虚拟变量的引入

合集下载

第七章 虚拟变量

第七章 虚拟变量

第七章虚拟变量第一节虚拟变量的引入一、什么是虚拟变量前面几章介绍的解释变量都是可以直接度量的,称为定量变量。

如收入、支出、价格、资金等等。

但在现实经济生活中,影响应变量变动的因素,除了这些可以直接获得实际观测数据的定量变量外,还包括一些无法定量的解释变量的影响,如性别、民族、国籍、职业、文化程度、政府经济政策变动等因素,他们只表示某种特征的存在与不存在,所以称为属性变量或定性变量。

属性变量:不能精确计量的说明某种属性或状态的定性变量。

在计量经济模型中,应当包含属性变量对应变量的影响作用。

那怎么才能把定性变量包括在模型中呢?属性变量通常是非数值变量,直接纳入回归方程中进行回归,显然是很困难的。

为此,人们采取了一种构造人工变量的方法,将这些定性变量进行量化,使其能与定量变量一样在回归模型中得以应用。

由于定性变量通常是表明某种特征或属性是否存在,如性别变量中以男性为分析基础的话,那就只有男性、非男性;政策变动变量中以政策不变为基准,则有政策不变,和政策变动;至于有两种以上的状态的话,比如学历分高中,本科,本科以上等等,我们又怎么办呢?把疑问留到后面去解决。

既然定性变量只有存在或不存在两种状态,所以量化的一般方法是取值为0或1。

称为虚拟变量。

虚拟变量:人工构造的取值为0或1的作为属性变量代表的变量。

一般常用D表示。

D=0,表示某种属性或状态不存在D=1,表示某种属性或状态存在比如前面说的性别变量,以男性为基准,则当样本为男性时,虚拟变量取0,当样本为女性时,则虚拟变量取1。

当虚拟变量作为解释变量引入计量经济模型时,对其回归系数的估计和统计检验方法都与定量解释变量相同。

二、虚拟变量的作用1、作为属性因素的代表,如,性别、种族等2、作为某些非精确计量的数量因素的代表,如:受教育程度、年龄段等;3、作为某些偶然因素或政策因素的代表,如战争、911等。

4、时间序列分析中作为季节(月份)的代表(比如对某些明显有淡季、旺季之分的产品)5、分段回归,研究斜率、截距的变动;6、比较两个回归模型;7、虚拟应变量概率模型,应变量本身是定性变量(比如你研究某产品的购买率,应变量本身就是买或不买)三、虚拟变量的设置规则1、虚拟变量D取值为0,还是取值为1,要根据研究的目的决定。

引入虚拟解释变量的两种基本方式

引入虚拟解释变量的两种基本方式

引入虚拟解释变量的两种基本方式
在统计学分析中,引入虚拟解释变量是一种常用的方式,它可以提高统计模型的精确性,减少错误。

虚拟解释变量是一种变量,它不能显示出主要变量之间的关系,而是用于捕捉模型中其他非线性变量的影响,以抵消其他变量可能引起的误差。

使用虚拟解释变量可以更好地预测数据,并且可以消除变量之间的联系,使模型更加准确。

在引入虚拟解释变量时,有两种基本方式可以使用,即直接编码和回归编码。

在直接编码中,变量是将数据集中的每个观察点映射到一个多维统计模型,该模型包含了所有解释变量可能表示的可能效果及其影响。

直接编码将每个观察点映射到单个结果,这就可以预测出每个观察点的结果,即回归结果。

回归编码的方法更加复杂,它使用一个多变量的回归模型来模仿虚拟变量的影响。

回归编码的模型包含多个变量,其中虚拟变量和其他变量的加权和的结果来决定回归因素的影响。

例如,如果虚拟变量叫做“货币”,而另一个变量叫做“国家”,它们之间可能存在某种关系,回归编码方法可以捕捉这种关系,可以更好地预测结果。

引入虚拟解释变量可以改善模型的准确性,减少输入变量和输出变量之间的错误。

使用虚拟解释变量可以解决许多模型中出现的数据失真问题,可以显著提高模型的准确性和可靠性。

当使用虚拟解释变量时,有两种基本的编码方式可以使用,分别为直接编码和回归编码,它们都为统计模型提供了有效的正确性。

- 1 -。

第八章-虚拟变量回归

第八章-虚拟变量回归

1 高中 D2 0 其它
1 博士 D5 0 其它
1 大 学 D3 0 其 它
1 小 学 D6 0 其 它
则总体回归模型:
w 0 1 X 2 D1 3 D2 4 D3 5 D4 6 D5 7 D6+u
17
二、用虚拟变量测量斜率变动
基本思想
引入虚拟变量测量斜率变动,是在所设立的模型中,将虚 拟解释变量与其它解释变量的乘积,作为新的解释变量出 现在模型中,以达到其调整设定模型斜率系数的目的。
可能的情形:
(1)截距不变;
(2)截距和斜率均发生变化;
分析手段:仍然是条件期望。
18
(1)截距不变
模型形式:
意义:若α1显著,表明城市居民的平均人均可支配收入比农村 高α1元。但这种差异可能是由其它因素引起的,并不一定是由 户籍差异引起。
12
(2) 一个两属性定性解释变量和一个定量 解释变量
模型形式 Yi = f(Di,X i )+ μi 例如:Yi = 0 1 Di + X i + μi 1 城市 其中: Y-人均可支配收入;X-工作时间; Di 0 农村
会受到一些定性因素的影响,如性别、国籍、民族、自 然灾害和政治体制等。
问题:我们如何把这些定性想:将这些定性因素进行量化
由于定性变量通常表示某种属性是否存在,如是否男性、 是否经济特区、是否有色人和等。因此若该属性存在, 我们就将变量赋值为1,否则赋值为0,从而将定性因素 定量化。 计量经济学中,将取值为0和1的人工变量称为虚拟变量 (DUMMY)或哑元变量。通常用字母D或DUM表示。
7
一个例子(虚拟变量陷阱)
研究工资收入与学历之间的关系:

虚拟变量乘法引入

虚拟变量乘法引入

虚拟变量乘法引入
虚拟变量乘法引入是一种用于处理分类变量的方法。

在统计学和经济学等领域,经常会遇到一些变量是分类变量,例如性别、种族、教育程度等等。

这些变量的取值通常是离散的,而且它们之间的差异也不是很明显,因此很难直接进行回归分析。

为了处理这些变量,可以引入虚拟变量。

虚拟变量是一种二元变量,只能取0或1的值。

例如,如果某个人的性别是男性,则他的性别虚拟变量值为1,否则为0。

在回归分析中,可以将虚拟变量作为
独立变量或解释变量进行分析。

但是,在一些情况下,单独使用虚拟变量可能会出现误差或偏差。

这时就需要引入虚拟变量乘法。

虚拟变量乘法是将虚拟变量与其他解释变量相乘,形成新的交互项。

例如,在研究收入对购买力的影响时,可以引入一个收入与教育程度的交互项,即收入×教育程度虚拟变量。

这样做可以更好地解释不同教育程度人群收入对购买力的影响。

虚拟变量乘法引入是一种有效的处理分类变量的方法,可以提高回归分析的精度和准确性。

- 1 -。

计量经济学(共33张PPT)

计量经济学(共33张PPT)

假定3>2,其几何意义:
问题:
虚拟变量为何只选“0”, ‘1“,选择0,1,2 等 可以吗
同一种属性,两个变量能够表示几种状态? 思考,如果在模型中引入季节效应?月份效应?
(3)多个虚拟变量的引入——多种因素
例:研究学历(本科及以上,本科以下),性别(男、女)对员工工资的 影响。
在例1基础上,再引入代表学历的虚拟变量D2:
离散选择模型(离散被解释变量)
D (2)多个虚拟变量的设定和引入 0 女职工本科以上学历的平均薪金:
本科以下
当回归模型有截距项时,只能引入 m-1 个虚拟变量
注意:加法方式引入虚拟变量,考察了截距的不同。
交互作用的引入方法:在模型中引入相关变量的乘积。
反映性别的虚拟变量可取为: 女职工本科以下学历的平均薪金:
几何意义:
•两个函数有相同的斜率,说明男女职工平均薪金对工龄的变 化率是一样的。
•如果2>0,表明两个函数截距不相同,且男职工平均薪金比 女职工高,两者平均薪金水平相差2。 •如果2<0,表明两个函数截距不相同,且男职工平均薪金比女 职工低,两者平均薪金水平相差2。 •如果2=0,表明两个函数截距相同,即男职工,女职工的平
均薪金没有显著差异。
可以通过传统的回归检验,对2的统计显著性进行 检验,以判断企业男女职工的平均薪金水平是否有 显著差异。
2
0
(2)多个虚拟变量的设定和引入
——一种因素多种状态(水平):
例:研究收入和教育水平(分为高,中,低三类)对个人保健支出的影响。
教育水平考虑三个层次:
低学历:高中以下,
中等学历:高中,及大中专 高学历:大学及其以上。
2、基本概念
定量因素——可直接测度,数值性的因素 定性因素——属性因素,表征某种属性存在

第五章虚拟变量-第八章虚拟变量

第五章虚拟变量-第八章虚拟变量
Yt 0 2X*t 1 2Xt t
29
第5章习题
一、单项选择题 1、如果一个回归模型中不包含截距项,对一个具
有m个特征的质的因素需要引入的虚拟变量的个 数为: A、m B、m-1 C、m-2 D、m+1
30
2、设个人消费函数Yi=c0+c1Xi+ui中,消费支出Y不仅与收 入X有关,而且与消费者的性别、年龄构成有关,年龄构 成可分为青年、中年和老年三个层次,假设边际消费倾向 不变,则考虑上述因素的影响,该函数引入虚拟变量的个 数为:
山米与白鹤
贝特西.贝尔斯
第五章虚拟变量-第八章虚拟变量
问题的提出
1、计量经济学模型,需要经常考虑属性因素 的影响。例如,职业、战争与和平、繁荣与 萧条、文化程度、灾害、季节 2、属性因素往往很难直接度量它们的大小。 只能给出它们的“Yes—D=1”或”No—D=0”、 或者它们的程度或等级。 3、为了反映属性因素和提高模型的精度, 必须将属性因素“量化”。通过构造0-1型 的人工变量来量化属性因素。
Y= b0 + b1 x +e
17
三、截距与斜率同时变动 模型
D=1 异常时期 D=0 正常时期 设定模型 Y=b0+ b1x+ b2D + b3Dx +e 异常时期模型:(截距与斜率均不同) Y= (b0 + b2) + (b1 +b3) x +e 反常时期模型:(截距与斜率均不同) Y= b0 + b1 x +e
Yt 0 1Xt t
以t* 1979年为转折期,并设1979年的国民收入为 X*t ,并引入虚拟变量:
Dt
1,t t* 0,t t*

虚拟变量的引入

虚拟变量的引入
ቤተ መጻሕፍቲ ባይዱ
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
02
虚拟变量的创建方法
手动创建
确定变量范围
根据研究需求,确定需要引入的虚拟变量及其取值范 围。
创建变量矩阵
根据确定的取值范围,创建相应的变量矩阵,用于表 示各个虚拟变量。
赋值编码
为矩阵中的各个元素进行赋值编码,以表示不同的虚 拟变量取值。
2. 交互作用
虚拟变量可以用于表示两个或多个分类变量之间的交互作用。例如,在回归分析中,可以引入交互项来研究不同类别 之间的相互作用对因变量的影响。
3. 多因素分析
虚拟变量在多因素分析中非常有用,例如在回归分析、方差分析、聚类分析等中。通过引入虚拟变量, 可以研究不同类别之间的差异和交互作用。
虚拟变量的应用场景
虚拟变量的引入会增加模型的复杂度,使得模型更难以解释和理解。
多重共线性问题
如果虚拟变量之间存在多重共线性关系,会导致回归系数不稳定, 影响模型的准确性。
过度拟合问题
过度引入虚拟变量可能导致模型过度拟合,使得模型在训练数据上 表现良好,但在实际应用中表现较差。
如何选择合适的虚拟变量
考虑变量的实际意义 在选择虚拟变量时,应考虑变量 的实际意义,确保选择的变量能 够反映研究问题的实际情况。
1. 市场调查
在市场调查中,常常需要了解不同人群的特征和行为。虚 拟变量可以用于表示不同的群体或类别,例如性别、年龄 段、职业等。
2. 社会科学研究
在社会科学研究中,常常需要研究不同群体之间的差异和 交互作用。虚拟变量可以用于表示不同的社会群体或状态, 例如种族、宗教、教育程度等。
3. 生物统计学

计量经济学第8章

计量经济学第8章

6443.33 8631.94 1
最高收入户
7593.95 10962.1 0
8262.42 12083.79 1
表 回归结果
这表明1998年、1999年我国城镇居民消费函数并没有显著差 异。因此,可以将两年的样本数据合并成一个样本,估计城镇居 民的消费函数,结果如下:
回归结果
虚拟变量的特殊应用
0
1
0
1988.1
3929.8 25 0
0
0
1984.4
4270.6 12
1
0
0
1988.2
4126.2 26 0
0
1
1985.1
3044.1 13
0
0
0
1988.3
4015.1 27 0
1
0
1985.2
3078.8 14 0
0
1
1988.4
4904.2 28 1
0
0
由于受取暖用煤的影响,每年第四季度的销售量大大高于其
设根据同一总体两个样本估计的回归模型分别为
为“相异回归”(Dissimilar regressions)。 上述情况中,只有第(1)种情况模型结构是稳定的,其余情况都表明模 型结构不稳定。
3.分段回归
回归系数反映了奖金的提高程度。使用虚拟变量既能如实描述不同阶段 的经济关系,又未减少估计模型时的样本容量,保证了模型的估计精度。
后期变动一个单位对Y的影响,即x的滞后影响。 如果 b = bi 存在,i=0,1,2…,k
b 称为长期分布或总分布乘数。表示X 变动一个单
位时,由于滞后效应而形成的对Y值的总的影响。
分布滞后模型的参数估计
对分布滞后模型直接采用OLS不适宜 • 没有先验准则确定滞后期长度;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反常年份:
E(Ct | X t , Dt 0) 0 1 X t
当截距与斜率发生变化时,则需要同时引入 加法与乘法形式的虚拟变量。
• 例,考察1990年前后的中国居民的总储蓄-收 入关系是否已发生变化。 下表中给出了中国1979~2001年以城乡 储蓄存款余额代表的居民储蓄以及以GNP代表 的居民收入的数据。
•男职工本科以上学历的平均薪金:
E(Yi | X i , D1 1, D2 1) (0 2 3 ) 1 X i
虚拟变量的建立
• 对于具有k类的定性变量来说,设哑变量时, 我们只设k-1个哑变量。
•பைடு நூலகம்例 分析某地区妇女的年龄、文化程度、及 居住地状况对其曾生子女数的影响。
• 定量变量: 年龄 • 定性变量:文化程度、地区 • 数据:妇女生育子女数
(4) 11,且22 ,即两个回归完全不同,称为 相异回归。
可以运用邹氏结构变化的检验。这一问题 也可通过引入乘法形式的虚拟变量来解决。
将n1与n2次观察值合并,并用以估计以下回归:
Yi 0 1 X i 3 Di 4 (Di X i ) i
Di为引入的虚拟变量:
1 Di 0
90年前 90年后
概念: 同时含有一般解释变量与虚拟变量的模
型称为虚拟变量模型或者方差分析模型。 一个以性别为虚拟变量考察企业职工薪
金的模型:
Yi 0 1 X i 2 Di i
其中:Yi为企业职工的薪金,Xi为工龄, Di=1,若是男性,Di=0,若是女性。
(二)虚拟变量的引入
虚拟变量做为解释变量引入模型有两种基 本方式:加法方式和乘法方式。 1. 加法方式
这种“量化”通常是通过引入“虚拟变量” 来完成的。根据这些因素的属性类型,构造只取 “0”或“1”的人工变量,通常称为虚拟变量, 记为D。
• 例如,反映文程度的虚拟变量可取为:
1, 本科学历 D=
0, 非本科学历
• 一般地,在虚拟变量的设置中:
• 基础类型、肯定类型取值为1; • 比较类型,否定类型取值为0。
保健 支出
大学教育 高中教育
低于中学教育
收入
• 还可将多个虚拟变量引入模型中以考察多种 “定性”因素的影响。
如在上述职工薪金的例中,再引入代表 学历的虚拟变量D2:
1 本科及以上学历 D2 0 本科以下学历
职工薪金的回归模型可设计为: Yi 0 1 X i 2 D1 3 D2 i
于是,不同性别、不同学历职工的平均薪金分别为:
上述企业职工薪金模型中性别虚拟变量的 引入采取了加法方式。
在该模型中,如果仍假定E(i)=0,则 企业女职工的平均薪金为:
E(Yi | X i , Di 0) 0 1 X i 企业男职工的平均薪金为:
E(Yi | X i , Di 1) ( 0 2 ) 1 X i 几何意义:
• 假定2>0,则两个函数有相同的斜率, 但有不同的截距。意即,男女职工平均薪金对 教龄的变化率是一样的,但两者的平均薪金水 平相差2。
曾生子女数 b0 b1年龄 b2EDU2 1.41 0.068年龄 1.13 0.28 0.068年龄
• 表明,对于相同年龄和居住地而言,小学 文化程度妇女比文盲妇女曾生子女数多出 b2个部分,即少生1.13个子女。
回归方程的解释
• 当教育程度为文盲、居住地为城市时,
曾生子女数 b0 b1年龄 b6AREA 1.41 0.068年龄 0.49 0.92 0.068年龄
表明,对于相同年龄和文化程度而言,城 市妇女比农村妇女曾生子女数多出b6个部 分,即少生0.49个子女。
回归方程的解释
• 总之,该回归方程表示: • 参照类妇女曾生子女数对年龄的回归直线
的截据为1.41,年龄每上升1岁,参照类 妇女的平均曾生子女数上升0.068个。 • 城市妇女比农村妇女的平均曾生子女数少 0.49个。 • 小学、初中、高中和大学文化程度妇女的 平均曾生子女数分别比文盲妇女少1.13、 1.31、1.58、1.57个(在年龄和居住地相 同时)。
• 加法方式引入虚拟变量,考察:截距的不同。 • 许多情况下:往往是斜率就有变化,或斜率、
截距同时发生变化。 • 斜率的变化可通过以乘法的方式引入虚拟变量
来测度。
例:根据消费理论,消费水平C主要取决于收 入水平Y,但在一个较长的时期,人们的消费倾 向会发生变化,尤其是在自然灾害、战争等反常 年份,消费倾向往往出现变化。这种消费倾向的 变化可通过在收入的系数中引入虚拟变量来考察。
• 高中以下: E(Yi | X i , D1 0, D2 0) 0 1 X i
• 高中: E(Yi | X i , D1 1, D2 0) (0 2 ) 1 X i
• 大学及其以上: E(Yi | X i , D1 0, D2 1) (0 3 ) 1 X i
假定3>2,其几何意义:
虚拟变量模型
(一)虚拟变量的基本含义
• 许多经济变量是可以定量度量的,如:商品需 求量、价格、收入、产量等。
• 但也有一些影响经济变量的因素无法定量度量, 如:职业、性别对收入的影响,战争、自然灾 害对GDP的影响,季节对某些产品(如冷饮) 销售的影响等等。
• 为了在模型中能够反映这些因素的影响,并提 高模型的精度,需要将它们“量化”。
回归方程的解释
• 当案例在两个分类变量都等于0时,即文化 程度为文盲,居住地在农村时,此种情况 称为参照类(其他情况将于此进行比较), 其回归方程为:
曾生子女数 1.41 0.068年龄
• 表明所有参照类妇女年龄每上升1岁,其曾 生子女数的平均变化量为0.068个。
回归方程的解释
• 当文化程度为小学,居住地为农村时:
如,设
1 正常年份 Dt 0 反常年份
消费模型可建立如下:
Ct 0 1 X t 2 Dt X t t
• 这里,虚拟变量D以与X相乘的方式引入了模型中, 从而可用来考察消费倾向的变化。
• 假定E(i)= 0,上述模型所表示的函数可化为:
正常年份:
E(Ct | X t , Dt 1) 0 (1 2 ) X t
Yt
0
1X t
2(Xt
X
* t
)Dt
t
OLS法得到该模型的回归方程为:
Yˆt
ˆ0
ˆ1 X t
ˆ2 (X t
X
* t
)Dt
则两时期进口消费品函数分别为:
当t<t*=1979年, Yˆt ˆ0 ˆ1Xt
当tt*=1979年,
Yˆt
(ˆ0
ˆ
2
X
* i
)
(
ˆ1
ˆ2 )X t
(三)虚拟变量的设置原则
在经济发生转折时期,可通过建立临界指 标的虚拟变量模型来反映。
例如,进口消费品数量Y主要取决于国民 收入X的多少,中国在改革开放前后,Y对X的 回归关系明显不同。
这时,可以t*=1979年为转折期,以1979 年的国民收入Xt*为临界值,设如下虚拟变量:
1 t t* Dt 0 t t *
则进口消费品的回归模型可建立如下:
73142.7
2237.6
10201.4
1998
53407.5
76967.2
3073.3
11954.5
1999
59621.8
80579.4
3801.5
14922.3
2000
64332.4
88228.1
5146.9
16917.8
2001
73762.4
94346.4
7034.2
18598.4
以Y为储蓄,X为收入,可令:
哑变量的建立
• 原变量编码值
哑变量赋值的操作
• 文化程度=1(文盲)
所有EDU=0
• 文化程度=2(小学) EDU=0
EDU2=1,其他
• 文化程度=3(初中) EDU=0
EDU3=1,其他
• 文化程度=4(高中) EDU=0
EDU4=1,其他
• 文化程度=5(大学) EDU=0
EDU5=1,其他
90年前 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990

1979~2001 年中国居民储蓄与收入数(据亿元)
储蓄
GNP
90年后
储蓄
GNP
281
4038.2
1991
9107
21662.5
399.5
4517.8
1992
11545.4
薪金Y
60 Y
40
男职工 女职工
20
2
0 0
0
X 工龄X
20
40
60
• 可以通过传统的回归检验,对2的统计显著性进行检验, 以判断企业男女职工的平均薪金水平是否有显著差异。
• 例:中国成年人体重y(kg)与身高x(cm) 的回归关系如下:

–105 + x D = 1 (男)
y = - 100 + x - 5D =
回归方程的解释
• 文化程度在实际中是一个序次变量。可以 用 bi bi1 表示序次变量个相邻分类的 实际效应,如初中的边际效应为:
b3 b2 1.31 (1.13) 0.18
类似,可以计算下面的边际效应: 小学= -1.13 初中= -0.18 高中= -0.27 大学= 0.01
2. 乘法方式
• 1990年前: Yi=1+2Xi+1i
i=1,2…,n1
• 1990年后: Yi=1+2Xi+2i
i=1,2…,n2
则有可能出现下述四种情况中的一种:
(1) 1=1 ,且2=2 ,即两个回归相同,称为重 合回归;
相关文档
最新文档