电力电容器的保护原理及技术要求
继电保护中电容器保护常用保护原理

继电保护中电容器保护常用保护原理电力电容器组不平衡保护综述科技日益进步,经济持续发展,用户用电对电能的要求也日益升高。
不单是对电能数量的需求不断增长,其对电压质量要求也越来越高,电容器保护测控装置不单要有足够的电能,还要有稳定的电能——即电压、频率、波形需符合要求,才能保证用户的用电设备持续保持最好的工作性能,从而保证工效效率。
其中,电压质量是很重要的一个方面,不单对用户生产、生活、工作有重大影响,对整个电网的安全稳定经济运行也有着至关重要的作用。
与电压质量息息相关的就是无功电源,无功不足,会使得系统的电压幅值降低,对整个电网来说,电压过低可能引起电压崩溃,进而使系统瓦解,造成负荷大幅流失;对单个元件而言,电压的降低可能使其无法运行在最佳工况,同时造成电能损耗增大,甚至可能损坏设备,同时输电线路在同等条件下,电压越低传输的电能就越小。
因此,必须保证无功电源的供应。
同时,为了确保电网经济运行与用户的用电正常,又必须减小无功功率的流动,因此,无功补偿的基本原则是就地补偿。
即在变电站及用户负荷处,将一定量的电容器串联、并联在一起,形成电容组,使其达到一定的容量、满足一定的电压要求,补偿系统无功、调节该节点电压。
1电容器组接线方式的决定因素电容器通常是将若干元件封装在一铁壳内,构成电容器单元,再由各单元先并后联,封装在铁箱内组成的。
当电容器组所接入电网的电压等级、容量要求确定以后,接线方式的选择则关系到了电容器组的安全性、可靠性以及经济性。
决定接线方式的主要因素包括以下几个方面。
1.1受耐爆容量限制电容器组在运行过程中,若其中某个电容器击穿短路,这个电容器将承受来自其自身及其他并联10KV电容器保护组的放电。
为防止故障元件受放电能量过大冲击,导致电容元件爆炸,必须限制同一串联段上的并联台数,即有所谓的最大并联台数问题。
可以通过减少并联数与增大串联段数的方法,来降低冲击故障电容器的放电能量。
1.2接线方式与设备不配套的限制20世纪90年代末至21世纪初,由于工艺上的改进,使电力电容器的介质,结构发生改变,普遍采用了全膜电容器。
电力电容器的保护原理及技术要求

电力电容器的保护原理及技术要求一、电力电容器的保护原理1.过电流保护:当电力电容器的故障导致电流超过额定值时,需要及时切断故障电容器,以避免电流过大对线路和其他设备产生损害。
过电流保护装置可以依靠熔断器、保险丝等装置实现电流保护的功能。
2.过电压保护:电力电容器在运行过程中,可能会遭受电力系统的过电压供应,如果电压超过了电容器的额定值,会引起电容器内部的介质损坏。
因此,需要采取过电压保护装置来防止过电压对电容器的损坏,例如采用过电压继电器、过电压限流器等装置。
3.过温保护:电力电容器在运行过程中可能会因为工作电流过大或环境温度过高而过热。
过温保护装置可以监测电容器的温度,一旦温度超过预设的限制值,立即切断电容器的供电,以保护电容器不被过热损坏。
4.差动保护:差动保护对电容器的运行状态进行监测,一旦发现电容器内部出现短路或其他故障,立即切断电容器的供电,以防止故障扩大和对系统的影响。
5.过压维持器:为了保证电力电容器在停电或断电后能够快速放电,避免电容器内的电荷继续存储,引起过电压问题。
过压维持器可以在电容器断电后将电荷迅速放电,在开通电源前对电容器进行必要的放电处理。
二、电力电容器的保护技术要求1.可靠性要求:电力电容器的保护装置需要具备高可靠性,能够准确地判断和处理各种故障情况,及时采取措施切断电容器的供电,确保电容器正常运行。
2.灵敏度要求:保护装置需要能够准确地监测和判断电力电容器的工作状态,对电容器内部或外部的故障进行快速识别和处理,避免耽误处理时间,造成更大的损失。
3.自动化要求:电力电容器保护装置需要具备自动化功能,能够实现对电容器的自动监测、自动切断和自动恢复等功能。
4.合理性要求:保护装置需要根据电力电容器的特点和工作环境的实际情况,选用合适的保护装置和参数设置,使其能够良好地配合电容器的运行。
5.效率要求:保护装置需要在电容器发生故障时,能够迅速切断电容器的供电,以防止故障继续扩大,保护其他设备的安全。
电力电容器的补偿原理

1电力电容器的补偿原理电容器在原理上相当于产生容性无功电流的发电机。
其无功补偿的原理是把具有容性功率负荷的装置和感性功率负荷并联在同一电容器上,能量在两种负荷间相互转换。
这样,电网中的变压器和输电线路的负荷降低,从而输出有功能力增加。
在输出一定有功功率的情况下,供电系统的损耗降低。
比较起来电容器是减轻变压器、供电系统和工业配电负荷的最简便、最经济的方法。
因此,电容器作为电力系统的无功补偿势在必行。
当前,采用并联电容器作为无功补偿装置已经非常普遍。
2电力电容器补偿的特点2。
1优点电力电容器无功补偿装置具有安装方便,安装地点增减方便;有功损耗小(仅为额定容量的0.4 %左右);建设周期短;投资小;无旋转部件,运行维护简便;个别电容器组损坏,不影响整个电容器组运行等优点。
2.2缺点电力电容器无功补偿装置的缺点有:只能进行有级调节,不能进行平滑调节;通风不良,一旦电容器运行温度高于70 ℃时,易发生膨胀爆炸;电压特性不好,对短路稳定性差,切除后有残余电荷;无功补偿精度低,易影响补偿效果;补偿电容器的运行管理困难及电容器安全运行的问题未受到重视等。
3无功补偿方式3.1高压分散补偿高压分散补偿实际就是在单台变压器高压侧安装的,用以改善电源电压质量的无功补偿电容器。
其主要用于城市高压配电中。
3。
2高压集中补偿高压集中补偿是指将电容器装于变电站或用户降压变电站6 kV~10 kV高压母线的补偿方式;电容器也可装设于用户总配电室低压母线,适用于负荷较集中、离配电母线较近、补偿容量较大的场所,用户本身又有一定的高压负荷时,可减少对电力系统无功的消耗并起到一定的补偿作用。
其优点是易于实行自动投切,可合理地提高用户的功率因素,利用率高,投资较少,便于维护,调节方便可避免过补,改善电压质量。
但这种补偿方式的补偿经济效益较差。
3。
3低压分散补偿低压分散补偿就是根据个别用电设备对无功的需要量将单台或多台低压电容器组分散地安装在用电设备附近,以补偿安装部位前边的所有高低压线路和变压器的无功功率。
电网10kV电容器保护方式原理探讨

电网10kV电容器保护方式原理探讨摘要:目前,内熔丝的可靠性和隔离性能都比较成熟稳定,加上不拆线测量技术的发展成熟,对于电网110kV变电站内10kV侧常用的双星性接线、单台容量334kVar的并联电容器组,内熔丝+继电保护方式完全可发展为一种较完善可靠的保护方式。
对于外熔断器,建议可以对目前的生产制造水平进行调研,加强其质量监管,在可靠性得到保障的情况下,可深入探讨和研究外熔断器+内熔丝+继电保护的配置方案。
关键词:10KV并联电容器保护方式随着我国电网的发展和电容器制造水平的提高,并联电容器已广泛应用于电力系统的无功补偿,电容器保护也经历了一个发展变化的过程。
上世纪70年代初,电容器单台容量小,保护措施多以继电保护为主;后来发展了单台电容器保护用熔断器,为防止电容器爆裂起到了良好的效果。
其间随着容量增大,发展了带内熔丝的电容器,由内熔丝切除内部故障元件。
目前并联电容器的保护配置通常是电容器单元内部故障保护配合电容器组故障保护,具体形式有以下4种:外熔断器+继电保护、内熔丝+继电保护、外熔断器+内熔丝+继电保护、单独继电保护。
目前,电网110kV变电站10kV侧普遍采用的并联电容器组方案为:容量10020/8000kVar,双星形接线。
单台电容器334kVar,单元内部元件3串11并。
本文拟结合该并联电容器组,对上述各种电容器保护方式的原理、现状进行分析,以期提出合理的保护配置方案。
1 保护方式原理分析1.1 外熔断器+继电保护结合电网常用的单台334kVar电容器的内部接线,外熔断器保护的基本原理如下图1所示单台334kVar电容器由11个元件相互并联后构成1个串联段,再由3个串联段相互串联而构成。
当其中某个元件故障后,元件被击穿,自身阻抗下降,引起该串联段和电容器阻抗减小,电流增大;随着击穿元件的增多,流过外熔断器的电流达到一定过电流倍数时,外熔断器发热熔断,有故障的单台电容器被切除,其它健全电容器继续运行;当故障电容器增多,剩余健全电容器的过电压超过限制(约为1.1倍)时,继电保护动作,整组电容器退出。
电容器过电压保护

中国电力设备管理网电力电容器过电压保护反措摘要:通过分析银南电网电容器过电压保护几次误动事故,提出在电容器过电压保护中使用高返回系数JY8系列静态型电压继电器,来防止系统出现瞬间过电压时电容器过电压保护误动。
1引言电力系统中,电力电容器作为一种静止型无功功率补偿装置,在维护系统的可靠、稳定运行中,发挥着日益重要的作用。
实践证明,为了提高电力电容器运行的可靠性,除了不断提高电容器本身的质量,采用合理的接线和布置之外,配备完善、合理的保护装置也是极其重要的。
电容器过电压保护,是确保电力电容器在不超过规程规定的最高允许电压下和规定的时间内动作的电容器保护。
由于电容器输出的无功功率和内部有功功率损耗均与其两端电压的平方成正比,即电容器输出无功功率Qc=ωCU2;电容器有功功率损耗P1=ωCU2tgδ,电容器耐受过电压的能力比较低。
按照IEC标准,“电容器单元应适合于当端子间的电压有效值升到不超过1.1倍额定电压(过渡过程除外)下连续运行。
”我国国标也规定,电容器连续运行的工频过电压不超过1.1倍额定电压。
由此可见,电容器过电压保护配置的合理与否,直接影响着系统并补电容器的健康、稳定、有效运行。
本文通过宁夏银南供电局所辖变电所10kV并补电容器先后发生的电容器过电压保护误动事故进行分析,提出了通过运用高返回系数的静态型JY8系列过电压继电器,代替原电磁式DY-36A型过电压继电器的有效、可行的反措措施。
2问题的提出1997年8月至9月中旬,我局所辖古城220kV变512电容器、河西110kV变518电容器、中卫110kV变513电容器开关相继发生跳闸。
根据当时现场保护掉牌信号指示,以上各次跳闸均为电容器过电压保护出口所致。
电力电容器的工频过电压的产生,原因有二:其一,由于系统出现的工频过电压,电容器所在的母线电压升高,使电容器承受过电压;其二,由于一组电容器中个别电容器故障切除或短路,使串联电容器间容抗发生变化。
电力电容器保护原理解释

常见电力电容器保护类型:电容器保护1 保护熔丝现代电容器组的每台电容器上都装有单独的熔丝保护,这种熔丝结构简单,安装方便,只要配合得当,就能够迅速将故障电容器切除,避免电容器的油箱发生爆炸,使附近的电容器免遭波及损坏;此外,保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换;2 过电流保护电流取自线路TA过电流保护的任务,主要是保护电容器引线上的相间短路故障或在电容器组过负荷运行时使开关跳闸;电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流;为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到以上就可躲过涌流的影响;3 不平衡电压保护电压取自放电TV二次侧所构成的开口三角型电容器发生故障后,将引起电容器组三相电容不平衡;电容器组的各种主保护方式都是从这个基本点出发来确定的;根据这个原理,国内外采用的继电保护方式很多,大致可以分为不平衡电压和不平衡电流保护两种;这两种保护,都是利用故障电容器被切除后,因电容值不平衡而产生的电压和电流不平衡来启动继电器;这些保护方式各有优缺点,我们可以根据需要选择;单星形接线的电容器组目前国内广泛采用开口三角电压保护;对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护采集到差电压后即动作掉闸;4 不平衡电流保护这种保护方式是利用故障相容抗变化后,电流变化与正常相电流间形成差电流,来启动过电流继电器,以达到保护电容器组的目的;常见的不平衡电流保护的方式有以下两种:双星形中性点间不平衡电流保护保护所用的低变比TA串接于双星型接线的两组电流器的中性线上,在正常情况下,三相阻抗平衡,中性点间电压差为零,没有电流流过中性线;如果某一台或几台电容器发生故障,故障相的电压下降,中性点出现电压,中性线有不平衡电流I0流过,保护采集到不平衡电流后即动作掉闸;这种保护方式比较简单,系统电压不平衡,一相接地故障、高次谐波电流及合闸涌流,都不会引起保护误动,所以在国内外得到广泛应用;桥式差动电流保护电容器组每相分为两个支路,每相的串联段数为双数,其中部桥接一台电流互感器;正常运行时,桥路中电流为零,任意一台电容器因故障被切除后,桥接电路中将有电流流过,保护采集到该电流后即动作掉闸;5 过电压保护电压取自放电TV和低电压保护母线TV电容器在过高的电压下运行时,其内部游离增大,可能发生局部放电,使介质损耗增大,局部过热,并可能发展到绝缘被击穿;因此应保持电容器组在不超过最高容许的电压下运行;安装过电压保护就是为了这个目的;过电压保护的整定值一般取电容器额定电压的~倍;低电压保护主要是防止空载变压器与电容器同时合闸时工频过电压和振荡过电压对电容器的危害;这种情况可能出现变电站事故跳闸、变电站停电、各配电线切除;电容器如果还接在母线上,将使电压升高;变压器和电容器构成的振荡回路也可能产生振荡过电压,危及设备绝缘;因此安装低电压保护,当母线电压降到额定值的60%左右时即动作将电容器切除;6、容器保护差压保护电容器的差压保护就是电压差动保护,原理就象电路分析中串联电阻的分压原理;是通过检测同相电容器两串联段之间的电压,并作比较;当设备正常时,两段的容抗相等,各自电压相等,因此两者的压差为零;当某段出理故障时,由于容抗的变化而使各自分压不再相等而产生压差,当压差超过允许值时,保护动作;从原理上可知因两段是串联在电路上的,因此当电容器是正常的情况下,电网电压对护保影响是有限的暂态过压除外;更何况10KV系统为非有效接地系统,单相接地时只影响相对地的电压,相及相间电压并没有改变,因此对保护是没有影响的;再想说明的是10kV系统的电容器很小用差压保护,此保护多用于35kV系统;7、不平衡电压保开口三角形保护标准名称为零序电压保护,习惯亦称不平衡电压保护实际不平稳衡电压保护是另一种方式,只是现在已没再用;它的原理是分别检测电容器的端电压,再在二次端接成开口三角形得出零序电压,从而发现三相是否平衡而得出设备是否有故障;因放电线圈实际就是电压互感器一次端的两个端口是直接接在电容器两端的,因此它检测的电压只由设备的两端电压决定这与线路上的电压互感器的开口三角检测不一样,而单相接地时并不影响到相及相间电压,因此对电容器的保护并没影响每组电容器要三个电压互感器;因为高压电容器组是要用三个放电线圈的,那刚好就相当于三个电压互感器,因此并没有增加成本;另外高压电容器的分组是不多的,象一台大型220kV的主变,我所知的最多的就分6组10020kVar;一次侧PT因放电线圈的主要功能为放电,因此理论上一次回路的直流电阻为小些,线径要大点,因此体积可能大点实际上差不多;直接与电容接牢这个说法所言极是,这是放电线圈与一般PT在接线方式上的最大差别,即不能加熔断器保护;。
电力系统电容器设计

电力系统电容器设计电力系统是现代社会生产和生活中不可或缺的基础设施,而电容器作为电力系统中重要的组成部分,具有储能、补偿、滤波等功能,在电力系统设计中起到至关重要的作用。
本文将围绕电力系统电容器的设计进行讨论,以帮助读者更好地理解和应用电容器技术。
一、电容器的基本原理电容器是一种能够储存和释放电荷的电子设备,其基本结构由两个导体板和介质电介质组成。
当电容器两极施加电压时,正极板上积聚正电荷,负极板上积聚负电荷,导致两极板之间形成电场。
电容器的容量取决于导体板的面积、导体板之间的距离以及介质的介电常数等因素。
二、电容器在电力系统中的应用1. 电容补偿电容器可以通过补偿无功功率来提高电力系统的功率因数,减少无效功率的损耗,提高电网的稳定性和输电效率。
它们常被安装在负载侧,以减少电力系统中的无功功率需求。
2. 电容滤波电容器可以滤除电力系统中的高频噪声和谐波,提高电力质量和稳定性。
它们经常被用于交流电源、变频器和电动机等设备中,以减少电磁干扰和提高工作效率。
3. 电容功率贮存电容器可以储存和释放电能,并在瞬时负载需求增加时提供额外的电力支持。
在电力系统调峰调频和电网峰值负荷需求高峰时段,电容器能够平衡电网供需,提高供电可靠性和稳定性。
三、电容器设计要考虑的因素在电力系统中设计电容器时,需要综合考虑以下因素:1. 额定电压电容器的额定电压应能满足系统的工作电压范围,并具有一定的安全裕度。
选择合适的额定电压可以确保电容器在长时间运行中不损坏。
2. 容量和功率电容器的容量和功率应根据电力系统的负载需求和功率因数来确定。
过小的容量和功率可能无法满足系统的需求,过大的容量和功率可能造成能耗浪费和系统过载。
3. 介质材料电容器的介质材料应具有良好的绝缘性能、低损耗和高耐电压能力。
常见的介质材料包括聚丙烯薄膜、聚乙烯薄膜等。
4. 温度和湿度电容器在运行中需要承受一定的温度和湿度环境。
因此,设计中应考虑电容器的耐温和防潮性能,以确保其稳定运行和延长寿命。
电力电容器的保护配置及原理.p

从电容器本 身的特点看 , 电容器并不会 因失压 而损坏 。但运行 中的电容器突然失压会产生两个后 果: 其一 , 如失压后 电容器组仍在母线上 , 当电源恢
1 简单可靠 , . 选择性好 , 故障后可立即找到故障
电容器 。
复, 母线 电压也迅速恢复时 , 电容器上的残压还末降
障。如果故障的时间较短 , 内压力增高来不及释放 ,
就可能导致箱体爆 裂, 甚至起火 , 扩大事 故。防止这
种事故最好 的方 法就是每 台电容器 装设熔断 器保
护。 2 2 2 熔断 器保 护 应 满足 的要 求 ..
1 熔断器 的额定电流应大于电容器的长期允许 . 工作 电流。 2 熔断器 的安秒特性应和电容器外壳的爆裂概 .
主要 由熔断器配合差压保护来切除。
2 3 2 过 电压 保护 的原 理 ..
率曲线相配合。
3 在 电容器 的充电涌流作用下 , . 熔断器不应熔
断。
电容器组 的过 电压保护 是采用微机保 护 , 电 其 压采样原理 : 电容器组的两 串联段上, 在 各并联一电
根据以上要求综 合后, 熔断器的额定 电流按下
作者简介 : 黄小波 (9 8 , , 16 一)男 工程师 , 主要从事高压设备技术管理
等工作 。
续性的击穿故障, 简称内部故障 ; 母线 电压升高或因 个别 电容器切除后引起 的过电压 ; 高次谐波引起 的
过电流 ; 绝缘损坏时 , 某一相接地 ; 引线 、 套管相间的
短路 ; 电源断开而引起的失压等。 针对上述的不 同表现形式 , 株冶供电厂开闭所 电容器组的二次保护采用 以下 4 种保护方式 :1熔 ()
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电容器保护原理技术要求(1)电容器组应采用适当保护措施,如采用平衡或差动保护或采用瞬时作用过电流继电保护,对于3.15kV及以上的电容器,必须在每个电容器上装置单独的熔断器,熔断器的额定电流应按熔丝的特性和接通时的涌流来选定,一般为1.5倍电容器的额定电流为宜,以防止电容器油箱爆炸。
(2)除上述指出的保护形式外,在必要时还可以作下面的几种保护:①如果电压升高是经常及长时间的,需采取措施使电压升高不超过1.1倍额定电压。
②用合适的电流自动开关进行保护,使电流升高不超过1.3倍额定电流。
③如果电容器同架空线联接时,可用合适的避雷器来进行大气过电压保护。
④在高压网络中,短路电流超过20A时,并且短路电流的微机保护装置或熔丝不能可靠地保护对地短路时,则应采用单相短路保护装置。
(3)正确选择电容器组的保护方式,是确保电容器安全可靠运行的关键,但无论采用哪种保护方式,均应符合以下几项要求:①保护装置应有足够的灵敏度,不论电容器组中单台电容器内部发生故障,还是部分元件损坏,电容器保护装置都能可靠地动作。
②能够有选择地切除故障电容器,或在电容器组电源全部断开后,便于检查出已损坏的电容器。
③在电容器停送电过程中及电力系统发生接地或其它故障时,保护装置不能有误动作。
④保护装置应便于进行安装、调整、试验和运行维护。
⑤消耗电量要少,运行费用要低。
(4)电容器不允许装设自动重合闸装置,相反应装设无压释放自动跳闸装置。
主要是因电容器放电需要一定时间,当电容器组的开关跳闸后,如果马上重合闸,电容器是来不及放电的,在电容器中就可能残存着与重合闸电压极性相反的电荷,这将使合闸瞬间产生很大的冲击电流,从而造成电容器外壳膨胀、喷油甚至爆炸。
电容器组保护:开口三角保护,开口三角形保护标准名称为零序电压保护,多用于单星形接线(对于没有放电电阻的电容器,将放电线圈的一次侧与电容器并联,二次侧接成开口三角形,在开口处连接一只低整定值的电压继电器,在正常运行时,三相电压平衡,开口处电压为零,当电容器因故障被切除后,即出现差电压U0,保护装置采集到差电压后即动作掉闸。
并联电容器组的保护及应用电力电容器是一种静止的无功补偿设备。
它的主要作用是向电力系统提供无功功率,提高功率因数。
采用就地无功补偿,可以减少输电线路输送电流,起到减少线路能量损耗和压降,改善电能质量和提高设备利用率的重要作用。
对其配置合理完善的二次微机综合保护装置对提高电容器组的运行可靠性起到至关重要的作用。
下面主要结合项目中的设计对变电所中电容器组的保护配置进行分析和总结:1、并联电容器组可能出现下列故障及异常运行方式:a.电容器组和断路器之间连接线短路b.电容器内部故障(单只开路或短路)及其引出线短路c.电容器组中,某些故障电容器切除后所引起剩余电容器的过载或(和)过电压d.电容器组的单相接地故障e.电容器组过电压f.所联接的母线失压电容器在变电所各种设备中属于可靠性比较薄弱的电器,它比同级电压的其他设备的绝缘较为薄弱,内部故障机会较多,运行条件比较严峻,除了遭受外部过电压和短路故障等一般因素影响外,还存在操作频繁,合闸涌流,高次谐波等特殊问题。
因此电力电容器的保护问题比较复杂。
2.电容器组应配置的通用保护装置:对于电压在1千伏及以上的高压电容器组,总容量不大于100千乏时,可以用跌开式熔断器保护和控制;100—300千乏时应采用带熔丝的负荷开关保护和控制:大于300千乏时,则应采用油开关并加装相间电流保护等使之动作于跳闸。
电容器组采用熔断器保护时,其熔丝的额定电流不应超过电容器组额定电流的l.5倍。
在装用电压为1000伏以下的低压电容器组时,应采用带有电流脱扣的自动开关控制和保护。
(1)对于单台电容器,最简单、有效的保护方式是采用熔断器,其熔丝的额定电流可取电容器额定电流的1.5-1.2倍。
这种保护简单、价廉、灵敏度高、选择性强,能迅速隔离故障电容器,保证其他完好的电容器继续运行。
保护熔丝还有明显的标志,动作以后很容易发现,运行人员根据标志便可容易地查出故障的电容器,以便更换。
但由于熔断器抗电容充电涌流的能力不佳,不适应自动化要求等原因,对于多台串并联的电容器组保护必须采用更加完善的继电保护方式。
(2)对于电容器组和断路器之间连接线短路故障,电容器组的过电流和内部连接线的短路,应设置过电流保护。
为避免合闸涌流引起保护的误动作,过电流保护应有一定的时限,一般将时限整定到0.5s 以上就可躲过涌流的影响。
(3)电抗器保护:与电容器串联的电抗器,具有限制短路电流、防止电容器合闸时充电涌流及放电电流过大损坏电容器。
除此之外,电抗器还能限制对高次谐波的放大作用,防止高次谐波对电容器的损坏。
(4)电容器组的过压和低压保护:电容器组的电压保护是利用母线电压互感器TV测量和保护电容器。
电容器电压保护主要用于防止系统稳态过电压和低电压,过电压保护的整定值一般取电容器额定电压的1.1倍。
目前国内外多使用氧化锌避雷器(MOA)对并联补偿电容器进行操作过电压保护。
(5)电容器组的过负荷:电容器过负荷的原因,一是运行电压高于电容器的额定电压,另一种情况是谐波引起的过电流。
在电力系统中,并联电容器常常受到谐波的影响,特殊情况,还可能在某些高次谐波产生谐振现象,产生很大的谐振电流。
谐波电流将使电容器过负荷、过热、振动和发出异音,使串联电抗器过热,产生异音和烧损。
谐波对电网的运行是有害的,首先应该对产生谐波的各种来源进行限制,使电网运行电压接近正弦波形,否则应装设过负荷保护。
此外,并联电容器组是否要装设单相接地保护,应根据电容器组所在电网的接地方式及电容器自动投入装置的绝缘情况来确定3.电容器组内部故障的专用保护?电容器组是由许多单台电容器串联组成,个别电容器故障由其他相应的熔断器切除,对整个电容器组无多大影响。
但是当电容器组中多台电容器故障被熔断器切除后,就可能使继续运行的剩余电容器严重过载或过电压,因此必须考虑专用的保护措施。
电容器发生故障以后将引起电容器组内部相应两部分之间的电容不平衡,利用这个特性可以构成各种保护方式。
其基本原理是利用电容器组内部某两部分之间的电容量之差形成的电流差或电压差构成的保护,故称为不平衡保护,又可分为不平衡电流和不平衡电压两种类型。
高压电容器组的接线方式,宜采用单星形接线或双星形接线。
低压电容器或电容器组,可采用三角形接线或中性点不接地的星形接线方式。
不同的接线形式采用不同的专用保护:(1)单星形接线的电容器组,可采用开口三角电压保护:将放电器的一次侧与单星形接线的每相电容器并联放电器的二次线圈接成开口三角形,电压互感器的一次绕组兼作电容器放电线圈,可防止母线失压后再次送电时因剩余电荷造成的电容器过电压。
正常运行时,中性点无位移,开口三角形两端无电压。
当任一台电容器有故障,中性点产生位移,开口三角形两端出现零序电压,达到整定时保护动作。
这种保护方式的优点是不受系统接地故障和系统电压不平衡的影响也不受三次谐波的影响灵敏度高安装简单是国内中小容量电容器组常用的一种保护方式。
(2)双星形接线电容器组,可采用不平衡电流或电压保护方式:将一组电容器分成容量相等的两个星形电容器组(特殊情况两个星形电容器组的容量也可不相等),在两个中性点间装设小变比的电流互感器,即构成双星形中性点不平衡电流保护接线。
其缺点是要将两个星形的电容器组调平衡较麻烦,且在同相两支路的电容器发生相同故障时,中性点间的不平衡电流为零或很小保护不动作。
双Y形接线的电容器采用不平衡电压保护时,可用TV改换TA。
即将TV一次绕组串在中性线中,当某电容器组发生多台电容器故障时,故障电容器组所在星形的中性点电位发生偏移,从而产生不平衡电压。
(3)电容器组为三角形接线时,通常用于较小容量的电容器组,其保护采用零序电流保护(见图1)。
(4)每相能接成四个桥臂的单星形电容器组,可采用桥式差电流保护(见图2):当电容器组每相的串联段数为双数并可分成两个支路时,在其中部桥接一台电流互感器,即构成桥式差电流保护接线。
正常运行时四个桥臂容抗平衡,因此桥差接线的M和N之间无电流流过。
当四个桥臂中有一个电容器组存在多个电容器损坏时,桥臂之间因不平衡,在差接线MN中就流过不平衡差流。
由于保护是分相设置的,根据动作指示可以及时判断出故障相别,这种保护的缺点是当桥的两臂电容器发生相同故障时,保护将拒动(5)串联段数为二段及以上的单星形电容器组,可采用电压差动保护(见图3):电容器组每相由两个电压相等的串联段组成(特殊情况两个串联段的电压可以不相等),放电器的两个一次线圈电压相等(放电器的端电压应与电容器的两段电压相配合可以不相等)并与电容器的两段分别并联连接,放电器的两个二次线圈按差电压接线即反极性相串联构成了电压差动保护。
这种保护方式不受系统接地故障或电压不平衡的影响,动作也较灵敏,根据断电器的动作指示可以判断出故障相别。
缺点是使用的设备比较复杂,特殊情况还要加电压放大回路。
当同相两个串联段中的电容器发生相同故障时保护拒动。
为了减少电容器损坏,防止电容器事故扩大,并联电容器装置必须有完善和周密的保护装置,正确选择配备合适的保护方式有利于在事故发生时迅速有效的切除故障,找出故障产生的原因,以保障变电所乃至电网的安全稳定运行。
目前实际项目中,多采用新式的电容器测控保护装置,它不但配备完善可靠的综合继电保护功能,还实现了完善的测控功能及强大的网络通信功能,能够记录丰富的运行操作信息和故障信息,够更好地实现变电站综合自动化及间隔层单差流保护,多用于双星形接线)电容器的差压保护就是电压差动保护,原理就象电路分析中串联电阻的分压原理。
是通过检测同相电容器两串联段之间的电压,并作比较。
当设备正常时,两段的容抗相等,各自电压相等,因此两者的压差为零。
当某段出理故障时,由于容抗的变化而使各自分压不再相等而产生压差,当压差超过允许值时,保护动作。
从原理上可知因两段是串联在电路上的,因此当电容器是正常的情况下,电网电压对护保影响是有限的(暂态过压除外)。
更何况10KV系统为非有效接地系统,单相接地时只影响相对地的电压,相及相间电压并没有改变,因此对保护是没有影响的。
再想说明的是10kV电容器保护系统的电容器很少用差压保护,此保护多用于35kV系统。
习惯亦称不平衡电压保护(实际不平稳衡电压保护是另一种方式,只是现在已没再用)。
单元保护功能6410A电容器1、限时电流速断保护:定义:由于瞬时电流速断保护在线路很短且系统运行方式很小时,保护范围很小或出现死区,该线路短路时不能快速切除,所以必须装设一种以较小时限快速切除全线范围内故障的电流保护,称之为限时电流速断保护。
保护范围是被保护线路的全长或下一回线路的15%(三段式过流保护包括:1、瞬时电流速断保护(简称电流速断保护或电流Ⅰ段)2、限时电流速断保护(电流Ⅱ段)3、过电流保护(电流Ⅲ段)这三段保护构成一套完整的保护。