上海交通大学2002高等代数考研试题
上海大学高等代数历年考研真题

2000上海大学 高等代数(一) 计算行列式:acccb ac cb b a cb b b a⋅⋅⋅⋅⋅⋅⋅⋅⋅ (二) 把二次型414332214321),,,(x x x x x x x x x x x x f +++=用非退化线性替换化成平方和.(三) B A ,分别为m n ⨯和m n ⨯矩阵, n I 表示n n ⨯单位矩阵.证明: m n ⨯阶矩阵n A I X B ⎛⎫=⎪⎝⎭可逆当且仅当B A 可逆,可逆时求出X 的逆. (四) 设12,n e e e ⋅⋅⋅是n 维线性空间n V 的一组基,对任意n 个向量12,n a a a ⋅⋅⋅n V ∈,证明:存在唯一的线性变换A ,使得(),1,2i i A e a i n ==⋅⋅(五) 设A 是n 维线性空间V 的线性变换,求证:1(0)V A V A -=⊕当且仅当若12,r a a a ⋅⋅⋅为A V 的一组基则12,r A a A a A a ⋅⋅⋅是2()A V 的一组基. (六) 设A 为2级实方阵,适合21001A -⎛⎫=⎪-⎝⎭,求证:A 相似于0110-⎛⎫⎪⎝⎭. (七) 已知,f g 均为线性空间V 上线性变换,满足22,f f gg ==试证:(1)f 与g 有相同的值域⇔,fg g g f f ==. (2)f 与g 有相同的核⇔,fg f g f g ==.2001上海大学 高等代数(一)计算行列式:231212123n n n x a a a a x a a a a x a a a a x(二)设A 为3阶非零方阵,且20A =.(1)求证:存在123,,a a a ,123,,b b b ,()121233a A a b b b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭(2)求方程组0A X =的基础解系.(三)用正交的线性替换化二次行2221231231323(,,)3244f x x x x x x x x x x =++--为标准形(四)设A 为n m ⨯阶实矩阵,且()()r A m n m =≥.若'2'()A A a A A =,求证'm A A a E =.(五)设A 是n (n 为奇数)维线性空间V 上线性变换,若10,0n nAA-≠=求证:存在a V ∈,使2211,,,,n n n a A a A a A a Aa Aa Aa a ---++++ 为V 的一组基,并求A 在此组基下的矩阵.(六)设A 是欧式空间V 上的对称变换.求证:对任意0a ≠,都有()0,0a A a a ≠<⇔A 的所有特征值都小于0. (七)设A a B aβ-⎛⎫=⎪⎝⎭,其中A 为n 阶负定矩阵,a 为n 维列实向量,β为实数.求证B 正定的充分必要条件为'10a A a β-+>.(八)若A 是正交阵,且A -特征值为1的重数是S ,求证:(1)sA =-(A 为A 的行列式).2002 上海大学 高等代数(一)计算行列式:若1232nx a a a ax a aA B aa x a aaax ==,求AB A BA ⎛⎫=⎪⎝⎭. (二)设A 是n 阶可逆方阵,0A A B A ⎛⎫=⎪⎝⎭. (1)计算kB (K 是整数),(2)假设100110111A =,C 为6阶方阵,而且2BC C E =+,求C .(三)设(1)(1)(1)(1)p p p n p pp n p p A p n p p p n pppp--------=--------,A 是n 阶矩阵(0p ≠),求0A X =的基础解系.(四)构造一个3阶实对称方阵A ,使其特征值为1,1,-1.并且对应的特征值有特征向量(1,1,1),(2,2,1).(五)设向量组A :123,,n a a a a ⋅⋅的秩为r (r n <),则A 中任意r 个向量线性无关的充分必要条件为:对任意向量121,,r i i i a a a + ,若1211210r i i rika k a k a ++++= ,则121,r k k k +或全为0或全不为0.(六)设A 为n 阶正定矩阵,n m B ⨯为秩为m 的实矩阵,求证'B A B tE +(0t >,E 为单位矩阵)为正定矩阵.(七)设A 为欧式空间V 上的线性变换,且2A E =.(1)求证:A 是V 上的正交变换的充分必要条件为A 是V 上的对称变换. (2)设{}1,V a a V A a a =∈=,求证:12V V V =+是直和.(八)设A 为n 阶实正交矩阵,123,,n a a a a ⋅⋅为n 维列向量,且线性无关,若12,n A E a A E a A E a +++ 线性无关,则1A =.2003上海大学 高等代数(一)计算行列式:x a a a ax a aA a a x a aaax=(A 为n 阶矩阵),2AA B AA ⎛⎫= ⎪⎝⎭(1)求A (2)求B(二)设A 为21n k =+阶反对称矩阵,求A .(三)设,A B 为n 阶整数方阵(,A B 中元素为整数),若A B E A =- (1)求证:1A =±,(2)若200120232B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求A . (四)设12(,)n A a a a = 为n 阶方阵,()1r A n =-,且121n n a a a a -=++ 121n n a a a a β-=+++ ,求A X β=的解.(五)设A 是n 阶可逆方阵,且A 每行元素之和为a ,求证:k A -的每行元素之和为ka -(k 为正整数)(六)设A 为n 阶正交矩阵,若.证明:存在正交矩阵G 使1rs E GA G E -⎛⎫=⎪-⎝⎭. (七)设2A A =,且A 为n 阶方阵,()R A r =.(1)求证:2rE A += (2)求证:()()R A R A E n +-=(3)若1r =,求0A X =的解.(八)构造一个3阶实对称方阵A ,使其特征值为2,1,1,且有特征向量(1,1,1). (九)设二次型22221234121314232434()222222f X x x x x x x x x x x x x x x x x =++++++---(1)求()f X 对应的实对称矩阵A .(2)求正交变换X P Y =,将()f X 化为标准型.(十)设A 是n 维线性空间V 上的线性变换,12,k a a a 是对应的不同特征值12,k λλλ 的特征向量.若12k a a a W ++∈ ,而W 是A 的不变子空间,则有维(W )k ≥ (十一)设B 为欧式空间V 上的变换,A 为欧式空间V 上的线性变换且有:(,)(,),,A a a B a V βββ=∀∈.证明:(1)B 为欧式空间V 上的线性变换. (2)1(0)()A B V -⊥=2004 上海大学 高等代数(一)设n 阶可逆方阵()ij A a =中每一行元素之和为(0)a a ≠,证明:(1)11(1,2)nij j A aA i n -===∑ ,其中i j A 为ij a 的代数余子式.(2)如果ij a 都是整数(1,2)i n = ,则a 整除A . (二)设1212121n n nn n a a a a A b b b b -⨯-⎛⎫= ⎪⎝⎭为实矩阵,且()2r A =. (1)求行列式'E A A λ-.(2)求'0A A X =的解(X 是n 维列向量).(三)设,A B 为n 阶整数方阵,若2B E A B =-.(1)求证:21A B+=.(2)若100110231B -⎛⎫⎪=- ⎪ ⎪-⎝⎭,求1(2)A B -+. (四)若A 为非零的半正定矩阵,B 为正定矩阵,求证: (1)求证:存在实矩阵T ,使'T T B =. (2)1A E +>. (3)A B B +>.(五)设λ为A 的特征值的最小者.求证:对任意的n 维列向量a ,有''a A a a a λ≥. (六) 设123,,λλλ为3阶方阵A 的特征值,且()()()111,011,01分别为其对应的特征向量,求nA .(七) V 是n 维欧氏空间, σ是n 维空间V 上的线性变换,如果1231,,n a a a a - 是V 中1n -个线性无关的向量,且(),σββ分别与1231,,n a a a a - 正交(β不为0).求证: β为σ的特征向量.(八)设3223303060303A B ⨯⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭,求证: (1)()()2r A r B == (2)题型与钱吉林书习题类示。
[全]《高等代数》考研真题详解[下载全]
![[全]《高等代数》考研真题详解[下载全]](https://img.taocdn.com/s3/m/2f5e7be6f01dc281e43af03a.png)
《高等代数》考研真题详解1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中.(U )[南京大学研]【答案】对查看答案【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈Pab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有综上所述的P为数域.2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.()[南京大学研]【答案】错查看答案【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f ‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.()[南京大学研]【答案】对查看答案【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.二、计算题1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则(1)当p=4时,有(f(x),f′(x))=x2+4x+4所以x+2是f(x)的三种因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.(2)若p≠4,则继续辗转相除,即当p=-5时,有(f(x),f′(x))=x-1即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故f(x)=x3+bx2-15x+8=(x-1)2(x+8)这时f(x)的三个根为1,1,-8.2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]解:设6次单位根分别为由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得从而f1(-1)=f2(-1)=0即x+1是f1(x)与f2(x)的一个公因式.同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x -1是f1(x)与f2(x)的一个公因式.所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1名校考研真题第6章线性空间一、选择题1.下面哪一种变换是线性变换().[西北工业大学研]A.B.C.【答案】C查看答案【解析】不一定是线性变换,比如则也不是线性变换,比如给而不是唯一的.2.在n维向量空间取出两个向量组,它们的值().[西北工业大学研] A.必相等B.可能相等亦可能不相等C.不相等【答案】B查看答案【解析】比如在中选三个向量组(I):0(Ⅱ)(Ⅲ).若选(I)(II),秩秩(II),从而否定A,若选(Ⅱ)(Ⅲ),秩(Ⅲ)=秩(Ⅱ),从而否定C,故选B.二、填空题1.若则V对于通常的加法和数乘,在复数域C上是______维的,而在实数域R上是______维的.[中国人民大学研]【答案】2;4.查看答案【解析】在复数域上令;则是线性无关的.则此即证可由线性表出.在实数域上,令若,其中,则此即在R上线性关.可由线性表出,所以在实数域R上,有三、分析计算题1.设V是复数域上n维线性空间,V1和V2各为V的r1维和r2维子空间,试求之维数的一切可能值.[南京大学研]解:取的一组基,再取的一组基则=秩。
上海交通大学《高等代数》《数学分析》历年考研真题汇总(2009-2018真题汇编)

(x − 1)n | (f (x) + 1), (x + 1)n | (f (x) − 1).
Ê! V •ê• F þ n ‘‚5˜m, A • V þ ‚5C†÷v A 3 − 2A 2 − A = −2id, Ù¥ id • V þð C†.
(1) A ´ÄŒé z, e´, žy². (2) - V1 = {(A − 2id)v | v ∈ V }, V2 = {(A 2 − id)v | v ∈ V }. y²: V = V1 ⊕ V2.
8
5 þ° ÏŒÆ 2015 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
9
6 þ° ÏŒÆ 2018 ca¬ïÄ)\Æ•ÁÁK£828 p “ê¤
10
7 þ° ÏŒÆ 2010 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
11
8 þ° ÏŒÆ 2011 ca¬ïÄ)\Æ•ÁÁK( 614 êÆ©Û)
16
3
1. 2010年þ° ÏŒÆ828《高等代数》a¬ïÄ)\Æ•ÁÁK
˜! ( 20 ©) OŽ1 ª
an1
an2
(1) Dn+1 =
...
an1 −1b1 · · ·
an2 −1b2 · · · ...
ann+1 ann−+11bn+1 · · ·
1 + a1 + b1 a1 + b2
a1bn1 −1
›˜! A ´ n ‘m¥ f˜m.
C†, V1 ´ V A − ØCf˜m. y²: V1
Ö•´ V A − ØC
› ! A, B þ• n ¢é¡ , y²: AB A ŠÑŒu".
4
上海交大高等代数+数学分析历届考研真题.

上海交通大学1999年硕士研究生入学考试试题试卷名称:高等代数1.(10分)设P 为数域。
()()[]x P x g x f ∈,令()()()()()x g x x x f x X F 1122++++=;()()()()x g x x xf x G 1++=。
证明:若()x f 与()x g 互素,则()x F 与()x G 也必互素。
2.(10分)设J 为元素全为1的阶方阵。
(1) 求J 的特征多项式与最小多项式;(2) 设()x f 为复数域上多项式。
证明()J f 必相似于对角阵。
3.(10分)(1) 设n 阶实对称矩阵()ij x A =,其中1+=j i ij a a x 且0...21=+++n a a a ,求A 的n 个特征值。
(2) 设A 为复数域上n 阶方阵。
若A 的特征根全为零,证明:1=+E A 。
此处E 为n 阶单位阵。
4(10分)设()x f 是数域F 上的二次多项式,在F 内有互异的根21,x x ,设A 是F 上线性空间L 的一个线性变换且I x A 1≠,I x A 2≠(I 为单位变换)且满足()0=A f ,证明21,x x 为A 的特征值;且L 可以分解为A 的属于21,x x 的特征子空间的直和。
5(10分)用正交线性变换将下列二次型化为标准形,并给出所施行的正交变换:32312123222184422x x x x x x x x x ++---6(10分)对的不同取值,讨论下面方程组的可解性并求解:7(10分)假设A 为n m ⨯实矩阵,B 为1⨯n 实矩阵,TA 表示A 的转置矩阵。
证明: (1) AB=0的充要条件是0=AB A T; (2) 矩阵A A T与矩阵A 有相同的秩。
8(10分)设p A A A ,...,,21均为n 阶矩阵且0...21=p A A A 。
证明这p 个矩阵的秩之和小于等于()n p 1-,并举例说明等式可以达到。
上海交通大学2002年研究生入学考试信号系统与信号处理试题

上海交通大学2002年研究生入学考试试题试题序号:413 试题名称:信号系统与信号处理(答案必须写在答题纸上,写在试题纸上一律不得分)一. 已知系统函数233)(22+--=z z z z z H 。
1.求h(n). 2.已知输入)()1()(n n x n ε-=,全响应)(])1(32)2(342[)(n n y n n ε-++=,求y(-1),y(-2). 3.若n n x 3)(=,求响应y(n).二. 上述T t T tt f <-=),1()(;)()(001ωωδωω∑-=n H ;)2()2()(002ωωεωωεω--+=H ,求x(n)和y(t). 三.已知系统函数12199104)(23++++=s s s s s H . 1. 画出系统函数流图。
2. 根据上图,写出系统的状态方程。
3. 求At e 。
四.已知343)(22++-=s s s s H 。
1. 求h(t).2. 若)(3cos )(t t t e ε=,画出系统的RLC 图,并写出系统幅频、相频特性。
五.已知系统方程y(n)-5y(n-1)+6y(n-2)=x(n),若x(n)= )(2n n ε,y(-1)=2,y(-2)=3 求:系统的全响应,并指出零输入、零状态响应及自由、强迫响应。
六.1.求)(*)(2)(n n n n s n εε=2.已知)()1()(πωδωl k e X k k j --=∑+∞-∞=,求x (n )3.求223sin2sin4)(ωωωω=F 的傅氏反变换f(t)4.已知t t t t f 3cos )]2()2([)(--+=εε,求)(ωF 。
七.已知序列)()(n a n x n ε=,令∑+∞-∞=+=r rN n x n x )()( 求:1. )(ωj e X 和)(k X 。
2.两者之间的关系。
上海交通大学2019高等代数考研试题word资料3页

上海交通大学2002年硕士研究生入学考试高等代数1、(12))()()(1x bg x af x f +=,)()()(1x dg x cf x g +=且0≠dc b a ,证()())(),()(),(11x g x f x g x f =。
2、(14)计算xa a a a a axaa a a a x a a a a axa x a a a a a a x aa a a a x nn n -------=+++O ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ,321321321。
3、(15)k 取何值时,下列方程组β=AX :(1)有唯一解;(2)无解;(3)有无穷多解,此时求其通解。
其中⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=111,2111111βk k A 。
4、(12)设A 为数域P 上n 阶可逆矩阵,任意将A 分为两个子块⎪⎪⎭⎫⎝⎛=21A A A ,证n 维线性空间n P 是齐线性方程组01=X A 的解空间1V 与02=X A 的解空间2V 的直和。
5、(10)f(x)是方阵A 的特征多项式,g(x)为任多项式,())()(),(x d x g x f =,证r(g(A))=r(d(A)).6、(12)求正交变换化二次型323121232221844552x x x x x x x x x f --+++=为标准型。
7、(15)设σ为线性空间V 的一线性变换,σσ=2.证(1)σ的特征值只能为1或0(2)若用1V 与0V 分别表示对应于特征值1和0的特征子空间,则V V σ=1,)0(10-=σV (3))0(101-⊕=⊕=σσV V V V 。
8、(10)设A ,B 为n 阶对角化矩阵,AB=BA 。
证明A ,B 可同时对角化。
上海交通大学2003年硕士研究生一 判断以下各题,正确的给出证明,错误的举出反例并给出理由(每小题6分,共24分)1)若f (x )在R 上有定义,且在所有的无理点上连续,则f (x )在R 上处处连续2)若f (x ),g (x )连续,则))(),(min()(x g x f x =φ连续 3)任意两个周期函数之和仍为周期函数4)若函数f (x ,y )在区域D 内关于x ,y 的偏导数均存在,则f (x ,y )在D 内连续二.设f (x )在[a ,b]上无界,试证:对任意的],[,0b a 在>δ上至少有一点0x ,使得f (x )在δ的0x 邻域上无界.(12分)三 设f (x )对任意的R x ∈有)()(2x f x f =且)(x f 在x=0和x=1 处连续,试证明f (x )在R 上为常数.(12分) 四 已知)(,....)()2(,0,....,,lim 01121x f n aa x f n a a a x xx nx n →⎪⎪⎭⎫⎝⎛++=≥>试求且(12分) 五,若实系数多项式)0(,)(01110≠++⋅⋅⋅⋅⋅++=--a a x a x a x a x P n n n n n 的一切根均为实数,试证导函数)('x P n 也仅有实根。
上海交大考研试题(高代)

上海交通大学研究生入学试题(高等代数)JDy97-1方程组⎩⎪⎨⎪⎧3x 1+4x 2-5x 3+7x 4=02x 1-3x 2+3x 3-2x 4=04x 1+11x 2-13x 3+16x 4=07x 1-2x 2+ x 3+3x 4=0是否有非零解? 若有,求其通解,并写出解空间维数。
(14分)JDy97-2用正交线性变换把二次型 x 12+2x 22+3x 32 -4x 1x 2 - 4x 2x 3化为标准形,并写出该变换。
(14分)JDy97-3证明:矩阵A 是正定或半正定实对称的充要条件是:存在实矩阵S ,使得A=S T S ,其中S T 表示S 的转置矩阵。
(14分)JDy97-4设A, B 为n 阶方阵,AB=BA ,且A k =0,对某一个k ≥1整数,证明 |A+B|=|B|。
(14分) JDy97-5设R n [x]为次数<n 的多项式线性空间,δ 为求导变换(即δf(x)=f ’(x)),求证 ι-δ 为非退化线性变换(其中 ι 为恒等变换),并求出 δ 的所有不变子空间。
(14分)JDy97-6已知线性无关向量组e 1,e 2,…,e s 和两个非零向量的正交组f 1,f 2,…,f s 与g 1,g 2,…,g s 使得f k 和g k (k=1,2,…,s)可由e 1,e 2,…,e k 线性表示,求证f k =a k g k (k=1,2,…,s),其中a k ≠0。
(14分) JDy97-7(1) 设J(x)为方阵X 的若当标准形,证明J(A+aE)=J(A)+aE ,其中A 是任一方矩阵,a 是一个数。
(8分)(2) 求幂等方阵A (即满足条件A 2=A )的若当标准形。
(8分)JDy98-1叙述下列概念:1)数域;2)对称多项式;3)向量的线性相关;4)矩阵的秩;5)欧氏空间。
(每小题4分,共20分)JDy98-2求线性方程组的解:⎩⎪⎨⎪⎧(α+β)x 1+αβx 2 =0x 1 +(α+β)x 2+αβx 3 =0x 2 +(α+β)x 3+αβx 4 =0 … …. … x n-1+(α+β)x n =0JDy98-3求出一切仅与自己相似的n 阶复方阵。
上海交通大学·2002_年第一学期高等数学期末试题(A卷)(附参考答案)

试题照登上海交通大学·高等数学期末试题(A 卷)(附参考答案)2002年第一学期一、选择题(每题3分,共15分,每题选项仅有一项符合要求,把所选项前的字母填入括号内)1.f (x )在a 连续,且lim x ※a f (x )-f (a )(x -a )m =c >0,其中m 是偶数,则(B ……………………………)A .a 是f (x )的极大值点; B .a 是f (x )的极小值点;C .a 不是f (x )的极大值点;D .不能判别a 是否f (x )的极值点.2.f (x ),g (x )均为恒不为零的可微函数,且f ′(x )g (x )-g ′(x )f (x )>0,则当x >a 时,成立不等式(A ……………………………………………………………………………………………………)A .f (x )g (a )>f (a )g (x );B .f (x )g (x )>f (a )g (a );C .f (a )g (x )>f (x )g (a );D .f (a )g (a )>f (x )g (x ).3.函数f (x )=lim n ※∞n 1+x 2n 在(-∞,+∞))连续且(C ………………………………………………)A .处处可导; B .仅有一个不可导点;C .仅有二个不可导点;D .至少有三个不可导点.4.∫1-11+x sin 2x 1+x 2dx =(B ………………………………………………………………………………)A .π4 B .π2 C .π D .0.5.微分方程y ″-2y ′=xe 2x 的特解形式可设为(C ……………………………………………………)A .(ax +b )e 2x ;B .x (ax +b );C .x (ax +b )e 2x ;D .axe 2x .二、填空题(每小题3分,共15分,把答案填在题中横线上)1.f (x )=ln (1+ax b ), x ≥0,e x 2-1sin2x, x <0在x =0可导,则a =12,b =1.2.设函数y =y (x )由方程y =∫2x +y 0sin t 2dt -∫x 20e -t dt (其中x >0)所确定,则其导数dy dx =2sin (x +y )2-2xe -x 1-sin (2x +y )23.∫20x 44-x 2dx =2π.4.x ※0时,∫x 30sin 3tdt 是βχα的等价无穷小,则α= 4 β= 34 .5.f (x )为连续函数,F (x )=∫2x0f (x +t )dt ,则F ′(x )=3f (3x )-f (x ).三、计算下列积分(18分)1.∫x (e x2x x 122-12+12(6分)63Vol .6,No ,4Dec .,2003 高等数学研究STUDIES IN COLLECE MATHEMATICS2.∫π0dx 2+cos x =23arctan x 3|+∞0=π33.∫+∞2dx x 4x 2-1=12arcsin 15四、解下列方程(14分)1.(x y -x 2)y ′=y 2 e y x =cy2.y ″+2y ′+2y =4e x sin x 通解为y =12e x (sin x -cos x )+c 1e -x cos x +c 2e -x sin x 五、(14分)1.设f (x )=ln x -2x 2∫e 1f (x )xdx ,求f (x ). f (x )=ln x -e -2x 22.设f 2(x )=2∫x 0f (t )1+f ′2(t )dt -2x ,求f (x ). f (x )=1-e x六、应用题(18分)1.求心脏线r =a (1+cos θ)(a >0)上对应0≤θ≤π2的孤线段的长度,且求该弧段与射线θ=0及θ=π2所围图形绕极轴旋转所得旋转体的体积.V =52πa 32.(8分)D 是由抛物线y =2x (2-x )与x 轴所围成的区域,直线y =kx 交区域D 分为面积相等的两部分,求k 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海交通大学2002年硕士研究生入学考试高等代数
1、(12)
)()()(1x bg x af x f +=,)()()(1x dg x cf x g +=且
0≠d
c b
a ,证()())(),()(),(11x g x f x g x f =。
2、(14)计算
x
a a a a a a
x
a
a a a a
x a a a a a x a x a a a a a a x a a a a a x n
n n -------=+++
,32
1
321321。
3、(15)k 取何值时,下列方程组β=AX :(1)有唯一解;(2)无解;(3)有无穷多解,
此时求其通解。
其中⎪⎪⎪
⎭
⎫
⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=111,2111111βk k A 。
4、(12)设A 为数域P 上n 阶可逆矩阵,任意将A 分为两个子块⎪⎪⎭
⎫
⎝⎛=21A A A ,证n 维线性
空间是齐线性方程组01=X A 的解空间与02=X A 的解空间的直和。
5、(10)f(x)是方阵A 的特征多项式,g(x)为任多项式,())()(),(x d x g x f =,证r(g(A))=r(d(A)).
6、(12)求正交变换化二次型323121232221844552x x x x x x x x x f --+++=为标准型。
7、(15)设为线性空间V 的一线性变换,σσ=2
.证(1)的特征值只能为1或0(2)若用与分别表示对应于特征值1和0的特征子空间,则V V σ=1,)0(10-=σV (3)
)0(101-⊕=⊕=σσV V V V 。
8、(10)设A ,B 为n 阶对角化矩阵,AB=BA 。
证明A ,B 可同时对角化。
上海交通大学2003年硕士研究生
一 判断以下各题,正确的给出证明,错误的举出反例并给出理由(每小题6分,共24分) 1)若f (x )在R 上有定义,且在所有的无理点上连续,则f (x )在R 上处处连续 2)若f (x ),g (x )连续,则))(),(min()(x g x f x =φ连续
3)任意两个周期函数之和仍为周期函数
4)若函数f (x ,y )在区域D 内关于x ,y 的偏导数均存在,则f (x ,y )在D 内连续 二.设f (x )在[a ,b]上无界,试证:对任意的],[,0b a 在>δ上至少有一点,使得f (x )在δ的0x 邻域上无界.(12分)
三 设f (x )对任意的R x ∈有)()(2x f x f =且)(x f 在x=0和x=1 处连续,试证明f (x )在R 上为常数.(12分)
四 已知)(,....)()2(,0,....,,lim 01121x f n a
a x f n a a a x x
x n
x n →⎪⎪⎭
⎫
⎝
⎛++=≥>试求且(12分) 五,若实系数多项式)0(,)(01110≠++⋅⋅⋅⋅⋅++=--a a x a x a x a x P n n n n n 的一切根均为实数,试证导函数)('x P n 也仅有实根。
(12分) 六 设}{n na 收敛,级数
)(12
-∞
=-∑n n n
a a
n 收敛,试证明级数∑∞
=1
n n a 收敛(12分)
七 设)0)((≥=x x y φ是严格单调增加的连续函数,)(,0)0(y x ψφ==是它的反函数,试证明对⎰⎰≥+>>a b
ab dy y dx x b a 0
.)()(,0.,0ψφ有
(12分)
八计算题(每小题12分,共24分)
1) 求函数4
4
4
),,(z y x z y x f ++=在条件1=xyz 下的极值。
2) 计算积分
h z z R z y x V zdxdydz z y I V
===-+-=⎰⎰⎰,0,)(21,arctan )(222为由曲面其中
所围成的区域
九.设g (x )在),[+∞a 上一致连续,且对任意的A n x g a x n =+≥+∞
→)(,lim 有,
试证:
A x g x =+∞
→)(lim (10分)
十 试证分)10.(0,)
1(1
)11(ln 2
>+<+
x x x x 十一。
设函数f (x )在[a ,b]上连续,在(a ,b )内可导,且f (x )是非线性函数,试证存在分)使得10.()
()()('),(a
b a f b f f b a -->∈ξξ。