操作。
•加法:表示两个数或变量相加,用符号”+“表示。
•减法:表示两个数或变量相减,用符号”-“表示。
•乘法:表示两个数或变量相乘,用符号”*“表示。
•除法:表示两个数或变量相除,用符号”/“表示。
2.2 方程式在代数推理题中,方程式是非常重要的工具。
方程式是一个等式,它表达了两个表达式之间的平衡关系。
方程式通常包含未知变量,并且我们需要通过运算来求解这些未知变量。
例如,下面是一个简单的方程式:x + 3 = 7这个方程式表示了一个未知变量x加上3等于7的关系。
我们可以通过代数推理来解出x的值。
2.3 代数推理题的解题方法解决代数推理题的方法通常包括以下步骤:1.理解问题:首先,我们需要仔细阅读和理解给定的问题。
确定问题中涉及到的数学关系和要求。
2.设定未知变量:根据问题中给出的信息,我们可以设定一个或多个未知变量,并用字母表示。
3.建立方程式:根据问题中给出的条件,我们可以建立一个或多个方程式来描述数学关系。
4.解方程式:通过运用代数运算和逻辑推理,我们可以解方程式并求得未知变量的值。
5.验证答案:最后,我们需要验证所求得的答案是否满足原始问题中给出的条件。
3. 示例下面是几个代数推理题的示例,以帮助我们更好地理解这个概念。
3.1 示例一问题:已知两个数字之和为8,且其中一个数字是另一个数字的两倍。
求这两个数字分别是多少?解析: - 设第一个数字为x,则第二个数字为2x(其中一个数字是另一个数字的两倍)。
- 根据题目条件,我们可以建立方程式:x + 2x = 8。
- 解方程式得到3x = 8,进一步解得x = 8/3。
代数推理题

代数推理题
(最新版)
目录
1.代数推理题的概述
2.代数推理题的解题方法
3.代数推理题的实例解析
4.总结与建议
正文
一、代数推理题的概述
代数推理题是一种常见的数学题目,它涉及到代数知识的运用和逻辑推理能力的发挥。
在解决这类问题时,我们需要灵活运用代数知识,并结合逻辑推理,找到问题的解决方法。
二、代数推理题的解题方法
解决代数推理题,通常需要以下几个步骤:
1.仔细阅读题目,理解题意,提炼出问题的关键信息。
2.根据问题,建立代数模型,设出未知数,并列出方程或不等式。
3.对方程或不等式进行变形、化简,以便于进行下一步的推理。
4.运用逻辑推理,根据已知条件和代数模型,推导出问题的解答。
5.对解答进行检验,确保其符合题意,无误。
三、代数推理题的实例解析
举例:已知函数 f(x) = x^2 - 3x + 2,求证 f(x) 一定大于等于 1。
解:设 f(x) = x^2 - 3x + 2,我们需要证明 f(x) >= 1。
1.将 f(x) = x^2 - 3x + 2 与 1 进行比较,得到 x^2 - 3x + 1 >=
0。
2.对 x^2 - 3x + 1 进行因式分解,得到 (x - 1)(x - 2) >= 0。
3.根据两数相乘同号得正的原则,得到 x <= 1 或 x >= 2。
4.结合函数的定义域,我们可以得出结论:对于所有的 x,f(x) 都大于等于 1。
四、总结与建议
代数推理题是数学学习中的一个重要部分,它对提高我们的逻辑思维能力和代数运算能力有着重要的作用。
代数推理题

代数推理题
【原创实用版】
目录
1.代数推理题的概述
2.代数推理题的解题方法
3.代数推理题的实际应用
正文
一、代数推理题的概述
代数推理题是数学中的一种题型,它主要考察学生对代数知识的理解和运用能力。
在代数推理题中,通常会给出一些代数表达式或者代数方程,要求学生通过逻辑推理,分析出变量之间的关系,从而得出正确的结论。
这种题型不仅能够锻炼学生的逻辑思维能力,还能提高学生的数学素养。
二、代数推理题的解题方法
解代数推理题需要掌握一定的解题方法,这些方法包括:
1.代入法:将一个变量的值代入到另一个变量的表达式中,从而得出它们之间的关系。
2.消元法:通过加减消去一个变量,从而得出其他变量之间的关系。
3.变换法:对代数表达式进行变换,从而简化问题,得出变量之间的关系。
4.反证法:假设一个结论不成立,通过逻辑推理,得出矛盾,从而证明原结论的正确性。
三、代数推理题的实际应用
代数推理题在实际生活中也有广泛的应用,例如:
1.经济学中,通过代数推理可以分析出商品的价格、需求量和利润之
间的关系。
2.物理学中,通过代数推理可以推导出物体的运动轨迹和速度。
3.计算机科学中,通过代数推理可以推导出程序的运行结果。
代数推理题的经典类型与解法

4 x 1,已知 x [4,0] ,时恒有 f ( x) g ( x) ,求 a 的 3
1 1 1 1 2 log a (a 1) 对于大于 1 的正整数 n 恒成立,试确 n 1 n 2 2n 12 3
9 (b 0) 在区间[-b,1-b]上的最大值为 25,求 b 的值. 4
1 1 3 2 25 1 3 1 b, 即 b 时, f ( x) 的最大值为 4b +3=25. b 2 与 b 矛盾; 4 2 2 2 2 2 3 2 1 1 (2) 当 b, 即0 b 时, f ( x)在[b,1 b] 上递增, f ( b) (b ) 25; 2 2 2 (1) 当 b
(3) 求证:
六.采用反证法 例 6 对于函数 f ( x) ,若存在 x0 R, 使f ( x0 ) x0 成立,则称 x0为f ( x) 的不动点。如果函数
1 x2 a f ( x) (b, c N ) 有且只有两个不动点 0,2,且 f (2) , 2 bx c
(3) 当
1 3 15 5 1 b, 即b 时, f ( x)在[b,1 b] 上递增, f (1 b) b 2 96 25, 解得 b . 2 2 4 2
关于二次函数问题是历年高考的热门话题, 值得读者在复课时重点强化训练. 针对抛物线顶点横坐标
1 在不在区间[-b,1-b], 自然引出解题形态的三种情况, 这显示了分类讨论的数学思想在解题当中的充 2
ห้องสมุดไป่ตู้
八.解析几何中的推理证明 例 9 一动圆经过点 A(2,0),且在 y 轴上截得的弦长为 4. (1)求动圆圆心 P 的轨迹方程; (2)设 AO 的中点为 B(其中 O 为坐标原点),如果过点 B 的直线 l 与动圆圆心 P 的轨迹相交于不同 的两点 C、D,证明:以 CD 为直径的圆与一定直线相切. 例 10 如图,直角坐标系 xOy 中,一直角三角形 ABC,∠C=90° ,B、C 在 x 轴上且关于原点 O 对 称,D 在边 BC 上,BD=3DC,∆ABC 的周长为 12.若一双曲线 E 以 B、C 为 y 焦点,且经过 A、D 两点. A (1)求双曲线 E 的方程; (2)若一过点 P(m,0)(m 为非零常数)的直线 l 与双曲线 E 相交于不 → → 同于双曲线顶点的两点 M、N,且MP=λ PN ,问在 x 轴上是否存在定点 G,使 → → → x B OD C BC ⊥(GM-λGN)?若存在,求出所有这样定点 G 的坐标;若不存在,请说 明理由.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数推理题怎么解数学是“教会年轻人思考”的科学, 针对代数推理型问题, 我们不但要寻求它的解法是什么, 还要思考有没有其它的解法, 更要反思为什么要这样解, 不这样解行吗?我们通过典型的问题, 解析代数推理题的解题思路, 方法和技巧. 在解题思维的过程中, 既重视通性通法的演练, 又注意特殊技巧的作用, 同时将函数与方程, 数形结合, 分类与讨论, 等价与化归等数学思想方法贯穿于整个的解题训练过程当中.例1设函数134)(,4)(2+=--+=x x g x x a x f ,已知]0,4[-∈x ,时恒有)()(x g x f ≤,求a 的取值范围.讲解: 由得实施移项技巧,)()(x g x f ≤,134:,4:,134422a x y L x x y C a x x x -+=--=-+≤--令, 从而只要求直线L 不在半圆C 下方时, 直线L 的y 截距的最小值.当直线与半圆相切时,易求得35(5=-=a a 舍去). 故)()(,5x g x f a ≤-≤时.本例的求解在于,实施移项技巧 关键在于构造新的函数, 进而通过解几模型进行推理解题, 当中, 渗透着数形结合的数学思想方法, 显示了解题思维转换的灵活性和流畅性. 还须指出的是: 数形结合未必一定要画出图形, 但图形早已在你的心中了, 这也许是解题能力的提升, 还请三思而后行.例2 已知不等式32)1(log 121212111+-≥+++++a n n n a 对于大于1的正整数n 恒成立,试确定a 的取值范围.讲解: 构造函数nn n n f 212111)(+++++=,易证(请思考:用什么方法证明呢?))(n f 为增函数.∵n 是大于1的 正整数,.127)2()(=≥∴f n f 32)1(log 121212111+-≥+++++a n n n a 要使对一切大于1的正整数恒成立,必须12732)1(log 121≤+-a a ,即.2511,1)1(log +≤<-≤-a a a 解得这里的构造函数和例1属于同类型, 学习解题就应当在解题活动的过程中不断的逐类旁通, 举一反三, 总结一些解题的小结论. 针对恒成立的问题, 函数最值解法似乎是一种非常有效的同法, 请提炼你的小结论.例3 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b ,1-b]上的最大值为25,求b 的值.讲解: 由已知二次函数配方, 得 .34)21(3)(22+++-=b x x f2321,121)1(≤≤-≤-≤-b b b 即当时,)(x f 的最大值为4b 2+3=25. ;23214252矛盾与≤≤=∴b b ]1,[)(,210,21)2(b b x f b b --<<-<-在时即当上递增, ;25)23()(2<+=-∴b b f]1,[)(23,121)3(b b x f b b -->->-在时,即当上递增, ∴25,2541596)1(2==-+=-b b b f 解得.关于二次函数问题是历年高考的热门话题, 值得读者在复课时重点强化训练. 针对抛物线顶点横坐标21在不在区间[-b ,1-b], 自然引出解题形态的三种情况, 这显示了分类讨论的数学思想在解题当中的充分运用. 该分就分, 该合就合, 这种辨证的统一完全依具体的数学问题而定, 需要在解题时灵活把握.例4已知).1(1)(-≠+=x x xx f )()1(x f 求的单调区间;(2)若.43)()(:,)(1,0>+-=>>c f a f b b a c b a 求证讲解: (1) 对 已 知 函 数 进 行 降 次 分 项 变 形 , 得 111)(+-=x x f , .),1()1,()(上分别单调递增和在区间+∞---∞∴x f(2)首先证明任意).()()(,0y f x f y x f y x +<+>>有事实上,)(1111)()(y x xy f y x xy y x xy y x xy y x xy xy y y x xy f x f ++=+++++>++++++=+++=+而 ()),()1(,y x f y x xy f y x y x xy +>+++>++知由)()()(y x f y f x f +>+∴,04)2(1)(122>=+-≥-=a b b a b b a c.34222≥++≥+∴aa a c a43)3()()()(=≥+>+∴f c a f c f a f .函 数 与 不 等 式 证 明 的 综 合 题 在 高 考 中 常 考 常 新 , 是 既 考 知 识 又 考 能 力 的 好 题型 , 在 高 考 备 考 中 有 较 高 的 训 练 价 值.. 针对本例的求解, 你能够想到证明任意).()()(,0y f x f y x f y x +<+>>有采用逆向分析法, 给出你的想法!例5 已知函数f (x )=aa a xx +(a>0,a≠1).(1) 证明函数f (x )的图象关于点P (21,21)对称. (2) 令a n =)1()(n f n f a -,对一切自然数n ,先猜想使a n >n2成立的最小自然数a ,并证明之.(3) 求证:n n n n )(!(lg 3lg )1(41>+∈N). 讲解: (1)关于函数的图象关于定点P 对称, 可采用解几中的坐标证法. 设M (x ,y )是f (x )图象上任一点,则M 关于P (21,21)的对称点为M ’(1-x,1-y),yx f aa aa a a y a a a a a a a aa a xxxxxx x -=-∴+=+-=-+=⋅+=+--1)1(1111∴M′(1-x ,1-y )亦在f (x )的图象上, 故函数f (x )的图象关于点P (21,21)对称. (2)将f (n )、f (1-n )的表达式代入a n 的表达式,化简可得a n =an猜a =3,即3n>n2.下面用数学归纳法证明.设n =k (k ≥2)时,3k>k2.那么n =k +1,3k+1>3·3k>3k2又3k 2-(k+1)2=2(k-21)2-23≥0(k≥2,k∈N)∴3n>n2.(3)∵3k>k2∴klg3>2lgk令k =1,2,…,n ,得n 个同向不等式,并相加得:).!lg(3lg )1(4),21lg(23lg 2)1(n n n n n n >-⨯>+故函数与数列综合型问题在高考中频频出现,是历年高考试题中的一道亮丽的风景线.针对本例,你能够猜想出最小自然数a=3吗? 试试你的数学猜想能力.例6 已知二次函数)0,,(1)(2>∈++=a R b a bx ax x f ,设方程x x f =)(的两个实根为x 1和x 2.(1)如果4221<<<x x ,若函数)(x f 的对称轴为x =x 0,求证:x 0>-1; (2)如果2||,2||121=-<x x x ,求b 的取值范围.讲解:(1)设01)1()()(2>+-+=-=a x b ax x x f x g 且,由4221<<<x x 得0)4(,0)2(><g g 且, 即,81,221443.221443034160124>-<--<<-∴⎩⎨⎧>-+<-+a a a a b a b a b a 得由 aa b a 4112832->->-∴, 故18141120-=⋅->-=ab x ; (2)由,01,01)1()(212>==+-+=ax x x b ax x g 可知21,x x ∴同号. ①若0124)2(,22,2,2012121<-+=∴>+=∴=-<<b a g x x x x x 则.又0(1)1(1244)1(||222212>+-=+=--=-a b a a a b x x 得,负根舍去)代入上式得b b 231)1(22-<+-,解得41<b ;②若,0)2(,22,02121<-∴-<+-=<<-g x x x 则 即4a -2b+3<0.同理可求得47>b . 故当.47,02,41,2011><<-<<<b x b x 时当时对你而言, 本例解题思维的障碍点在哪里, 找找看, 如何排除? 下一次遇到同类问题,你会很顺利的克服吗? 我们力求做到学一题会一类, 不断提高逻辑推理能力.例7 对于函数)(x f ,若存在000)(,x x f R x =∈使成立,则称)(0x f x 为的不动点。
如果函数),()(2N c b cbx ax x f ∈-+=有且只有两个不动点0,2,且,21)2(-<-f(1)求函数)(x f 的解析式;(2)已知各项不为零的数列1)1(4}{=⋅nn n a f S a 满足,求数列通项n a ;(3)如果数列}{n a 满足)(,411n n a f a a ==+,求证:当2≥n 时,恒有3<n a 成立.讲解: 依题意有x cbx ax =-+2,化简为 ,0)1(2=++-a cx x b 由违达定理, 得 ⎪⎪⎩⎪⎪⎨⎧-=⋅--=+,102,102b a bc解得 ,210⎪⎩⎪⎨⎧+==c b a 代入表达式c x c x x f -+=)21()(2,由,2112)2(-<+-=-c f 得 x x f b c N b N c c ===∈∈<)(,1,0,,,3则若又不止有两个不动点,).1(,)1(2)(,2,22≠-===∴x x x x f b c 故(2)由题设得,2:1)11(2)1(422n n n nn n a a S a a S -==-⋅得 (*) 且21112:1,1----=-≠n n n n a a S n n a 得代以 (**)由(*)与(**)两式相减得:,0)1)((),()(2112121=+-+---=----n n n n n n n n n a a a a a a a a a 即,2:(*)1,1211111a a a n a a a a n n n n -==-=--=∴--得代入以或解得01=a (舍去)或11-=a ,由11-=a ,若,121=-=-a a a n n 得这与1≠n a 矛盾,11-=-∴-n n a a ,即{}n a 是以-1为首项,-1为公差的等差数列,n a n -=∴;(3)采用反证法,假设),2(3≥≥n a n 则由(1)知22)(21-==+n nn n a a a f a ),2(,143)211(21)111(21)1(211N n n a a a a a a a n n n n n n n ∈≥<<=+<-+⋅=-=∴++即,有 21a a a n n <<<- ,而当,3;338281622,21212<∴<=-=-==n a a a a n 时这与假设矛盾,故假设不成立,3<∴n a .关于本例的第(3)题,我们还可给出直接证法,事实上: 由2121)211(21,22)(21211≤+--=-==+++n n n n n n n a a a a a a f a 得得1+n a <0或.21≥+n a ,30,011<<<++n n a a 则若结论成立; 若1+n a 2≥,此时,2≥n 从而,0)1(2)2(1≤---=-+n n n n n a a a a a 即数列{n a }在2≥n 时单调递减,由3222=a ,可知2,33222≥<=≤n a a n 在上成立. 比较上述两种证法,你能找出其中的异同吗? 数学解题后需要进行必要的反思, 学会反思才能长进.例8 设a ,b 为常数,F x b x a x f x f M };sin cos )(|)({+==:把平面上任意一点(a ,b )映射为函数.sin cos x b x a +(1)证明:不存在两个不同点对应于同一个函数;(2)证明:当M t x f x f M x f ∈+=∈)()(,)(010时,这里t 为常数;(3)对于属于M 的一个固定值)(0x f ,得}),({01R t t x f M ∈+=,在映射F 的作用下,M 1作为象,求其原象,并说明它是什么图象. 讲解: (1)假设有两个不同的点(a ,b ),(c ,d )对应同一函数,即x b x a b a F sin cos ),(+=与x d x c d c F sin cos ),(+=相同,即 x d x c x b x a sin cos sin cos +=+对一切实数x 均成立.特别令x =0,得a =c ;令2π=x ,得b=d 这与(a ,b ),(c ,d )是两个不同点矛盾,假设不成立.故不存在两个不同点对应同函数.(2)当M x f ∈)(0时,可得常数a 0,b 0,使)()(,sin cos )(01000t x f x f x b x a x f +=+==,sin )sin cos (cos )sin cos ()sin()cos(000000x t a t b x t b t a t x b t x a -++=+++ 由于t b a ,,00为常数,设n m n t a t b m t b t a ,,sin cos ,sin cos 0000则=-=+是常数. 从而M x n x m x f ∈+=sin cos )(1.(3)设M x f ∈)(0,由此得,sin cos ,sin cos )(000t b t a m x n x m t x f +=+=+其中 ,sin cos 00t a t b n -=在映射F 之下,)(0t x f +的原象是(m ,n ),则M 1的原象是 },sin cos ,sin cos |),{(0000R t t a t b n t b t a m n m ∈-=+=.消去t 得22022b a n m +=+,即在映射F 之下,M 1的原象}|),{(202022b a n m n m +=+是以原点为圆心,2020b a +为半径的圆.本题将集合, 映射, 函数综合为一体, 其典型性和新颖性兼顾, 是一道用“活题考死知识”的好题目, 具有很强的训练价值. 例9 已知函数f (t )满足对任意实数x 、y 都有f (x +y )=f (x )+f (y)+x y+1,且f (-2)=-2.(1)求f (1)的值;(2)证明:对一切大于1的正整数t ,恒有f (t)>t ; (3)试求满足f (t)=t 的整数t 的个数,并说明理由.讲解 (1)为求f(1)的值,需令.1)0(,0-===f y x 得 令2)1(,2)2(,1-=-∴-=--==f f y x . 令1)1(),1()1()0(,1,1=-+=∴-==f f f f y x 即.(2)令2)()1(2)()1(,1+=-+++=+∴=y y f y f y y f y f x 即(※)0)()1(,>-+∈∴y f y f N y 有时当.由0)(,1)1(),()1(>=>+y f y f y f y f 都有对一切正整数可知, 111)(2)()1(,+>+++=++=+∈∴y y y f y y f y f N y 时当,于是对于一切大于1的正整数t ,恒有f (t )>t.(3)由※及(1)可知1)4(,1)3(=--=-f f .下面证明当整数t t f t >-≤)(,4时.由,02)2(,4>≥+-∴-≤t t (※)得,0)2()1()(>+-=+-t t f t f即,0)5()6(,0)4()5(>--->---f f f f 同理……,.0)1()(,0)2()1(>+->+-+t f t f t f t f将诸不等式相加得t t f t f t f >∴-≤∴->=->)(,4,41)4()(.综上,满足条件的整数只有t=1,2-.本题的求解显示了对函数方程f (x +y )=f (x )+f (y)+x y+1中的x 、y 取特殊值的技巧,这种赋值法在2002年全国高考第(21)题中得到了很好的考查.例10 已知函数f (x )在(-1,1)上有定义,1)21(-=f 且满足x 、y ∈(-1,1) 有)1()()(xyyx f y f x f ++=+.(1)证明:f (x )在(-1,1)上为奇函数; (2)对数列,12,21211nn n x x x x +==+求)(n x f ; (3)求证.252)(1)(1)(121++->+++n n x f x f x f n 讲解 (1)令,0==y x 则0)0(),0()0(2=∴=f f f令,x y -=则)()(,0)0()()(x f x f f x f x f -=-∴==-+ 为奇函数.(2)1)21()(1-==f x f , ),(2)()()1()12()(21n n n n n n n n n n x f x f x f x x x x f x x f x f =+=⋅++=+=+)}({.2)()(1nn n x f x f x f 即=∴+是以-1为首项,2为公比的等比数列..2)(1--=∴n n x f(3))2121211()(1)(1)(11221-++++-=+++n n x f x f x f,2212)212(2121111->+-=--=---=--n n n 而 ,2212)212(252-<+--=++-=++-n n n n.252)(1)(1)(121++->+++∴n n x f x f x f n本例将函数、方程、数列、不等式等代数知识集于一题,是考查分析问题和解决问题能力的范例. 在求解当中,化归出等比(等差)数列是数列问题常用的解题方法.。