工程力学14强理论

合集下载

工程力学知识点

工程力学知识点

工程力学知识点静力学分析1、静力学公理a,二力平衡公理:作用在刚体上的两个力使刚体处于平衡的充分必要条件是这两个力等值、反向、共线。

(适用于刚体)b,加减平衡力系公理:在任意力系中加上或减去一个平衡力系,并不改变原力系对刚体的效应。

(适用于刚体)c,平行四边形法则:使作用在物体上同一点的两个力可以合为一个合力,此合力也作用于该点,合理的大小和方向是以两个力为邻边所构成的平行四边形的对角线来表示。

(适用于任何物体)d,作用与反作用力定律:两物体间的相互作用力,即作用力和反作用力,总是大小相等、指向相反,并沿同一直线分别作用在这两个物体上。

(适用于任何物体)e,二力平衡与作用力反作用力都是二力相等,反向,共线,二者的区别在于两个力是否作用在同一个物体上。

2、汇交力系a,平面汇交力系:力的作用线共面且汇交与一点的平面力系。

b,平面汇交力系的平衡:若平面汇交力系的力多边形自行封闭,则该平面汇交力系是平衡力系。

c,空间汇交力系:力的作用线汇交于一点的空间力系。

d,空间汇交力系的平衡:空间汇交力系的合力为零,则该空间力系平衡。

3、力系的简化结果a,平面汇交力系向汇交点外一点简化,其结果可能是①一个力②一个力和一个力偶。

但绝不可能是一个力偶。

b,平面力偶系向作用面内任一点简化,其结果可能是①一个力偶②合力偶为零的平衡力系c,平面任意力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

d,平面平行力系向作用面内任一点简化,其结果可能是①一个力②一个力偶③一个力和一个力偶④处于平衡。

e,平面任意力系平衡的充要条件是①力系的主矢为零②力系对于任意一点的主矩为零。

4、力偶的性质a,由于力偶只能产生转动效应,不产生移动效应,因此力偶不能与一个力等效,即力偶无合力,也就是说不能与一个力平衡。

b,作用于刚体上的力可以平移到任意一点,而不改变它对刚体的作用效应,但平移后必须附加一个力偶,附加力偶的力偶矩等于原力对于新作用点之矩,这就是力向一点平移定理。

工程力学常用公式

工程力学常用公式

工程力学常用公式3、伸长率:* 1。

%断面收缩率: 字100%5、扭转切应力表达式:^,最大切应力:maxTP RW p , d 44I P ”(1),W P d'(1 4),强度校核: 16max TmaxW P[]6、单位扭转角:d—,刚度校核:maxTmax[], 长度为1dx Gl pGI P的一段轴两截面之间的相对扭转角證,扭转外力偶的计算公式: Me 9549P(KWLn(r/m in )8平面应力状态下斜截面应力的一般公式:最大切应力max -'' - ( x y )22,最大正应力方位2 Y 21、轴向拉压杆件截面正应力 牛,强度校核max2、轴向拉压杆件变形IFi Ni l i 4、胡克定律: E ,泊松比:,剪切胡克定律:G7、薄壁圆管的扭转切应力:T 2 R 29、 x yx ycos22 2 xsin 2-sin 2 x cos2平面应力状态三个主应力:II「( x 2y)2X, ''' 01、100%tan2 0 2xx y10、第三和第四强度理论: r3 X 24 2, r4211、平面弯曲杆件正应力:M ,截面上下对称时,MW Z矩形的惯性矩表达式:I Z兽圆形的惯性矩表达式:I ZV(1 644)矩形的抗扭截面系数:W Z £圆形的抗扭截面系数:W Z 4)13、平面弯曲杆件横截面上的最大切应力:F s S max* zmaxbi z14、平面弯曲杆件的强度校核:(1)弯曲正应力tmax [t ], cmaxc](2)弯曲切应力max [](3)第三类危险点:第三和第四强度理论 16、( 1)轴向载荷与横向载荷联合作用强度: ()FN M maxmax (min 丿15、平面弯曲杆件刚度校核:叠加法 严 [f], max [](2)偏心拉伸(偏心压缩):max ( min)A(3)弯扭变形杆件的强度计算:工程力学常用公式伸长率: F N ; A ;FA ;泊松比E 2(1 ),l bI 0l 0100%,断面收缩率:A o A b A 02、扭转: { M }N gm9549 {P}kW ,{ n} r/ min,W p max TW p,3、4、ddxTGIP,TloGI P弯曲:MdxEl应力状态:MET Z,MyIT,maxMy maxIlMW zd 2wdx2MEIM , xdx)dx CxEIx sin2i2cos 2;x y )22tg2 o拉压强度条件:max(F N)[\ 八/max L扭转强度条件:max(T)[]W p扭转刚度条件:(T)max []GI P梁的弯曲强度条件M maxmaxW.梁弯曲的刚度条件:V V max[]-欧拉公式:F c r -2EIl2,2Ecr 2柔度:-惯性半径:max(min][],maxi x y2max,max . [](丿max [],I zi'■ A。

工程力学第5节 强度理论

工程力学第5节 强度理论

max 0
1 3 max 13 2
第三强度理论 建立的强度条件
1 3 s
1 3 [ ]
4、形状改变比能理论(第四强度理论) 这一理论认为形状改变比能是引起材料屈服破 坏的主要因素。即无论什么应力状态,只要构件内 一点处的形状改变比能达到单向应力状态下的极限 值,材料就要发生屈服破坏。经推导可得危险点处 于复杂应力状态的构件发生塑性屈服破坏的条件为
二、四种强度理论 1、最大拉应力理论(第一强度理论) 该理论认为引起材料脆性断裂破坏的因素是最 大拉压力。即无论什么应力状态下,只要构件内一 点处的最大拉压力达到单向应力状态下的极限应力, 材料就要发生脆性断裂。于是危险点处于复杂应力 状态的构件发生脆性断裂破坏的条件为:
1 b
第一强度理论 建立的强度条件
1 b / E 1 1 [1 ( 2 3 )] E
第二强度理论 建立的强度条件
1 ( 2 3 ) b
1 ( 2 3 ) [ ]
3、最大切应力理论(第三强度理论) 这一理论认为最大切应力是引起屈服的主要因 素。即无论什么应力状态,只要最大切应力达到单 向应力状态下的极限切应力,材料就要发生屈服破 坏。于是危险点处于复杂应力状态的构件发生塑性 屈服破坏的条件为:
纵截面上的正应力
2)确定主应力 因t <<D,p 值比 和 小得多,工程计算常忽略。
pD 150106 Pa 2t
1 150MPa 2 75MPa 3 0
3)按照形状改变比能理论校核强度
r 4 1 2 2 3 3 1
2 1 2 2 2 3

工程力学公式总结

工程力学公式总结

刚体 力的三要素:大小、方向、作用点静力学公理:1力的平行四边形法则2二力平衡条件3加减平衡力系原理(1)力的可传性原理(2)三力平衡汇交定理4作用与反作用定律约束:柔索约束;光滑面约束;光滑圆柱(圆柱、固定铰链、向心轴承、辊轴支座);链杆约束(二力杆) 平面汇交力系平衡的必要和充分条件是:力系的合力等于零。

平面汇交力系平衡几何条件:力多边形自行封闭合力投影定理合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。

它表明了合力与分力在同一坐标轴投影时投影量之间的关系。

平面汇交力系平衡条件:∑F ix =0;∑F iy =0。

2个独立平衡方程 第三章 力矩 平面力偶系力矩M 0(F)=±Fh(逆时针为正) 合力矩定理:平面汇交力系的合力对平面上任一点力矩,等于力系中各分力对与同一点力矩的代数和。

Mo(F )=Mo(F1)+Mo(F 2)+...+Mo(F n)=∑Mo(F ) 力偶;由大小相等,方向相反,而作用线不重合的两个平行力组成的力系称为力偶 力偶矩M =±Fd(逆时针为正)力偶的性质:性质1 力偶既无合力,也不能和一个力平衡,力偶只能用力偶来平衡。

性质2 力偶对其作用面内任一点之矩恒为常数,且等于力偶矩,与矩心的位置无关。

性质3 力偶可在其作用面内任意转移,而不改变它对刚体的作用效果。

性质4 只要保持力偶矩的大小和转向不变,可以同时改变力偶中力的大小和力偶臂的长短, 而不改变其对刚体的作用效果。

平面力偶系平衡条件是合力偶矩等于零。

第四章 平面任意力系力的平移定理:将力从物体上的一个作用点,移动到另外一点上,额外加上一个力偶矩,其大小等于这个力乘以2点距离,方向为移动后的力与移动前力的反向力形成的力偶的反方向平面力向力系一点简化可得到一个作用在简化中心的主矢量和一个作用于原平面内的主矩,主矢量等于原力系中各力的矢量和,而主矩等于原力系中各力对点之矩的代数和。

平面任意力系平衡条件:∑F ix =0;∑F iy =0,∑M 0(Fi)=0。

工程力学(机电一体化技术)_习题集(含答案)

工程力学(机电一体化技术)_习题集(含答案)

《工程力学》课程习题集西南科技大学成人、网络教育学院版权所有习题【说明】:本课程《工程力学》(编号为09004)共有单选题,填空题1,计算题,简答题,填空题2,填空题3等多种试题类型,其中,本习题集中有[填空题2,填空题3]等试题类型未进入。

一、单选题1.工程力学材料力学部分的基本研究对象是()A.刚体B.质点C.弹性变形体D.变形杆件2.工程力学静力学部分的基本研究对象是()A.刚体B.质点C.弹性变形体D.变形杆件3.两个力大小相等、方向相反、作用在两个相互作用物体的一条直线上,这是()。

A.二力平衡公理B.力偶的定义C.作用力和反作用力公理D.二力杆约束反力的特性4.两个力大小相等、方向相反、作用在同一物体的一条直线上,这是()。

A.二力平衡公理B.力偶的定义C.作用力和反作用力公理D.二力杆约束反力的特性5.两个力大小相等、方向相反、作用在同一物体的两条直线上称为()。

A.二力平衡公理B.力偶的定义C.作用力和反作用力公理D.二力杆约束反力的特性6.刚体上作用着三个力并且保持平衡,则这三个力的作用线一定满足()。

A.共线B.共面C.共面且不平行D.共面且相交于同一点7.下列四图中矢量关系符合F4=F1+F2+F3的是图()。

F1F2F4F3F1F2F4F3F1F2F4F3F1F2F4F3A B C D8.下列四图中矢量关系符合F2+F1=F4+F3的是图()。

F1F2F4F3F1F2F4F3F1F2F4F3F1F2F4F3A B C D9.下列四图中矢量关系符合F3+F1=F4+F2的是图()。

F1F2F4F3F1F2F4F3F1F2F4F3F1F2F4F3A B C D10.柔所约束的约束反力大小未知、作用点是柔索的联接点、方向在柔索的()方向。

A.垂直B.平行C.牵拉D.倾斜11.柔所约束的约束反力大小未知、作用点是柔索的联接点、方向在柔索的()方向。

A.垂直B.平行C.牵拉D.倾斜12.光滑铰链约束的约束反力大小和方向的特征是()A.一个大小方向均未知B.两个大小未知C.两个大小未知方向已知D.一个未知13.光滑铰链约束的约束反力大小和方向均未知,受力分析中常将其表达为()的力。

工程力学中四种强度理论

工程力学中四种强度理论

为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。

于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。

σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。

2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。

εu=σb/E;ε1=σb/E。

由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。

按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。

3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。

依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。

所以破坏条件改写为σ1-σ3=σs。

按第三强度理论的强度条件为:σ1-σ3≤[σ]。

4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。

二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用第一理论的应用和局限1、应用材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。

2、局限没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。

工程力学第11章 应力状态和强度理论

工程力学第11章 应力状态和强度理论

而最大正应力的方位角α0则可由下式确定
式中, 负号表示由x面到最大正应力作用面沿顺时针方向旋转。 因为 tan2α0=tan(180°+2α), 所以式(11-4) 给出两个相差90°的 α0 角, 即α0和 α0'=90°+α0(或α'0=α0-90°), 即这两个面互相垂直。 考虑到图11-8a中A、 B两点位于应力圆上同一直径两端, 即最大正应力所在截面和最小正应力所在截 面互相垂直 , 所以式 (11-4) 所求两个 α0 值即是 A 、B 两点所代表截面的方向。 它们之间的对应关系可以利用下述规则来确定 : 在 α0 和 α0+90°两个方向中 , σmax的方向总是在τx所指向的那一侧。 所以, 最大和最小正应力所在截面的方 位如图11-8b所示。 从图11-8a中还可以看出, 应力圆上存在K、M两个极值点, 由此得单元体在平 行于z轴的截面中最大和最小切应力分别为
11.2.2 平面应力状态分析的图解法
由式(11-1)和(11-2)可知, 任一斜截面α上的正应力σα和切应力τα均随参量α变 化。 所以σα和τα间必有确定的函数关系。 为建立它们间直接关系式, 先将式 (11-1)和式(11-2)改写为
式(c)、式(d)两边平方相加, 即有
从式(e)可以看出, 在以τ、σ为纵横坐标轴的平面内, 式(e)所对应的曲线为圆 (图11-5), 其圆心C的坐标为 , 半径为 , 而圆上任何一点的 纵、横坐标分别代表了单元体上某斜截面上的切应力和正应力。 此圆称为应力 圆。 并按以下步骤绘制应力圆。
的构件, 则必须研究危险点处的应力状态。 所谓一点的应力状态, 就是通过受 力构件内某一点的各个截面上应力情况。 由于构件内的应力分布一般是不均匀的, 所以在分析各个不同方向截面上的应 力时, 不宜截取构件的整个截面来研究, 而是围绕构件中的危险点截取一单元体 来分析, 以此来反映一点的应力状态。 例如, 螺旋桨轴工作时既受拉、又受扭 (图11-1a),若围绕轴表面上一点用纵、横截面截取单元体, 其应力情况如图 11-1b所示, 即处于正应力和切应力的共同作用下; 又如, 在导轨和车轮的接触 处(图11-2a), 单元体A除在垂直方向直接受压外, 由于其横向变形受到周围材 料的阻碍, 因而侧向也受到压力作用, 即单元体A处于三向受压状态。 显然, 要解决这类构件的强度问题, 除应全面研究危险点处各截面的应力外, 还 应研究材料在复杂应力作用下的破坏规律。 前者为应力状态理论的任务, 后者 则为强度理论所要研究的问题。

工程力学题库64-知识归纳整理

工程力学题库64-知识归纳整理

知识归纳整理202007批次《工程力学》课程考试考前辅导资料一、 考试复习所用教材《工程力学》第一版,祝瑛、蒋永莉,清华大学出版社,2010二、 考试相关概念、知识点1.基本概念:(1) 变形:构件在外载荷作用下,其形状及尺寸的变化称为变形;(2) 弹性变形:构件在外载荷作用下发生变形,当外载荷去掉后消失的变形称为弹性变形;(3) 强度:构件在外载荷作用下,反抗破坏或过大塑性变形的能力;(4) 刚度:构件在外载荷作用下,反抗弹性变形的能力;(5) 稳定性:构件在压力作用下,保持原有平衡状态的能力;(6) 失稳:构件在一定压力作用下,忽然发生不能保持原有平衡形式的现象;2.力的三要素和力偶的三要素:力的三要素:大小、方向、作用点(力是矢量,所以里的合成是矢量和,区别于标量和);力偶的三要素:力偶矩的大小,力偶矩的转向以及力偶作用平面在空间的方位。

3.变形固体的基本假设:(1) 延续性假设含义: 以为整个构件体积内毫无空隙地充满着物质。

即主为物体是密实的。

推论: 构件内的一些力学量即可用坐标的延续函数表示,也可用无限小的数学分析想法。

(2) 均匀性假设含义: 以为构件内的任何部分其力学性能相同。

推论: 在构件内任意取一单元体研究,其力学性质可代表其它部分。

(3) 各向同性假设含义: 以为在构件内沿各个方向的力学性能相同。

推论: 在构件内沿任意方向取单元体研究,其力学性质可代表其它任何方向。

(4) 小变形假设含义: 以为构件在载荷作用下,其变形与构件的原始尺寸相比非常小,可以忽略不计。

推论: 在研究构件的内部受力和变形等问题时,按构件的原始尺寸和形状计算。

4.静力学五大公理公理1:力的平行四边形法则作用在物体同一点上的两个力可合成一具合力,合力的作用点也在该点,大小和方向由这两个力为邻边构成的平行四边形的对角线确定。

用矢量表示为:F R =F 1+F 2。

公理2:二力平衡公理作用在刚体上的两力平衡的充要条件是:两力的大小相等、方向相反且作用在同向来线上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(二)最大伸长线应变(第二强度)理论:
认为构件的断裂是由最大拉应变引起的。当最大伸长线应变
达到单向拉伸试验下的极限应变时,构件就断了。
1 b ;(1 0)
1
1 E
1
2
3
b
E
1、破坏判据: 1 2 3 b
2、强度准则: 1 2 3
3、实用范围:实用于破坏形式为脆断的构件。
(一)强度计算的步骤:
1、外力分析:确定所需的外力值。 2、内力分析:画内力图,确定可能的危险面。 3、应力分析:画危面应力分布图,确定危险点并画出单元体,
求主应力。 4、强度分析:选择适当的强度理论,计算相当应力,然后进行
强度计算。
(二)强度理论的选用原则:依破坏形式而定。 1.脆性材料:破坏形式为脆断时,一般使用第一,二强度理论。
例1 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, 为铸铁构
件,[]=40MPa,试用第一强度理论校核杆的强度。
A P
T
T
解:危险点A的应力状态如图:
P
P 450
A
0.12
1036.37MPa
AA
T Wn
167000
0.13
35
.7MPa
1
2
2
( )2 2
2
6.37 2
(
6.37 2
3
1 2
3、实用范围:实用于破坏形式为屈服的构件。
三、相当应力:(强度准则的统一形式)。
r
其中,r—
相当应力。
b , 0.2, s
n
r1 1
r 2 1 2 3
r3 1 3
r4
1 2
1
2 2
2
3 2
3
1 2
四、强度理论的应用
M
二、强度理论:是关于“构件发生强度失效(failure by lost strength)起因”的假说。
历史: 1、伽利略播下了第一强度理论的种子; 2、马里奥特关于变形过大引起破坏的论述,是第二强度理论的
萌芽;
3、杜奎特(C.Duguet)提出了最大剪应力理论; 4、麦克斯威尔最早提出了最大畸变能理论(maximum distortion
第十四章 复杂应力状态强度问题
§14-1 强度理论及其应用 §14–2 承压薄壁圆筒的强度计算 §14-3 弯扭组合
§14–1 强度理论及应用
一、材料的破坏形式:⑴ 屈服; ⑵ 断裂
1、铸铁与低碳钢的拉、压、扭试验现象是怎样产生的?
低碳钢扭转
铸铁拉伸
铸铁压缩
P
铸铁扭转
P 2、组合变形杆将怎样破坏?
(三)最大剪应力(第三强度)理论: 认为构件的屈服是由最大剪应力引起的。当最大剪应力达
到单向拉伸试验的极限剪应力时,构件就破坏了。
max s
max
1 3
2
s
2
s
1、破坏判据: 1 3 s
2、强度准则: 1 3
3、实用范围:实用于破坏形式为屈服的构件。
(四)形状改变比能(第四强度)理论:
71.7MPa
§14–2 承压薄壁圆筒的强度计算 例8 图a所示为承受内压的薄壁容器。为测量容器所承受的内压
力值,在容器表面用电阻应变片测得环向应变 t =350×l06,若 已知容器平均直径D=500 mm,壁厚=10 mm,容器材料的 E=210GPa,=0.25,试求:1.导出容器横截面和纵截面上的正应
dq
p(lDdq ) 2 用纵截面将容器截开,受力如图c所示
z
O
p
t
D
q t
2 t 1 p(1 D)
t
pD
2
3、求内压(以应力应变关系求之)
图c
t 外表面 x
t
1 E
t
x
pD
4E
2
p 4Et D(2 )
4 210109 0.01 350106 3.36MPa 0.5 (2 0.25)
力表达式;2.计算容器所受的内压力。
条件: D/ 20
y
m
p p
p xO
D
p
x
A
B
l
图a
解:容器的环向和纵向应力表达式 1、轴向应力:(longitudinal stress) 用横截面将容器截开,受力如图b所示,根据平衡方程
x D p D2 4
x
x
pD
4
p
x
D
x
图b
y
2、环向应力:(hoop stress)
energy theory);这是后来人们在他的书信出版后才知道的。
(一)最大拉应力(第一强度)理论: 认为构件的断裂是由最大拉应力引起的。当最大拉应力达到
单向拉伸的强度极限时,构件就断了。
1、破坏判据: 1 b ;( 1 0)
2、强度准则: 1 ; ( 1 0)
3、实用范围:实用于破坏形式为脆断的构件。
例5 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, []=100MPa,试按第三强度理论校核此杆的强度。
P T
T A
A
故安全。
解:拉扭组合,危险点应力状态如图
P
P 450
A 0.12
103
6.37MPa
T Wp
16
7000 0.13
35.7MPa
r3 2 4 2
6.372435.72
2.塑性材料:破坏形式为屈服时,一般使用第三或第四强度理论。
3.单向与纯剪切组合应力状态(塑性破坏):
max min
2
( )2 2
2
相应的主应力为:
AA
1 3
2
(
2
)2
2
;
2
0
根据第三强度理论得: r3 2 4 2 [ ]
根据第四强度理论得: r4 2 3 2 [ ]
)
2.1 10.32
(1.880.37.37)107
94.4MPa
y
E
1
2
(
y
x
)
2.1 10.32
(7.370.31.88)107
183.1MPa
y
A x
1183 .1MPa, 294.4MPa, 30
r3 1 3 183 .1
r3
183 .1170
170
7.70
0
所以,此容器不满足第三强度理论。不安全。
)
2
35
.7
2
39 32
MPa
139MPa, 20, 332MPa
1 故,安全。
例2 薄壁圆筒受最大内压时,测得x=1.8810-4, y=7.3710-4,已知钢 的E=210GPa,[]=170MPa,泊松比=0.3,试用第三强度理论校核
其强度。 解:由广义虎克定律得:
yA x
ቤተ መጻሕፍቲ ባይዱ
x
E
1
2
(
x
y
认为构件的屈服是由形状改变比能引起的。当形状改变比
能达到单向拉伸试验屈服时形状改变比能时,构件就破坏了。
d ds
d
1
6E
1 2 2 2 3 2 3 1 2
1、破坏判据: 2、强度准则
1
2
1
2 2
2
3 2
3
1 2
s
1
2
1
2 2
2
3 2
相关文档
最新文档