浙江省嘉兴市高三上学期数学第二次月考试卷

合集下载

2021-2022学年浙江省嘉兴市平湖城关中学高三数学理月考试卷含解析

2021-2022学年浙江省嘉兴市平湖城关中学高三数学理月考试卷含解析

2021-2022学年浙江省嘉兴市平湖城关中学高三数学理月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 下列函数中,既是偶函数又在区间(0,+)上单调递减的是(A)y= -ln|x| (B)y=x3 (C)y=2|x|(D)y=cosx-(参考答案:A略2. 设点P()满足不等式组,则的最大值和最小值分别为()A B C D参考答案:A略3. 函数的图象大致是参考答案:D4. 己知集合,则= ( )A. {0,1,2} B.[0,2] [C.{0,2} D.(0,2)参考答案:A5. 函数的单调递减区间是()A. B. C. D.参考答案:【知识点】导数法求函数的单调区间.B12【答案解析】A 解析:函数的定义域为,由得:,所以函数的单调递减区间是,故选A.【思路点拨】先求定义域,然后求导函数小于零的解集.6. 已知集合A={x|0<x<3},B={x|(x+2)(x﹣1)>0},则A∩B等于()A.(0,3)B.(1,3)C.(2,3)D.(﹣∞,﹣2)∪(0,+∞)参考答案:B【考点】交集及其运算.【分析】化简集合B,根据交集的定义写出A∩B.【解答】解:集合A={x|0<x<3},B={x|(x+2)(x﹣1)>0}={x|x<﹣2或x>1},所以A∩B={x|1<x<3}=(1,3).故选:B.【点评】本题考查了集合的化简与运算问题,是基础题目.7. 已知集合,,若,则a,b之间的关系是()A. B. C. D.参考答案:C【分析】先设出复数z,利用复数相等的定义得到集合A看成复平面上直线上的点,集合B可看成复平面上圆的点集,若A∩B=?即直线与圆没有交点,借助直线与圆相离的定义建立不等关系即可.【详解】设z=x+yi,,则(a+bi)(x﹣yi)+(a﹣bi)(x+yi)+2=0化简整理得,ax+by+1=0即,集合A可看成复平面上直线上的点,集合B可看成复平面上圆x2+y2=1的点集,若A∩B=?,即直线ax+by+1=0与圆x2+y2=1没有交点,,即a2+b2<1故选:C.【点睛】本题考查了复数相等的定义及几何意义,考查了直线与圆的位置关系,考查了转化思想,属于中档题.8. 设α、β是两个不重合的平面,m、n是两条不重合的直线,则以下结论错误的是()A.若α∥β,m?α,则m∥βB.若m∥α,m∥β,α∩β=n,则m∥nC.若m?α,n?α,m∥β,n∥β,则α∥βD.若m∥α,m⊥β,则α⊥β参考答案:C【考点】空间中直线与平面之间的位置关系.【分析】若α∥β,m?α,根据面面平行的性质,可得m∥β;若m∥α,m∥β,α∩β=n,根据线面平行的性质,可得m∥n;若“m?α,n?α,m∥β,n∥β,且m∩n=O”,则“α∥β”成立,但条件中缺少了“m∩n=O”,故结论“α∥β”不一定成立;若m∥α,经过m的平面与α相交于a,则可得m中m∥a,由于m⊥β,所以a⊥β,根据面面垂直的判定定理,可得α⊥β.【解答】解:若α∥β,m?α,根据面面平行的性质,可得m∥β,故A正确;若m∥α,m∥β,α∩β=n,根据线面平行的性质,可得m∥n,故B正确;若“m?α,n?α,m∥β,n∥β,且m∩n=O”,则“α∥β”成立,但条件中缺少了“m∩n=O”,故结论“α∥β”不一定成立,得C错误;若m∥α,经过m的平面与α相交于a,则可得m中m∥a,由于m⊥β,所以a⊥β,根据面面垂直的判定定理,可得α⊥β,故D正确.故选:C.9. 若直线截得的弦最短,则直线的方程是()A. B.C. D.参考答案:D略10. 设集合,,则A∩B等于()A.(0,4)B. (4,9)C. (-1,4)D. (-1,9)参考答案:A【分析】利用一元二次不等式的解法化简集合,再化简集合,由交集的定义求解即可.【详解】中不等式变形得,解得,所以,由中不等式解得,所以,则,故选A .【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合.二、填空题:本大题共7小题,每小题4分,共28分11. 已知,·=-2,则与的夹角为.参考答案:12. 设全集U={1,2,3,4,5},若集合A={3,4,5},则__________.参考答案:{1,2}【分析】利用补集定义直接求解即可.【详解】∵全集,集合,∴,故答案为.【点睛】本题考查补集的求法,是基础题,解题时要认真审题,注意补集定义的合理运用.13. 若是一个非空集合,是一个以的某些子集为元素的集合,且满足:①、;②对于的任意子集、,当且时,有;③对于的任意子集、,当且时,有;则称是集合的一个“—集合类”.例如:是集合的一个“—集合类”。

2021年高三上学期第二次月考数学试题含答案

2021年高三上学期第二次月考数学试题含答案

2021年高三上学期第二次月考数学试题含答案一、选择题:1.复数()A.4﹣2i B.﹣4+2i C.2+4i D.2﹣4i2.若集合A={1,m2},B={3,4},则“m=2”是“A∩B={4}”的()A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件3.已知平面向量,满足•(+)=3,且||=2,||=1,则向量与的夹角为()A.B.C.D.4.设等差数列{a n}的前n项和为S n,若a2=﹣11,a5+a9=﹣2,则当S n取最小值时,n等于()A.9 B.8 C.7 D.65.已知抛物线y2=8x与双曲线﹣y2=1的一个交点为M,F为抛物线的焦点,若|MF|=5,则该双曲线的渐近线方程为()A.5x±3y=0 B.3x±5y=0 C.4x±5y=0 D.5x±4y=06.定义=a1a4﹣a2a3,若f(x)=,则f(x)的图象向右平移个单位得到的函数解析式为()A.y=2sin(x﹣)B.y=2sin(x+)C.y=2cosx D.y=2sinx7.关于两条不同的直线m、n与两个不同的平面α、β,下列命题正确的是()A.m∥α,n∥β且α∥β,则m∥n B.m⊥α,n⊥β且α⊥β,则m∥nC.m⊥α,n∥β且α∥β,则m⊥n D.m∥α,n⊥β且α⊥β,则m∥n8.函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为()A.n(n∈Z)B.2n(n∈Z)C.2n或(n∈Z)D.n或(n∈Z)9.已知O是坐标原点,点A(﹣2,1),若点M(x,y)为平面区域上的一个动点,则的取值范围是()A.[0,1]B.[0,2]C.[﹣1,0] D.[﹣1,2]10.若函数f(x)满足f(x)+1=,当x∈[0,1]时,f(x)=x,若在区间(﹣1,1]上,方程f(x)﹣mx﹣2m=0有两个实数解,则实数m的取值范围是()A.0<m≤B.0<m<C.<m≤l D.<m<1二、填空题:11.已知f(x)=,定义f1(x)=f′(x),f2(x)=[f1(x)]′,…,f n+1(x)=[f n(x)]′,n∈N*.经计算f1(x)=,f2(x)=,f3(x)=,…,照此规律,则f n(x)=.12.如图是一个算法的流程图.若输入x的值为2,则输出y的值是.13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为的扇形,则该几何体的体积为.14.已知P是直线3x+4y﹣10=0上的动点,PA,PB是圆x2+y2﹣2x+4y+4=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为.15.设全集U={1,2,3,4,5,6},用U的子集可表示由0,1组成的6位字符串,如:{2,4}表示的是第2个字符是1,第4个字符为1,其它均为0的6位字符串010100,并规定空集表示为000000.若A={1,3},集合A∪B表示的字符串为101001,则满足条件的集合B的个数为.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.汽车是碳排放量比较大的行业之一,某地规定,从xx年开始,将对二氧化碳排放量超过130g/km的轻型汽车进行惩罚性征税.检测单位对甲、乙两品牌轻型汽车各抽取5辆进行二氧化碳排放量检测,记录如表(单位:g/km).甲80 110 120 140 150乙100 120 x 100 160经测算得乙品牌轻型汽车二氧化碳排放量的平均值为=120g/km.2016-12-27 高三数学(复读全) 1双考(1)求表中x的值,并比较甲、乙两品牌轻型汽车二氧化碳排放量的稳定性;(2)从被检测的5辆甲品牌轻型汽车中任取2辆,则至少有一辆二氧化碳排放量超过130g/km 的概率是多少?17.已知函数f(x)=2sinxcosx+2cos2x﹣,x∈R.(Ⅰ)求函数y=f(﹣3x)+1的最小正周期和单调递减区间;(Ⅱ)已知△ABC中的三个内角A,B,C所对的边分别为a,b,c,若锐角A满足f(﹣)=,且a=7,sinB+sinC=,求△ABC的面积.18.已知四棱锥A﹣BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F 为AD的中点.(Ⅰ)求证:EF∥面ABC;(Ⅱ)求证:平面ADE⊥平面ACD;(Ⅲ)求四棱锥A﹣BCDE的体积.19.已知数列{a n}前n项和S n满足:2S n+a n=1(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=,数列{b n}的前n项和为T n,求证:T n<.20.已知函数f(x)=2(a+1)lnx﹣ax,g(x)=﹣x(1)若函数f(x)在定义域内为单调函数,求实数a的取值范围;(2)证明:若﹣1<a<7,则对于任意x1,x2∈(1,+∞),x1≠x2,有>﹣1.21.在平面直角坐标系中,椭圆:的离心率为,右焦点. (1)求椭圆的方程;(2)点在椭圆上,且在第一象限内,直线与圆:相切于点,且,求点的纵坐标的值.立人中学第二次月考试题数学试题参考答案一、选择题:1~5 B A C C A 6~10 D C C D A二、填空题:11.;12.﹣2;13.2π;14.2;15.4.15【解答】解:若A={1,3},集合A∪B表示的字符串为101001,∴集合B可能是{6},{1,6},{3,6},{1,3,6},故答案为:4.三、解答题:16.【解答】解:(1)由==120得,x=120;==120;S2甲= [(80﹣120)2+(110-120)2+(120-120)2+(140-120)2+(150-120)2]=600;S2乙= [(100﹣120)2+(120-120)2+(120-120)2+(100-120)2+(160-120)2]=480;因为S2甲>S2乙;故乙品牌轻型汽车二氧化碳排放量的稳定性更好;(2)从被检测的5辆甲品牌轻型汽车中任取2辆,共有=10种情况,至少有一辆二氧化碳排放量超过130g/km的情况有×+1=7种,故至少有一辆二氧化碳排放量超过130g/km的概率是.17.【解答】(本小题满分12分)解:(Ⅰ)∵=…∴,∴y=f(﹣3x)+1的最小正周期为…由得:,k∈Z,∴y=f(﹣3x)+1的单调递减区间是,k∈Z…(Ⅱ)∵,∴,∴…∵,∴.由正弦定理得:,即,∴b+c=13…由余弦定理a2=b2+c2﹣2bccosA得:a2=(b+c)2﹣2bc﹣2bccosA,即49=169﹣3bc,∴bc=40 (1)∴…18.【解答】证明:(Ⅰ)取AC中点G,连接FG、BG,∵F,G分别是AD,AC的中点∴FG∥CD,且FG=DC=1.∵BE∥CD∴FG与BE平行且相等∴EF∥BG.EF⊄面ABC,BG⊂面ABC∴EF∥面ABC…(Ⅱ)∵△ABC 为等边三角形∴BG ⊥AC又∵DC ⊥面ABC ,BG ⊂面ABC ∴DC ⊥BG∴BG 垂直于面ADC 的两条相交直线AC ,DC ,∴BG ⊥面ADC . …∵EF ∥BG∴EF ⊥面ADC∵EF ⊂面ADE ,∴面ADE ⊥面ADC . …解:(Ⅲ)方法一:连接EC ,该四棱锥分为两个三棱锥E ﹣ABC 和E ﹣ADC ..…方法二:取BC 的中点为O ,连接AO ,则AO ⊥BC ,又CD ⊥平面ABC , ∴CD ⊥AO ,BC ∩CD=C ,∴AO ⊥平面BCDE ,∴AO 为V A ﹣BCDE 的高,,∴.19.【解答】(I )解:∵2S n +a n =1,∴当n ≥2时,2S n ﹣1+a n ﹣1=1,∴2a n +a n ﹣a n ﹣1=0,化为.当n=1时,2a 1+a 1=1,∴a 1=.∴数列{a n }是等比数列,首项与公比都为.∴.(II )证明:b n ====,∴数列{b n }的前n 项和为T n =++…+=. ∴T n <.20.【解答】解:(1)函数f (x )=2(a +1)lnx ﹣ax 的定义域是(0,+∞), ∴=,∵函数f (x )在定义域内为单调函数,∴f ′(x )≥0或f ′(x )≤0在(0,+∞)上恒成立,则﹣ax +2(a +1)≥0或﹣ax +2(a +1)≤0在(0,+∞)上恒成立, ①当a=0时,则有2≥0恒成立,函数f (x )在(0,+∞)上为增函数; ②当a >0时,函数y=﹣ax +2(a +1)在(0,+∞)上为减函数,∴只要2(a +1)≤0,即a ≤﹣1时满足f ′(x )≤0成立,此时a 无解; ③当a <0时,函数y=﹣ax +2(a +1)在(0,+∞)上为增函数,∴只要2(a +1)≥0,即a ≥﹣1时满足f ′(x )≥0成立,此时﹣1≤a <0; 综上可得,实数a 的取值范围是[﹣1,0];证明:(2)g (x )=﹣x=在(1,+∞)单调递增,∵x 1,x 2∈(1,+∞),不妨设x 1>x 2,∴g (x 1)>g (x 2),∴等价于f (x 1)﹣f (x 2)>﹣g (x 1)+g (x 2),则f (x 1)+g (x 1)>f (x 2)+g (x 2),设h (x )=f (x )+g (x )=2(a +1)lnx ﹣(a +1)x +,则h ′(x )==,2016-12-27 高三数学(复读全) 2双 考∵﹣1<a <7,∴a +1>0,∴2=2,当且仅当时取等号,∴h ′(x )≥2﹣(a +1)=,∵﹣1<a <7,∴>0,即h ′(x )>0,∴h (x )在(1,+∞)上单调递增,满足f (x 1)+g (x 1)>f (x 2)+g (x 2), 即若﹣1<a <7,则对于任意x 1,x 2∈(1,+∞),x 1≠x 2,有>﹣1成立.21.解:(1)∴,,∴,∴椭圆方程为.(2)①当轴时,,,由,解得.②当不垂直于轴时,设,方程为,即, ∵与圆相切,∴,∴,∴,又,所以由,得,∴2202222200(33)123(1)(1)(3)334x k k x k x k +==+++---, ∴.综上:.%Sg31436 7ACC 竌40450 9E02 鸂23930 5D7A 嵺31351 7A77 穷 @ hG36878 900E 逎H22228 56D4 囔。

嘉兴市第二中学2018-2019学年上学期高三数学10月月考试题

嘉兴市第二中学2018-2019学年上学期高三数学10月月考试题

嘉兴市第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,则=()A.B.C.D.±2.已知f(x)=x3﹣3x+m,在区间[0,2]上任取三个数a,b,c,均存在以f(a),f(b),f(c)为边长的三角形,则m的取值范围是()A.m>2B.m>4C.m>6D.m>83.某几何体的三视图如图所示,该几何体的体积是()A.B.C.D.101014.二进制数化为十进制数的结果为())(215213341A.B.C.D.5.如图框内的输出结果是()A.2401B.2500C.2601D.27046.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x的值是()A .2B .C .D .37. 在空间中,下列命题正确的是()A .如果直线m ∥平面α,直线n ⊂α内,那么m ∥nB .如果平面α内的两条直线都平行于平面β,那么平面α∥平面βC .如果平面α外的一条直线m 垂直于平面α内的两条相交直线,那么m ⊥αD .如果平面α⊥平面β,任取直线m ⊂α,那么必有m ⊥β8. 直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”的逆命题、否命题、逆否命题中真命题的个数为( )A .0B .1C .2D .39. 若当时,函数(且)始终满足,则函数的图象大致是R x ∈||)(x a x f =0>a 1≠a 1)(≥x f 3||log x x y a =()【命题意图】本题考查了利用函数的基本性质来判断图象,对识图能力及逻辑推理能力有较高要求,难度中等.10.两个随机变量x ,y 的取值表为x0134y2.24.34.86.7若x ,y 具有线性相关关系,且=bx +2.6,则下列四个结论错误的是()y ^A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.6511.下列哪组中的两个函数是相等函数( )A .B .()()4f x x =g ()()24=,22x f x g x x x -=-+C .D .()()1,01,1,0x f x g x x >⎧==⎨<⎩()()=f x x x =,g 12.已知函数,其中,为自然对数的底数.当时,函数()e sin xf x x =x ∈R e 2.71828= [0,]2x π∈()y f x =的图象不在直线的下方,则实数的取值范围()y kx =k A . B . C . D .(,1)-∞(,1]-∞2(,e )π-∞2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.二、填空题13.直线与抛物线交于,两点,且与轴负半轴相交,若为坐标原点,则20x y t +-=216y x =A B x O 面积的最大值为.OAB ∆【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.14.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元.15.在直角坐标系xOy 中,已知点A (0,1)和点B (﹣3,4),若点C 在∠AOB 的平分线上且||=2,则= .16.在下列给出的命题中,所有正确命题的序号为 . ①函数y=2x 3+3x ﹣1的图象关于点(0,1)成中心对称;②对∀x ,y ∈R .若x+y ≠0,则x ≠1或y ≠﹣1;③若实数x ,y 满足x 2+y 2=1,则的最大值为;④若△ABC 为锐角三角形,则sinA <cosB .⑤在△ABC 中,BC=5,G ,O 分别为△ABC 的重心和外心,且•=5,则△ABC 的形状是直角三角形.17.已知a=(cosx ﹣sinx )dx ,则二项式(x 2﹣)6展开式中的常数项是 .三、解答题18.(本小题满分12分)如图所示,已知平面,平面,为等边⊥AB ACD ⊥DE ACD ACD ∆三角形,,为的中点.AB DE AD 2==F CD (1)求证:平面;//AF BCE (2)平面平面.⊥BCE CDE19.在等比数列{a n }中,a 3=﹣12,前3项和S 3=﹣9,求公比q .20.(本小题满分12分)中央电视台电视公开课《开讲了》需要现场观众,先邀请甲、乙、丙、丁四所大学的40名学生参加,各大学邀请的学生如下表所示:大学甲乙丙丁人数812812从这40名学生中按分层抽样的方式抽取10名学生在第一排发言席就座.(1)求各大学抽取的人数;(2)从(1)中抽取的乙大学和丁大学的学生中随机选出2名学生发言,求这2名学生来自同一所大学的概率.21.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离不小于该正方形边长的概率为()ABCD22.已知椭圆:的长轴长为,为坐标原点.(Ⅰ)求椭圆C的方程和离心率;(Ⅱ)设动直线与y轴相交于点,点关于直线的对称点在椭圆上,求的最小值.23.(本小题满分10分)选修4-4:坐标系与参数方程:在直角坐标系中,以原点为极点,轴的正半轴为极轴,以相同的长度单位建立极坐标系.已知直线的极坐x l 标方程为,曲线的极坐标方程为.cos sin 2ρθρθ-=C 2sin 2cos (0)p p ρθθ=>(1)设为参数,若,求直线的参数方程;t 2x =-+l (2)已知直线与曲线交于,设,且,求实数的值.l C ,P Q (2,4)M --2||||||PQ MP MQ =⋅p嘉兴市第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】D【解析】解:△ABC中,A(﹣5,0),B(5,0),点C在双曲线上,∴A与B为双曲线的两焦点,根据双曲线的定义得:|AC﹣BC|=2a=8,|AB|=2c=10,则==±=±.故选:D.【点评】本题考查了正弦定理的应用问题,也考查了双曲线的定义与简单性质的应用问题,是基础题目.2.【答案】C【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)∵函数的定义域为[0,2]∴函数在(0,1)上f′(x)<0,(1,2)上f′(x)>0,∴函数f(x)在区间(0,1)单调递减,在区间(1,2)单调递增,则f(x)min=f(1)=m﹣2,f(x)max=f(2)=m+2,f(0)=m由题意知,f(1)=m﹣2>0 ①;f(1)+f(1)>f(2),即﹣4+2m>2+m②由①②得到m>6为所求.故选C【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值3.【答案】A【解析】解:几何体如图所示,则V=,故选:A .【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键. 4. 【答案】B 【解析】试题分析:,故选B.()21212121101010242=⨯+⨯+⨯=考点:进位制5. 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500,故选:B .【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题. 6. 【答案】C解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.则体积为=,解得x=.故选:C .7. 【答案】 C【解析】解:对于A ,直线m ∥平面α,直线n ⊂α内,则m 与n 可能平行,可能异面,故不正确;对于B ,如果平面α内的两条相交直线都平行于平面β,那么平面α∥平面β,故不正确;对于C ,根据线面垂直的判定定理可得正确;对于D ,如果平面α⊥平面β,任取直线m ⊂α,那么可能m ⊥β,也可能m 和β斜交,;故选:C .【点评】本题主要考查命题的真假判断与应用,考查了空间中直线与平面之间的位置关系、平面与平面之间的位置关系,同时考查了推理能力,属于中档题. 8. 【答案】B【解析】解:∵直线l ⊂平面α,直线m ⊄平面α,命题p :“若直线m ⊥α,则m ⊥l ”,∴命题P 是真命题,∴命题P 的逆否命题是真命题;¬P :“若直线m 不垂直于α,则m 不垂直于l ”,∵¬P 是假命题,∴命题p 的逆命题和否命题都是假命题.故选:B . 9. 【答案】C【解析】由始终满足可知.由函数是奇函数,排除;当时,||)(x a x f =1)(≥x f 1>a 3||log x x y a =B )1,0(∈x ,此时,排除;当时,,排除,因此选.0||log <x a 0||log 3<=xx y a A +∞→x 0→y D C 10.【答案】【解析】选D.由数据表知A 是正确的,其样本中心为(2,4.5),代入=bx +2.6得b =0.95,即=0.95x +y ^ y ^2.6,当=8.3时,则有8.3=0.95x +2.6,∴x =6,∴B 正确.根据性质,随机误差的均值为0,∴C 正确.样y ^e 本点(3,4.8)的残差=4.8-(0.95×3+2.6)=-0.65,∴D 错误,故选D.e ^11.【答案】D111]【解析】考点:相等函数的概念.12.【答案】B【解析】由题意设,且在时恒成立,而()()e sin xg x f x kx x kx =-=-()0g x ≥[0,]2x π∈.令,则,所以在上递'()e (sin cos )x g x x x k =+-()e (sin cos )x h x x x =+'()2e cos 0x h x x =≥()h x [0,]2π增,所以.当时,,在上递增,,符合题意;当21()h x e π≤≤1k ≤'()0g x ≥()g x [0,]2π()(0)0g x g ≥=时,,在上递减,,与题意不合;当时,为一2e k π≥'()0g x ≤()g x [0,]2π()(0)0g x g ≤=21e k π<<()g x '个递增函数,而,,由零点存在性定理,必存在一个零点,使得'(0)10g k =-<2'(e 02g k ππ=->0x ,当时,,从而在上单调递减,从而,与题0'()0g x =0[0,)x x ∈'()0g x ≤()g x 0[0,)x x ∈()(0)0g x g ≤=意不合,综上所述:的取值范围为,故选B .k (,1]-∞二、填空题13.【解析】14.【答案】2300【解析】111]试题分析:根据题意设租赁甲设备,乙设备,则⎪⎪⎩⎪⎪⎨⎧≥+≥+≥≥14020y 10x 506y 5x 0y 0x ,求目标函数300y 200x Z +=的最小值.作出可行域如图所示,从图中可以看出,直线在可行域上移动时,当直线的截距最小时,取最小值2300.1111]考点:简单线性规划.【方法点晴】本题是一道关于求实际问题中的最值的题目,可以采用线性规划的知识进行求解;细查题意,设甲种设备需要生产天,乙种设备需要生产y 天,该公司所需租赁费为Z 元,则y x Z 300200+=,接下来列出满足条件的约束条件,结合目标函数,然后利用线性规划的应用,求出最优解,即可得出租赁费的最小值.15.【答案】 (﹣,) .【解析】解:∵,,设OC 与AB 交于D (x ,y )点则:AD :BD=1:5即D 分有向线段AB 所成的比为则解得:∴又∵||=2∴=(﹣,)故答案为:(﹣,)【点评】如果已知,有向线段A(x1,y1),B(x2,y2).及点C分线段AB所成的比,求分点C的坐标,可将A,B两点的坐标代入定比分点坐标公式:坐标公式进行求解.16.【答案】:①②③【解析】解:对于①函数y=2x3﹣3x+1=的图象关于点(0,1)成中心对称,假设点(x0,y0)在函数图象上,则其关于①点(0,1)的对称点为(﹣x0,2﹣y0)也满足函数的解析式,则①正确;对于②对∀x,y∈R,若x+y≠0,对应的是直线y=﹣x以外的点,则x≠1,或y≠﹣1,②正确;对于③若实数x,y满足x2+y2=1,则=,可以看作是圆x2+y2=1上的点与点(﹣2,0)连线的斜率,其最大值为,③正确;对于④若△ABC为锐角三角形,则A,B,π﹣A﹣B都是锐角,即π﹣A﹣B<,即A+B>,B>﹣A,则cosB<cos(﹣A),即cosB<sinA,故④不正确.对于⑤在△ABC中,G,O分别为△ABC的重心和外心,取BC的中点为D,连接AD、OD、GD,如图:则OD⊥BC,GD=AD,∵=|,由则,即则又BC=5则有由余弦定理可得cosC <0,即有C 为钝角.则三角形ABC 为钝角三角形;⑤不正确.故答案为:①②③17.【答案】 240 .【解析】解:a=(cosx ﹣sinx )dx=(sinx+cosx )=﹣1﹣1=﹣2,则二项式(x 2﹣)6=(x 2+)6展开始的通项公式为T r+1=•2r •x 12﹣3r ,令12﹣3r=0,求得r=4,可得二项式(x 2﹣)6展开式中的常数项是•24=240,故答案为:240.【点评】本题主要考查求定积分,二项展开式的通项公式,二项式系数的性质,属于基础题. 三、解答题18.【答案】(1)证明见解析;(2)证明见解析.【解析】试题分析:(1)推导出,,从而平面,连接,则三点BC AC ⊥1CC AC ⊥⊥AC 11B BCC 11,NA CA N A B ,,1共线,推导出,由线面垂直的判定定理得平面;(2)连接交于MN CN BA CN ⊥⊥,1⊥CN BNM 1AC 1CA 点,推导出,,则是二面角的平面角.由此能求出二面角H 1BA AH ⊥1BA HQ ⊥AQH ∠C BA A --1的余弦值.1B BN C --试题解析:(1)如图,取的中点,连接. ∵为的中点,∴且.CE G BG FG ,F CD DE GF //DE GF 21=∵平面,平面, ∴, ∴.⊥AB ACD ⊥DE ACD DE AB //AB GF //又,∴. ∴四边形为平行四边形,则. (4分)DE AB 21=AB GF =GFAB BG AF //∵平面,平面, ∴平面 (6分)⊄AF BCE ⊂BG BCE //AF BCE考点:直线与平面平行和垂直的判定.19.【答案】【解析】解:由已知可得方程组,第二式除以第一式得=,整理可得q 2+4q+4=0,解得q=﹣2. 20.【答案】(1)甲,乙,丙,丁;(2).25P =【解析】试题分析:(1)从这名学生中按照分层抽样的方式抽取名学生,则各大学人数分别为甲,乙,丙,丁;4010(2)利用列举出从参加问卷调查的名学生中随机抽取两名学生的方法共有种,这来自同一所大学的取4015法共有种,再利用古典慨型的概率计算公式即可得出.试题解析:(1)从这40名学生中按照分层抽样的方式抽取10名学生,则各大学人数分别为甲2,乙3,丙2,丁3.(2)设乙中3人为,丁中3人为,从这6名学生中随机选出2名学生发言的结果为123,,a a a 123,,b b b ,,,,,,,,,,12{,}a a 13{,}a a 11{,}a b 12{,}a b 13{,}a b 32{,}a a 12{,}b a 22{,}b a 32{,}b a 31{,}a b ,,,,,共15种,32{,}a b 33{,}a b 12{,}b b 13{,}b b 23{,}b b 这2名同学来自同一所大学的结果共6种,所以所求概率为.62155P ==考点:1、分层抽样方法的应用;2、古典概型概率公式.21.【答案】C【解析】22.【答案】【解析】【知识点】圆锥曲线综合椭圆【试题解析】(Ⅰ)因为椭圆C:,所以,,故,解得,所以椭圆的方程为.因为,所以离心率.(Ⅱ)由题意,直线的斜率存在,设点,则线段的中点的坐标为,且直线的斜率,由点关于直线的对称点为,得直线,故直线的斜率为,且过点,所以直线的方程为:,令,得,则,由,得,化简,得.所以.当且仅当,即时等号成立.所以的最小值为.23.【答案】【解析】【命题意图】本题主要考查抛物线极坐标方程、直线的极坐标方程与参数方程的互化、直线参数方程的几何意义的应用,意在考查逻辑思维能力、等价转化的能力、运算求解能力,以及方程思想、转化思想的应用.。

浙江省嘉兴市数学高三上学期文数9月月考试卷

浙江省嘉兴市数学高三上学期文数9月月考试卷

浙江省嘉兴市数学高三上学期文数9月月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2016高一上·宁波期中) 已知A={(x,y)|x+y=1},B={(x,y)|x﹣y=5},则A∩B=()A . {3,﹣2}B . {x=3,y=﹣2}C . {(3,﹣2)}D . (3,﹣2)2. (2分)(2020·江西模拟) 若复数满足,则()A .B .C .D .3. (2分) (2020高一上·苏州期末) 已知,则 a,b,c 的大小关系为()A . c < a < bB . b < a < cC . c<b<aD . b<c<a4. (2分)已知命题:抛物线的准线方程为;命题:平面内两条直线的斜率相等是两条直线平行的充分不必要条件;则下列命题是真命题的是()A .B .C .D .5. (2分)一个不透明的口袋中装有形状相同的红球、黄球和蓝球,若摸出一球为红球的概率为,黄球的概率为,袋中红球有4个,则袋中蓝球的个数为().A . 5个B . 11个C . 4个D . 9个6. (2分)某科研所共有职工20人,其年龄统计表如下:由于电脑故障,有两个数字在表格中不能显示出来,则下列说法正确的是()年龄3839404142人数532A . 年龄数据的中位数是40,众数是38B . 年龄数据的中位数和众数一定相等C . 年龄数据的平均数∈(39,40)D . 年龄数据的平均数一定大于中位数7. (2分) (2016高二上·福州期中) 设等差数列{an}的前n项和为Sn ,且S15>0,S16<0,则中最大的是()A .B .C .D .8. (2分)已知sinα+cosα=,则sin2(﹣α)=()A .B .C .D .9. (2分)三棱锥P-ABC的四个顶点都在体积为的球的表面上,平面ABC所在的小圆面积为,则该三棱锥的高的最大值是()A . 7B . 7.5C . 8D . 910. (2分)在△ABC中,(a2+b2)sin(A﹣B)=(a2﹣b2)sin(A+B),其中a、b、c是内角A、B、C的对边,则△ABC的性状为()A . 等腰三角形B . 直角三角形C . 正三角形D . 等腰或直角三角形11. (2分)(2018·永州模拟) 三棱锥的所有棱长都相等,别是棱的中点,则异面直线与所成角的余弦值为()A .B .C .D .12. (2分)已知函数,若存在使得函数的值域是,则实数的取值范围是()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2017高三上·辽宁期中) 如图,函数的图象在点P处的切线方程是,则________.14. (1分)(2017·福州模拟) 已知向量,则 =________.15. (1分)(2018·河北模拟) 已知双曲线:,曲线:,是平面内一点,若存在过点的直线与,都有公共点,则称点为“差型点”.下面有4个结论:①曲线的焦点为“差型点”;②曲线与有公共点;③直线与曲线有公共点,则;④原点不是“差型点”.其中正确结论的个数是________.16. (1分)设函数y=sinx(0≤x≤π)的图象为曲线C,动点A(x,y)在曲线C上,过A且平行于x轴的直线交曲线C于点B(A、B可以重合),设线段AB的长为f(x),则函数f(x)单调递增区间________三、解答题 (共7题;共70分)17. (10分)已知数列{an}满足a1=1,an+1= ,(n∈N*)(1)证明数列是等差数列,并求出通项an.(2)若<a1•a2+a2•a3+a3•a4+…+an﹣1•an<,求n的值.18. (10分)已知直角三角形ABC,其中∠ABC=60°,∠C=90°,AB=2,求△ABC绕斜边AB旋转一周所形成的几何体的表面积和体积.19. (10分)已知函数f(x)=|x+a|﹣|x+3|,a∈R.(Ⅰ)当a=-1时,解不等式f(x)≤1;(Ⅱ)若x∈[0,3]时,f(x)≤4恒成立,求实数a的取值范围.20. (10分) (2017高一下·平顶山期末) 某工厂为了对新研发的一种产品进行合理定价,随机抽取了6个试销售数据,得到第i个销售单价xi(单位:元)与销售yi(单位:件)的数据资料,算得(1)求回归直线方程;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入﹣成本)附:回归直线方程中, = , = ﹣,其中,是样本平均值.21. (10分) (2019高二上·德惠期中) 设A , B分别为双曲线 (a>0,b>0)的左、右顶点,双曲线的实轴长为4 ,焦点到渐近线的距离为 .(1)求双曲线的方程;(2)已知直线y= x-2与双曲线的右支交于M,N两点,且在双曲线的右支上存在点D,使,求t的值及点D的坐标.22. (10分) (2017高二下·彭州期中) 在直角坐标系xOy中,直线l的参数方程为(t为参数),以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρ=2 sinθ.(Ⅰ)写出⊙C的直角坐标方程;(Ⅱ)P为直线l上一动点,当P到圆心C的距离最小时,求P的直角坐标.23. (10分)(2017·沈阳模拟) 已知a>0,b>0,c>0,函数f(x)=|x+a|﹣|x﹣b|+c的最大值为10.(1)求a+b+c的值;(2)求(a﹣1)2+(b﹣2)2+(c﹣3)2的最小值,并求出此时a、b、c的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题 (共7题;共70分) 17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、。

浙江省嘉兴一中届高三第二次月考数学(文)试卷

浙江省嘉兴一中届高三第二次月考数学(文)试卷

浙江省嘉兴一中2015届高三第二次月考数学(文)试卷一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{1,0,1}M =-,{}0,1,2N =,则MN =A.{}1,0,1-B.{}1,0,1,2- C .{}1,0,2- D .{}0,12.已知∈b a ,R ,条件p :“b a >”,条件q:“122->b a ”,则p 是q 的 ( ) A.充分不必要条件 B.必要不充分条件 C .充分必要条件 D .既不充分也不必要条件3.已知某四棱锥的三视图(单位:cm )如图所示,则该四棱锥的体积是 ( )A .383cm ﻩB.33cm ﻩ ﻩC.343cm D.33cm 4.设,,l m n 表示三条不同的直线,,αβ表示两个不同的平面,则下列说法正确的是 ( ) A .若l ∥m ,m α⊂,则l ∥α;B.若,,,l m l n m n α⊥⊥⊂,则l α⊥;C.若l ∥α,l ∥β,m αβ=,则l ∥m ;D.若,,l m l m αβ⊂⊂⊥,则αβ⊥.5. 已知向量(,3),(1,4),(2,1)a k b c ===,且()23a b c -⊥,则实数k=( )9.2A B.0 C .3 D.1526. 已知函数()sin 3(0)f x x x ωωω=>的图象与x 轴的两个相邻交点的距离等于2π,若将函数()y f x =的图象向左平移6π个单位得到函数()y g x =的图象,则()y g x =是减函数的区间为 ( ) A.(,0)3π-B.(,)44ππ-C .(0,)3πD .(,)43ππ7. 若函数()(01)x xf x ka a a a -=->≠且在(-∞,+∞)上既是奇函数又是增函数,则函数()log ()a g x x k =+的图象是( )41 1 31正视图 俯视图8. 设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足01<+n n S S 的正整数n 的值为( )A.13 B.12 C.11 D. 109.已知O 为原点,双曲线2221x y a-=上有一点P ,过P 作两条渐近线的平行线,且与两渐近线的交点分别为,A B ,平行四边形OBPA 的面积为1,则双曲线的离心率为( )A.2 B.3 C.52D.23310.已知正方体1111ABCD A B C D -,过顶点1A 作平面α,使得直线AC 和1BC 与平面α所成的角都为30,这样的平面α可以有 ( )A .1个 B.2个 C.3个 D.4个 二、填空题(本大题共7小题,每小题4分,共28分)11.数()()()()12312xe xf x f x x ⎧≥⎪=⎨⎪+<⎩,则()ln3f =________. 12. 设x 、y满足约束条件02321x y x y x y -≥⎧⎪+≤⎨⎪-≤⎩,则z =x+4y 的最大值为 .13 .已知33cos sin 65⎛⎫-+= ⎪⎝⎭παα,则7sin 6⎛⎫+= ⎪⎝⎭πα . 14.某地区居民生活用电分为高峰和低谷两个时间段进行分时计价.该地区的电网销售电价表如 下:高峰时间段用电价格表 低谷时间段用电价格表 高峰月用电量 (单位:千瓦时) 高峰电价 (单位:元/千瓦时)低谷月用电量 (单位:千瓦时) 低谷电价 (单位:元/千瓦时)50及以下的部分 0.568 50及以下的部分 0.288 超过50至200的部分0.598 超过50至200的部分 0.318超过200的部分 0.668 超过200的部分 0.388则按这种计费方式该家庭本月应付的电费为 元(用数字作答).15. 在△AB C中,B (10,0),直线BC 与圆Γ:x 2+(y -5)2=25相切,切点为线段B C的中点.若△ABC 的重心恰好为圆Γ的圆心,则点A 的坐标为 .16.已知()[]()⎪⎩⎪⎨⎧-∈-+∈=0,1,1111,0,x x x x x f ,若在区间(]1,1-内,()()g x f x mx m =--有两个零点,则实数m的取值范围是 .17. 若正实数,x y 满足244x y xy ++=,且不等式2(2)22340x y a a xy +++-≥恒成立,则实数a 的取值范围是 .三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.在ABC △中,内角,,A B C 对边的边长分别是,,a b c .已知2,3c C π==.(Ⅰ)若ABC △的面积等于3,试判断ABC △的形状,并说明理由; (Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.19.如图,矩形ABCD 中,AB=2BC =4,E 为边A B的中点,将△ADE沿直线DE 翻折成△A 1DE (1)设M 为线段A1C 的中点,求证: BM// 平面A 1D E;(2)当平面A 1D E⊥平面BC D时,求直线CD与平面A 1C E所成角的正弦值.20.等差数列{}n a 的各项均为正数,13a =,前n 项和为n S ,{}n b 为等比数列, 12b =,且2232,b S = 33120b S =. (1)求n a 与n b ;(2)求数列{}n n a b 的前n 项和n T 。

2023年4月浙江省嘉兴市高三二模数学试题+答案解析(附后)

2023年4月浙江省嘉兴市高三二模数学试题+答案解析(附后)

2023年4月浙江省嘉兴市高三教学测试数学试题(嘉兴二模)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.已知集合,,则( )A. B. C. D.2.的展开式中的系数为( )A. B. 240 C. D. 7203.已知是公差不为0的等差数列,,若,,成等比数列,则( )A. 2023B. 2024C. 4046D. 40484.相传早在公元前3世纪,古希腊天文学家厄拉多塞内斯就首次测出了地球半径.厄拉多塞内斯选择在夏至这一天利用同一子午线经线的两个城市赛伊城和亚历山大城进行观测,当太阳光直射塞伊城某水井S时,亚历山大城某处A的太阳光线与地面成角,又知某商队旅行时测得A与S的距离即劣弧AS 的长为5000古希腊里,若圆周率取,则可估计地球半径约为( )A. 35000古希腊里B. 40000古希腊里C. 45000古希腊里D. 50000古希腊里5.已知正九边形,从,,,中任取两个向量,则它们的数量积是正数的概率为( )A. B. C. D.6.已知正方体的棱长为2,P为空间内一点且满足平面,过作与AP 平行的平面,与交于点Q,则( )A. 1B.C.D.7.已知,,,则( )A. B. C. D.8.设函数的定义域为R ,其导函数为,若,,则下列结论不一定正确的是( )A. B.C.D.二、多选题:本题共4小题,共20分。

在每小题给出的选项中,有多项符合题目要求。

全部选对的得5分,部分选对的得2分,有选错的得0分。

9.已知函数,则( )A. 若的最小正周期为,则B. 若,则在上的最大值为C. 若在上单调递增,则D. 若的图象向右平移个单位,得到的函数为偶函数,则的最小值为10.已知一组样本数据,,,,现有一组新的数据,,,,,则与原样本数据相比,新的样本数据( )A. 平均数不变B. 中位数不变C. 极差变小D. 方差变小11.已知抛物线及一点非坐标原点,过点P 作直线与抛物线交于,两点,则( )A.若,则B. 若,则C.D.12.已知菱形ABCD 的边长为2,,将沿对角线BD 翻折,得到三棱锥,则在翻折过程中,下列说法正确的是( )A. 存在某个位置,使得B. 直线BC 与平面PBD 所成角的最大值为C. 当二面角为时,三棱锥的外接球的表面积为D. 当时,分别以P ,B ,C ,D 为球心,2为半径作球,这四个球的公共部分称为勒洛四面体,则该勒洛四面体的内切球的半径为三、填空题:本题共4小题,每小题5分,共20分。

浙江省嘉兴市高三数学理科二模测试卷 人教版

浙江省嘉兴市高三数学理科二模测试卷 人教版本测试共三大题,有试题卷和答题卷.试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷一.选择题(本大题共10小题,每题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}2,1,0{=A ,},2{A a a x x B ∈==,则=B A(A )}2,1,0{ (B )}2,0{ (C )}0{ (D )}2,1{ 2.复数z 满足i z i +=-2)1(,(i 为虚数单位),则z 在复平面上对应的点在 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 3.过点)2,1(P 且方向向量为)1,2(-=a 的直线方程是 (A )042=-+y x (B )02=-y x(C )052=-+y x(D )032=+-y x4.在二项式nxx )2(-的展开式中,若第六项为常数项,则n 的值是 (A )15(B )16 (C )17 (D )185.已知不等式213<--x ax 的解集为}31{<<x x ,则实数a 的值是 (A )0(B )1 (C )3 (D )56.双曲线12422=-y x 的右焦点到它的渐近线的距离是(A )2 (B )2 (C )22 (D )47.已知△ABC 的三边c b a ,,成等差数列,则B ∠的取值范围是 (A )]3,6[ππ (B )]3,0(π (C )]3,4[ππ (D )]2,3[ππ 8.设b a ,表示两直线,βα,表示两平面,则下列命题正确的是(A )a ∥b b ,∥α,则a ∥α (B )βαα⊥⊥,a ,则a ∥β (C )α⊥⊥b b a ,,则a ∥α (D )a ∥b b ,α⊥,则α⊥a 9.已知函数)21(x f +是偶函数,则)(x f y =图象的一条对称轴是 (A )1=x(B )21=x (C )2=x (D )21-=x10.数组),,(321a a a ,其中321,,a a a }10|*{≤∈∈x N x ,且321a a a ≤≤,如(1,1,1),(1, 1, 2),(1,1, 3),……(1,1,10),(1,2,2)……,这样的数组共有 (A )1000个 (B )550个 (C )220个 (D )175个第Ⅱ卷二.填空题(本大题共7小题,每题4分,共28分) 11.函数)2(log 22x x y -=单调递增区间是 ▲ .12.点P 是圆C :04222=+-+y x y x 上的任一点,则点P 到直线01643=+-y x 的距离的最小值为 ▲ .13.在球的内接长方体''''D C B A ABCD -中,已知4,3'===BC AA AB ,则球的表面积是 ▲ .14.有3道“四选一”选择题,每题4分.某考生对其中2道题能各排除2个选项,随后他随机猜答,则该考生做这3道题的得分的数学期望是 ▲ .15.已知b a x b a x f -++=2)2()(,)0(≥a ,且当]1,0[∈x 时恒有1)(≤x f ,则)1(-f 的最大值为 ▲ .16.已知312lim 21=-++→x bx ax x ,则=-b a ▲ .17.已知x x f 2sin )(=,定义n 次导数:)]'([)()1(x f x f =,)]'([)()()1(x f x f n n =+,(*N n ∈). 则)4()4()4()2008()2()1(πππf f f +++ = ▲ . 三.解答题(本大题共5小题,前4题每题14分,第22题16分,共72分) 18.已知向量)1,1(),sin ,(cos ==b a αα,b a f ⋅=)(α, (1)若31)(=αf ,求α2sin 的值; (2)当]2,0[πα∈时,求函数)(αf y =的值域.19.已知函数12)(2--=mx x x f ,定义域为]1,1[-(1)当2=m 时,求)(x f 的最大值; (2)当)(x f 的最大值为4时,求m 的值.20.已知ABCD 是正方形,直线AE ⊥平面ABCD ,且1==AE AB ,(1)求异面直线AC 、DE 所成的角; (2)求二面角D CE A --的大小; (3)设P 为棱DE 的中点,在△ABE 的内部或边上是否存在一点H ,使PH ⊥平面ACE ?若存在求出点H 的位置,若不存在说明理由.21.如图,设F 是椭圆)0(,12222>>=+b a by ax 的左焦点,直线l 为对应的准线,直线l 与x 轴交于P 点,MN 为椭圆的长轴,已知MF PM 2=8=.(1)求椭圆的标准方程;(2)过点P 作直线与椭圆交于A 、B 两点,求三角形△ABF 面积的最大值.DC22.已知数列}{n a 的前n 项和为n S ,且对于任意的*N n ∈,恒有n a S n n -=2,设)1(log 2+=n n a b ,(1)求证数列}1{+n a 是等比数列;(2)求数列}{n a ,}{n b 的通项公式n a 和n b ;(3)设12+⋅=n n b n a a c n ,判定数列}{n c 的单调性,并证明3421<+++n c c c .[参考答案]注意:本细则主要为“答案不对时如何给分”服务,而不要过分强调“因不完整而扣分”。

2019年浙江省嘉兴市嘉高实验中学高三数学文月考试卷含解析

2019年浙江省嘉兴市嘉高实验中学高三数学文月考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 函数f(x)=sin x的图象中相邻的两条对称轴间距离为()A.B.C.3πD.参考答案:A【考点】正弦函数的图象;两角和与差的正弦函数.【专题】三角函数的图像与性质.【分析】利用辅助角公式化简函数解析式,再利用正弦函数的图象的对称性和周期性,求得图象中相邻的两条对称轴间距离.【解答】解:函数解析式化简得,函数的周期为,由正弦函数图象可知,相邻的两条对称轴间距离为半个周期,则,故选:A.【点评】本题主要考查辅助角公式,正弦函数的图象的对称性好周期性,属于基础题.2. 从装有2个红球和2个黑球的口袋内任取得2个球,那么互斥而不对立的两个事件是()A.至少有1个黑球与都是黑球B.至少有1个红球与都是黑球C.至少有1个黑球与至少有1个红球D.恰有1个黑球与恰有2个黑球参考答案:D略3. 设袋中有两个红球一个黑球,除颜色不同,其他均相同,现有放回的抽取,每次抽取一个,记下颜色后放回袋中,连续摸三次,表示三次中红球被摸中的次数,每个小球被抽取的几率相同,每次抽取相对立,则方差()A.2 B.1 C.D.参考答案:C试题分析:每次取球时,取到红球的概率为、黑球的概率为,所以取出红球的概率服从二项分布,即,所以,故选C.考点:二项分布.4. 已知集合,.若,则实数的值是( )A. B. C.或 D.或或参考答案:C5. 执行如图所示的程序框图,若输入,则输出A. B. C. D.参考答案:B已知函数6. ,则函数的图象可能是()参考答案:B7. 已知,,,则,,的大小关系是()A. B. C. D .参考答案:B8. 在如图所示的程序框图中,若输出i的值是3,则输入x的取值范围是()A.(4,+∞)B.(2,4] C.(2,+∞)D.(4,10]参考答案:D【考点】程序框图.【分析】由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:设输入x=a,第一次执行循环体后,x=3a﹣2,i=1,不满足退出循环的条件;第二次执行循环体后,x=9a﹣8,i=2,不满足退出循环的条件;第三次执行循环体后,x=27a﹣26,i=3,满足退出循环的条件;故9a﹣8≤82,且27a﹣26>82,解得:a∈(4,10],故选:D.【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答,属于基础题.9. 已知双曲线的一个焦点与抛物线的焦点重合,且其渐近线的方程为,则该双曲线的标准方程为(()):ZA. B. C.D.参考答案:C略10. 某人设计一项单人游戏,规则如下:先将一棋子放在如图所示正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为i(i=1,2,…6),则棋子就按逆时针方向行走i个单位,一直循环下去.则某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法共有()A.22种B.24种C.25种D.36种参考答案:C【考点】排列、组合的实际应用.【分析】抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,列举出在点数中三个数字能够使得和为12的1,5,6;2,4,6;3,3,6;5,5,2;4,4,4,共有4种组合,前四种组合又可以排列出A33种结果,由此利用分类计数原理能得到结果.【解答】解:由题意知正方形ABCD(边长为3个单位)的周长是12,抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,列举出在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4;共有6种组合,前三种组合1,5,6;2,4,6;3,4,5;又可以排列出A33=6种结果,3,3,6;5,5,2;有6种结果,4,4,4;有1种结果.根据分类计数原理知共有24+1=25种结果,故选C.【点评】排列与组合问题要区分开,若题目要求元素的顺序则是排列问题,排列问题要做到不重不漏,有些题目带有一定的约束条件,解题时要先考虑有限制条件的元素.二、填空题:本大题共7小题,每小题4分,共28分11. 已知,向量是矩阵的属于特征值的一个特征向量,求与. 参考答案:由已知得,所以所以.设,则即.所以,,.所以,.12. 已知直线与圆交于、两点,且,其中为坐标原点,则正实数的值为 .参考答案:213. 设f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线对称,则f(1)+f(2)+f(3)+f(4)+f(5)=________.参考答案:14. 已知直线l1:ax+y+3=0,l2:x+(2a﹣3)y=4,l1⊥l2,则a= .参考答案:1【考点】直线的一般式方程与直线的垂直关系.【分析】利用两直线垂直,x,y系数积的和为0的性质求解.【解答】解:∵直线l1:ax+y+3=0,l2:x+(2a﹣3)y=4,l1⊥l2,∴a+(2a﹣3)=0,解得a=1.故答案为:1.15、在平面直角坐标系内,到点,,,的距离之和最小的点的坐标是_______。

浙江省嘉兴市高三数学第二次模拟考试试题(嘉兴二模)文 新人教A版

1文科数学试题卷第I 卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合}3,2,1{=A ,}9,3,1{=B ,A x ∈,且B x ∉,则=x A .1B .2C .3D .92.在复平面内,复数1ii +对应的点位于A .第一象限B .第二象限C .第三象限D .第四象限3.若1122log (1)log x x-<,则A .10<<xB .21<xC .210<<xD .121<<x4.若于指数函数2(),"1"f x a a =>,是“()f x 在R 上的单调”的 A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5。

在正六边形的6个顶点中随机选择4个顶点,则构成的四边形是梯形的概率为A .15 B .25C .16 D .186.已知直线,l m 与平面αβγ、、,满足,//,l l m βγαγ=⊥,则必有A .m αγβ⊥且//B .αβαλ⊥//且C .m l m β⊥//且D .l m αγ⊥⊥且7。

6.某几何体的三视图如图所示,其中 三角形的三边长与圆的直径均为2, 则该几何体的体积为 A .π334+B .π33832+C .π3332+D .π3334+8。

函数sin (0)y x ωω=>的部分如图所示,点A 、B 是最高点,点C 是最低点,若ABC ∆是直角三角形,则的值为正视图 侧视图俯视图 (第7题)2A .2πB .4πC .3πD .π9。

设F 是双曲线22221(,0)x y a b a b -=>的左焦点,是其右顶点,过F 作x 轴的垂线与双曲线交于A 、B 两点,若ABC ∆是钝角三角形,则该双曲线离心率的取值范围是 A .(1,2)B.(1)++∞C.(1,1 D .(2,)+∞10。

浙江省嘉兴市高三数学二模测试试题 文 新人教A版

高三教学测试(二)文科数学试题卷注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答.答题前,请在答题卷的密封线内填写学校、班级、学号、姓名;2.本试题卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,全卷满分150分,考试时间120分钟.参考公式:如果事件A ,B 互斥,那么 )()()(B P A P B A P +=+.如果事件A ,B 相互独立,那么 )()()(B P A P B A P ⋅=⋅.如果事件A 在一次试验中发生的概率是p p ,那么n 次独立重复试验中事件A A 恰好发生k 次 的概率),,2,1,0()1()(n k p p C k P k n kk n n =-=- .球的表面积公式 24R S π=,其中R 表示球的半径. 球的体积公式334R V π=, 其中R 表示球的半径. 棱柱的体积公式Sh V =,其中S 表示棱柱的底面积,h 表示棱柱的高.棱锥的体积公式Sh V 31=, 其中S 表示棱锥的底面积,h 表示棱锥的高.棱台的体积公式)(312211S S S S h V ++=, 其中21,S S 分别表示棱台的上、下底面积,h 表示棱台的高.第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合}02|{2<-=x x x A ,}1|{>=x x B ,则=B AA .}21|{<≤x xB .}21|{<<x xC .}10|{≤<x xD .}10|{<<x x2.若R ,∈y x ,则“0<<y x ”是“22y x >”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.若复数i 2i-+a (R ∈a ,i 为虚数单位)是纯虚数,则实数a 的值为 A .2B .-2C .21D .21-4.下列函数中,最小正周期为π的奇函数是A .x y 2cos =B .x y 2sin =C .x y 2tan =D .)2π2sin(-=x y 5.某程序框图如图所示,若输出结果是126,则判断框中可以是A .?6>iB .?7>iC .?6≥iD .?5≥i6.设n m ,是不同的直线,βα,是不同的平面A .若α//m ,β⊥n 且βα⊥,则n m ⊥B .若α//m ,β//n 且βα⊥,则n m ⊥C .若α⊥m ,β//n 且βα//,则n m //D .若α⊥m ,β⊥n 且βα//,则n m //7.从3名男生和2名女生中选出2名学生参加某项活动,则选出的2人中至少有1名女生的概率为 A .107B .53C .52D .103(第5题)8.在ABC ∆中,角C B A ,,的对边分别为c b a ,,,若C a c b cos 21=-,则=A A .6πB .3πC .6π或6π5 D .3π或3π2 9.已知椭圆122=+my x 的离心率)1,21(∈e ,则实数m 的取值范围是A .)43,0(B .),34(∞+C .),34()43,0(∞+ D .)34,1()1,43( 10.设实数b a <,已知函数a a x x f --=2)()(,b b x x g --=2)()(,令⎩⎨⎧≥<=)()(),()()(),()(x g x f x g x g x f x f x F ,若函数b a x x F -++)(有三个零点,则a b -的值是A .32-B .32+C .25-D .25+第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11.已知某总体的一个样本数据如茎叶图所示,则该总体的平均值是 ▲ .12.已知双曲线122=-my x 的一条渐近线与直线012=+-y x 垂直,则实数=m ▲ .13.已知)2,1(-=a ,)1,(λ=b ,若5|2|=-b a ,则=λ ▲ .14.设实数y x ,满足不等式组⎪⎩⎪⎨⎧≤++≤≥020k y x x y x ,若y x z 3+=的最大值为12,则实数k 的值为 ▲ .15.某几何体的三视图如图所示,则这个几何体的体积是 ▲ .16.若直线)0,0(>>=+b a ab by ax 与圆122=+y x 相切,则ab 的最小值是 ▲ .17.已知公比不为1的等比数列}{n a 的前n 项和为n S ,若11=a ,且3212,3,4a a a 成等差数列,则3-n na S 的最大值是 ▲ . 三、解答题(本大题共5小题,共72分)0 51 1 3 4 52 0(第11题)15题)18.(本题满分14分)已知函数1cos sin 3cos )(2+-=x x x x f . (Ⅰ)求函数)(x f 的单调递增区间; (Ⅱ)若65)(=θf ,)3π23π(,∈θ,求θ2sin 的值.19.(本题满分14分)在等差数列}{n a 和等比数列}{n b 中,11=a ,21=b ,0>n b (*N ∈n ),且221,,b a b 成等差数列,2,,322+a b a 成等比数列.(Ⅰ)求数列}{n a 、}{n b 的通项公式;(Ⅱ)设n b n a c =,求数列}{n c 的前n 和n S .20.(本题满分14分)如图,已知三棱柱111C B A ABC -的各棱长均为2,P 是BC 的中点,侧面⊥11A ACC 底面ABC ,且侧棱1AA 与底面ABC 所成的角为︒60.(Ⅰ)证明:直线C A 1∥平面P AB 1;(Ⅱ)求直线1AB 与平面11A ACC 所成角的正弦值.ABCP A 1B 1C 1(第20题)21.(本题满分15分)已知函数221ln )(x x a x f +=,4)1()(-+=x a x g . (Ⅰ)当2-=a 时,求函数)(x f 在))1(,1(f 处的切线方程;(Ⅱ)是否存在实数a (1>a ),使得对任意的e],e 1[∈x ,恒有)()(x g x f <成立?若存在,求出实数a 的取值范围;若不存在,请说明理由.注:e 为自然对数的底数.22.(本题满分15分)已知抛物线)0(2≠=a ax y 的准线方程为1-=y . (Ⅰ)求抛物线的方程;(Ⅱ)设F 是抛物线的焦点,直线)0(:≠+=k b kx y l 与抛物线交于B A ,两点,记直线BF AF ,的斜率之和为m .求常数m ,使得对于任意的实数)0(≠k k ,直线l 恒过定点,并求出该定点的坐标.2012年高三教学测试(二)文科数学 参考答案一、选择题(本大题共10小题,每小题5分,共50分) 1.B ; 2.A ; 3.C ; 4.B ;5.A ; 6.D ;7.A ;8.B ;9.C ;10.D . 10.提示:作函数)(x F 的图象,由方程)()(x g x f =得21-+=b a x ,即交点))21(,21(2a ab b a P ----+,又函数b a x x F -++)(有三个零点,即函数)(x F 的图象与直线a b x y l -+-=:有三个不同的交点,由图象知P 在l 上,解得52+=-a b . 二、填空题(本大题共7小题,每小题4分,共28分) 11.13; 12.4;13.2或6-; 14.9-;15.33; 16.2; 17.7. 17.提示:325232,12,2111-+=--==---n n n n n n n S S a ,当3=n 时,有最大值7.三、解答题(本大题共5小题,第18-20题各14分,第21、22题各15分,共72分) 18.(本题满分14分)已知函数1cos sin 3cos )(2+-=x x x x f . (Ⅰ)求函数)(x f 的单调递增区间; (Ⅱ)若65)(=θf ,)3π23π(,∈θ,求θ2sin 的值.解:(Ⅰ)1cos sin 3cos )(2+-=x x x x f12sin 2322co 1+-+=x x s 23)32cos(++=πx . …4分由πππππ22322+≤+≤+k x k ,得653ππππ+≤≤+k x k (Z k ∈). ∴函数)(x f 的单调递增区间是]65,3[ππππ++k k (Z k ∈).…6分 (Ⅱ)∵65)(=θf ,∴6523)32cos(=++πx ,32)32cos(-=+πθ. …8分∵⎪⎭⎫⎝⎛∈323ππθ,,∴)35,(32πππθ∈+,35)32(cos 1)32(sin 2-=+--=+πθπθ. …11分∴)32cos(23)32sin(21)332sin(2sin πθπθππθθ+-+=-+=6532-=. …14分19.(本题满分14分)在等差数列}{n a 和等比数列}{n b 中,11=a ,21=b ,0>n b (*N ∈n ),且221,,b a b 成等差数列,2,,322+a b a 成等比数列. (Ⅰ)求数列}{n a 、}{n b 的通项公式; (Ⅱ)设n b n a c =,求数列}{n c 的前n 和n S .解:(Ⅰ)设等差数列}{n a 的公差为d ,等比数列}{n b 的公比为)0(>q q .由题意,得⎩⎨⎧++=+=+)23)(1()2(22)1(22d d q qd ,解得3==q d . …3分 ∴23-=n a n ,132-⋅=n n b . …7分 (Ⅱ)23223-⋅=-⋅=n n n b c . …10分∴n n c c c S +++= 21n n 2)333(221-+++=3231--=+n n . …14分20.(本题满分14分)如图,已知三棱柱111C B A ABC -的各棱长均为2,P 是BC 的中点,侧面⊥11A ACC 底面ABC ,且侧棱1AA 与底面ABC 所成的角为︒60.(Ⅰ)证明:直线C A 1∥平面P AB 1;(Ⅱ)求直线1AB 与平面11A ACC 所成角的正弦值. 解:(Ⅰ)连接A 1B 交AB 1于Q , 则Q 为A 1B 中点,连结PQ ,∵P 是BC 的中点,∴PQ ∥A 1C . …4分 ∵PQ ⊂平面AB 1P ,A 1C ⊄平面AB 1P , ∴A 1C ∥平面AB 1P .…6分(Ⅱ)取11C A 中点M ,连M B 1、AM , 则111C A M B ⊥.∵平面⊥11A ACC 平面ABC , ∴平面⊥11A ACC 平面111C B A . ∴⊥M B 1平面11A ACC .∴AM B 1∠为直线1AB 与平面11A ACC 所成的角. …9分 在正111C B A ∆中,边长为2,M 是11C A 中点,∴31=M B .…10分∵面⊥11A ACC 平面ABC ,∴AC A 1∠为1AA 与平面ABC 所成的角,即︒=∠601AC A . …11分 在菱形11A ACC 中,边长为2,︒=∠601AC A ,M 是11C A 中点, ∴7120cos 12212222=︒⨯⨯⨯-+=AM ,∴7=AM . …12分在MA B 1Rt ∆中,31=M B ,7=AM ,从而101=AB . ∴1030sin 1==∠AB BM AM B . ∴直线1AB 与平面11A ACC 所成角的正弦值为1030. …14分21.(本题满分15分)已知函数221ln )(x x a x f +=,4)1()(-+=x a x g . (第20题)ABPCQ1A 1C 1B M(第20题)ABPCQ1A 1C 1B M(Ⅰ)当2-=a 时,求函数)(x f 在))1(,1(f 处的切线方程;(Ⅱ)是否存在实数a (1>a ),使得对任意的e],e1[∈x ,恒有)()(x g x f <成立?若存在,求出实数a 的取值范围;若不存在,请说明理由. 注:e 为自然对数的底数. 解:(Ⅰ)221ln 2)(x x x f +-=,x xx f +-='2)((0>x ). …3分∵21)1(=f ,∴切点为)21,1(,切线斜率1)1(-='=f k .∴)(x f 在))1(,1(f 处的切线方程为0322=-+y x . …6分(Ⅱ))()(x g x f <在e],e1[∈x 上恒成立,也就是)()()(x g x f x h -=在e],e1[∈x 上的最大值小于0.)()()(x g x f x h -==4)1(21ln 2++-+x a x x a , )(x h '=xa x x x a x a x a x x a ))(1()1()1(2--=++-=+-+(0>x ). …9分(1)若e ≥a ,则当1],e1[∈x 时,0)(>'x h ,)(x h 单调递增;当e],1[∈x 时,0)(<'x h ,)(x h 单调递减.∴)(x h 的最大值为027)1(<+-=a h ,∴27>a . …11分(2)若e 1<<a ,则当1],e1[∈x 时,0)(>'x h ,)(x h 单调递增;当]1[a x ,∈时,0)(<'x h ,)(x h 单调递减; 当],[e a x ∈时,0)(>'x h ,)(x h 单调递增.∴)(x h 的最大值为{})e (),1(max h h ,从而⎩⎨⎧<<0)e (0)1(h h .…13分其中,由0)1(<h ,得27>a ,这与e 1<<a 矛盾. 综合(1)(2)可知: 当27>a 时,对任意的e],e1[∈x ,恒有)()(x g x f <成立. …15分11 22.(本题满分15分)已知抛物线)0(:2≠=a ax y C 的准线方程为1-=y .(Ⅰ)求抛物线C 的方程;(Ⅱ)设F 是抛物线C 的焦点,直线)0(:≠+=k b kx y l 与抛物线C 交于B A ,两点,记直线BF AF ,的斜率之和为m .求常数m ,使得对于任意的实数)0(≠k k ,直线l 恒过定点,并求出该定点的坐标.解:(Ⅰ)∵2ax y =,∴y ax 12=. ∴抛物线C 的准线方程为:a y 41-=. …3分 ∴141-=-a ,解得41=a . ∴抛物线C 的方程是y x 42=.…6分 (Ⅱ))1,0(F ,设A )4,(211x x ,B )4,(222x x , 由⎩⎨⎧=+=yx kx y 4b 2,得0442=--b kx x . ∴k x x 421=+,b x x 421-=,016162>+=∆b k . …8分 21212121112222212221214)4)((4441414x x x x x x x x x x x x x x x x x x k k BFAF -+=-+-=-+-=+ m b b k b b k =+=---=)1()4(4)44(4. …10分 ∴km k b -=.∴直线k m k kx y l -+=:. 令0)1(2=+++-my k y mx xk 对任意的)0(≠k k 恒成立.…12分 则⎪⎩⎪⎨⎧==++=0010my y mx x ,解得⎪⎩⎪⎨⎧=-==010m y x .所以,0=m ,直线l 过定点)1,0(-. …15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省嘉兴市高三上学期数学第二次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共9题;共18分)
1. (2分)设A={x,y},集合B={x+1,5},若A∩B={2},则A∪B=()
A . {1,2}
B . {1,5}
C . {2,5}
D . {1,2,5}
2. (2分)设则“且”是“”的()
A . 充分而不必要条件
B . 必要而不充分条件
C . 充分必要条件
D . 即不充分也不必要条件
3. (2分) (2015高一下·忻州期中) 已知点A(﹣1,3)、B(3,2)、C(﹣4,5)、D(﹣3,4),则向量在方向上的投影为()
A .
B . ﹣
C .
D . ﹣
4. (2分)(2020·淮北模拟) 已知锐角三角形,角A,B,C所对的边分别为a,b,c,且
,则面积的取值范围为()
A .
B .
C .
D .
5. (2分) (2019高二下·鹤岗期末) 下列函数中,既是偶函数,又在区间上单调递减的函数是()
A .
B .
C .
D .
6. (2分)(2017·天水模拟) 在平行四边形ABCD中,,,若将其沿AC 折成直二面角D﹣AC﹣B,则三棱锥D﹣ACB的外接球的表面积为()
A . 16π
B . 8π
C . 4π
D . 2π
7. (2分)已知双曲线的一个焦点与抛物线的焦点重合,则此双曲线的离心率为()
A . 2
B .
C . 3
D . 4
8. (2分) (2018高三上·玉溪月考) 数列满足,则数列的前20项的和为()
A . 100
B . -100
C . -110
D . 110
9. (2分)若曲线上存在垂直y轴的切线,则实数a的取值范围是()
A .
B .
C .
D .
二、填空题 (共6题;共6分)
10. (1分) (2020高一下·红桥期中) 已知,是虚数单位.若与互为共轭复数,则 ________.
11. (1分)已知二项式的展开式中x2项的系数为32,则实数a=________.
12. (1分)已知函数是(﹣∞,+∞)上的减函数,那么a的取值范围为________
13. (1分)(2019·镇江模拟) 已知A , B为圆C: 上两个动点,且AB=2,直线 :
,若线段AB的中点D关于原点的对称点为D′,若直线上任一点P ,都有,则实数的取值范围是________.
14. (1分) (2019高二下·大庆月考) 已知函数没有零点,则实数的取值范围为________.
15. (1分) (2020高二下·铜陵期中) 已知是函数的一个零点,是函数
的一个零点,则的值为________.
三、解答题 (共5题;共37分)
16. (5分) (2017高二下·黑龙江期末) 某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的称为“时尚族”,否则称为“非时尚族”,通过调查分别得到如图所示统计表和各年龄段人数频率分布直方图:
完成以下问题:
(Ⅰ)补全频率分布直方图并求n , a , p的值;
(Ⅱ)从[40,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁的人数为X,求X的分布列和期望E(X).
17. (2分)(2019·湖南模拟) 如图,菱形与正所在平面互相垂直,平面,
, .
(1)证明:平面;
(2)若,求直线与平面所成角的正弦值.
18. (5分) (2017高二上·太原月考) 已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为 ,右顶点为 ,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
19. (15分) (2016高一下·枣阳期中) 设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75,Tn为数列的前n项和,求Tn .
20. (10分) (2018高三上·晋江期中) 已知函数
Ⅰ 求的单调区间;
Ⅱ 设的最小值为M,证明:
参考答案一、单选题 (共9题;共18分)
答案:1-1、
考点:
解析:
答案:2-1、
考点:
解析:
答案:3-1、
考点:
解析:
答案:4-1、
考点:
解析:
答案:5-1、考点:
解析:
答案:6-1、
考点:
解析:
答案:7-1、考点:
解析:
答案:8-1、考点:
解析:
答案:9-1、
考点:
解析:
二、填空题 (共6题;共6分)答案:10-1、
考点:
解析:
答案:11-1、
考点:
解析:
答案:12-1、考点:
解析:
答案:13-1、考点:
解析:
答案:14-1、考点:
解析:
答案:15-1、考点:
解析:
三、解答题 (共5题;共37分)答案:16-1、
考点:解析:
答案:17-1、
答案:17-2、考点:
解析:
答案:18-1、
答案:18-2、考点:
解析:
答案:19-1、考点:
解析:
答案:20-1、考点:
解析:。

相关文档
最新文档