函数信号发生器[1]

合集下载

函数信号发生器使用说明(超级详细)

函数信号发生器使用说明(超级详细)

函数信号发⽣器使⽤说明(超级详细)函数信号发⽣器使⽤说明1-1 SG1651A函数信号发⽣器使⽤说明⼀、概述本仪器是⼀台具有⾼度稳定性、多功能等特点的函数信号发⽣器。

能直接产⽣正弦波、三⾓波、⽅波、斜波、脉冲波,波形对称可调并具有反向输出,直流电平可连续调节。

TTL可与主信号做同步输出。

还具有VCF输⼊控制功能。

频率计可做内部频率显⽰,也可外测1Hz~10.0MHz的信号频率,电压⽤LED显⽰。

⼆、使⽤说明2.1⾯板标志说明及功能见表1和图1图1DC1641数字函数信号发⽣器使⽤说明⼀、概述DC1641使⽤LCD显⽰、微处理器(CPU)控制的函数信号发⽣器,是⼀种⼩型的、由集成电路、单⽚机与半导体管构成的便携式通⽤函数信号发⽣器,其函数信号有正弦波、三⾓波、⽅波、锯齿波、脉冲五种不同的波形。

信号频率可调范围从0.1Hz~2MHz,分七个档级,频率段、频率值、波形选择均由LCD显⽰。

信号的最⼤幅度可达20Vp-p。

脉冲的占空⽐系数由10%~90%连续可调,五种信号均可加±10V的直流偏置电压。

并具有TTL电平的同步信号输出,脉冲信号反向及输出幅度衰减等多种功能。

除此以外,能外接计数输⼊,作频率计数器使⽤,其频率范围从10Hz~10MHz(50、100MHz[根据⽤户需要])。

计数频率等功能信息均由LCD显⽰,发光⼆极管指⽰计数闸门、占空⽐、直流偏置、电源。

读数直观、⽅便、准确。

⼆、技术要求2.1函数发⽣器产⽣正弦波、三⾓波、⽅波、锯齿波和脉冲波。

2.1.1函数信号频率范围和精度a、频率范围由0.1Hz~2MHz分七个频率档级LCD显⽰,各档级之间有很宽的覆盖度,如下所⽰:频率档级频率范围(Hz)1 0.1~210 1~20100 10~2001K 100~2K10K 1K ~20K100K 10K ~200K1M 100K ~2M频率显⽰⽅式:LCD显⽰,发光⼆极管指⽰闸门、占空⽐、直流偏置、电源。

信号函数发生器

信号函数发生器
RAM由128字节,30~3FH作为堆栈区,40~45H为显示缓冲区,40H存放波形编码,
42H~45H存放频率值,42H存放参考电压值,46H为设置标志区
1、人机交互模块
(1)显示子模块
片内RAM的40H~45H是显示缓冲区。采用查表方式形成显示的段码,显示码表存于ROM中。显示模块流程图如图(3)所示。R1存位选信号,R2存显示次数,R0存显示缓冲区地址。单片机先向P2口送位选信号;从显存中取数字,通过查表,得到显示段码,送P0口;延时,保持显示;修改R0;判断是否已显示6次,不满6次,转开始处执行,已执行6次,则结束显示。
由两片0832和两块LM324运放组成。0832(1)提供参考电压,单片机向0832(1)送数字编码,产生不同的输出。本函数信号发生器可输出1V、2V、3V、4V、5V五个电压。0832(1)输出电压作为的0832(2)的参考电压。也就是所本函数信号发生器的幅值是可调的。0832(2)产生各种波形,生成波形样值码,经D/A转换得到各种模拟样值点。假如N个点构成波形的一个周期,则0832(2)输出N个样值点后,样值点形成运动轨迹,即一个周期。重复输出N个点,成为第二个周期。
中断服务流程如图6所示,波形产生流程如图7所示。
五、完整程序
;-----------------------------------------------------------------------------------------
;这是一个有三种波形选择,电压幅值可调,频率可变,用键盘进行控制的函数信号发生器
地址分配如下:
0832(1):BFFFH, 0832(2):7FFFH。
(1)
四、软件结构
程序由人机交互模块和波形产生模块组成,二者如图2所示。其中(a)是主流程图,

函数信号发生器工作原理

函数信号发生器工作原理

函数信号发生器工作原理
函数信号发生器是一种电子设备,用于产生不同频率、振幅和波形的电信号。

它通常用于测试和测量电路,以及在各种科学实验中进行信号发生。

函数信号发生器的工作原理可以简单概括如下:
1. 振荡电路:函数信号发生器中的核心组件是振荡电路。

振荡电路是一个自激振荡器,可以产生连续的电信号。

它通常包括一个放大器、一个反馈网络和一个振荡源。

2. 频率调节:函数信号发生器允许用户通过调节旋钮或数字控制来选择所需的频率。

频率调节是通过控制振荡电路中的反馈网络来实现的。

调节频率时,振荡电路的反馈网络会对振荡源提供反馈信号,使振荡源产生所需频率的振荡信号。

3. 振幅调节:函数信号发生器还允许用户调节输出信号的振幅。

振幅调节是通过控制振荡电路中的放大器来实现的。

调节振幅时,放大器会增大或缩小输入信号的幅度,从而改变输出信号的振幅。

4. 波形选择:函数信号发生器通常可以提供多种不同的波形选择,如正弦波、方波、锯齿波等。

不同的波形选择是通过控制振荡电路中的振荡源和反馈网络来实现的。

不同的振荡源和反馈网络可以产生不同形状的波形。

5. 输出接口:函数信号发生器通常具有多种输出接口,如
BNC接口、XLR接口等。

这些接口允许将信号传输到需要测
试或实验的电路或设备中。

总之,函数信号发生器的工作原理是基于振荡电路的运行,通过调节振荡源、反馈网络和放大器来产生不同频率、振幅和波形的电信号。

函数信号发生器

函数信号发生器

XX UNIVERSITY GONGQING COLLEGE毕业论文(设计)BURT INDUSTRY THEORY(201*--201*年)中文题目: 函数信号发生器英文题目:Function signal generator 学院:系别:专业班级:学生姓名:学号:指导教师:二○一 *年 ** 月函数信号发生器摘要在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高信号发生器是指产生所需参数的电测试信号的仪器。

按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

能够产生多种波形的信号发生器,如产生三角波、锯齿波、矩形波(含方波)、正弦波的信号发生器称为函数信号发生器在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

信号发生器所产生的信号在电路中常常用来代替前端电路的实际信号,为后端电路提供一个理想信号。

由于信号源信号的特征参数均可人为设定,所以可以方便地模拟各种情况下不同特性的信号,对于产品研发和电路实验特别有用。

在电路测试中,我们可以通过测量、对比输入和输出信号,来判断信号处理电路的功能和特性是否达到设计要求。

例如,用信号发生器产生一个频率为1kHz的正弦波信号,输入到一个被测的信号处理电路(功能为正弦波输入、方波输出),在被测电路输出端可以用示波器检验是否有符合设计要求的方波输出。

4[1]函数信号发生器设计

4[1]函数信号发生器设计

后,采用差分放大器,作为三角波—正弦波变换电路利用差分对管的饱和
与截止特性进行变换,此电路的输出频率就是就是方波-三角波产生电路
的频率.
方波uof
三角波uo3
迟滞 比较器
积分器
差分 放大器
正弦波
uoz
2020/3/29
长江大学 龙从玉
2
3. RC文氏电桥正弦波振荡电路
3.1 RC文氏电桥正弦波振荡器的工作原理:
6.8k
Q3
9013
RP5
Q4

9013

86%
R1
差动波形变换

10k
输出正弦波
R9
R10
频率fo =R2/[4R1C(Rp1+Rp2+1R0kD)]
3k
3k
-12v
2020/3/29
长江大学 龙从玉
11
R3
2k
R2 20k
迟滞比较器
R1 10k
SW1
C2
10u
SW-SPDT C1
1uf
Rp
-12v
10k
D1
1N5235B
D2
1N5235B
7
4
U2
2 6
3 UA741
12v
积分电路
1
5
A
uo2
B
C
D
2020/3/29
长江大学 龙从玉
4
3.3 RC文氏电桥振荡电路
文氏电桥振荡器:fo=1/2πRC; 正反馈电路:RC串并选频网络决
Ra和Rb形成反向比例电路决定起振的幅值条件调节波形与稳幅控制.
3.2 RC文氏电桥振荡器实验要点:

函数信号发生器的使用

函数信号发生器的使用

函数信号发生器的使用函数信号发生器是一种用于产生各种类型信号的电子设备。

它可以产生正弦波、方波、三角波等各种波形,可以调节频率、幅度、相位等参数,广泛应用于电子、通信、测量等领域。

本文将介绍函数信号发生器的基本原理、使用方法以及注意事项。

一、函数信号发生器的基本原理函数信号发生器是由振荡器、放大器、滤波器等电路组成的。

其中振荡器是最核心的部分,它产生原始的信号波形。

振荡器的基本原理是利用反馈电路实现自激振荡。

反馈电路将一部分输出信号送回到输入端,形成正反馈,使得振荡器产生周期性的振荡。

振荡器的频率由反馈电路和外部电路共同决定。

函数信号发生器的放大器和滤波器主要是为了增强信号的幅度和滤除杂波。

放大器将振荡器产生的信号放大到足够的幅度,以便于后续的处理和使用。

滤波器则可以滤除信号中的高频成分和噪声,使得信号更加稳定和准确。

二、函数信号发生器的使用方法函数信号发生器的使用方法比较简单,主要是设置频率、幅度、相位等参数,选择波形类型,连接到被测电路中。

下面将详细介绍函数信号发生器的使用步骤。

1. 首先,将函数信号发生器接通电源,打开电源开关。

2. 选择所需要的波形类型,可以是正弦波、方波、三角波等。

3. 设置信号的频率。

一般情况下,函数信号发生器的频率范围比较广,可以设置从几赫兹到几百兆赫的频率。

频率的设置可以通过旋钮、按键或者数字输入方式完成。

4. 设置信号的幅度。

幅度是指信号的电压大小,一般可以设置为几毫伏到几十伏不等。

幅度的设置也可以通过旋钮、按键或者数字输入方式完成。

5. 设置信号的相位。

相位是指信号的时间延迟或提前量,一般可以设置为0度到360度不等。

相位的设置也可以通过旋钮、按键或者数字输入方式完成。

6. 连接函数信号发生器到被测电路中。

连接方式可以使用万用表、示波器等测试仪器,也可以直接连接到被测电路的输入端。

7. 调节信号的参数,观察被测电路的响应情况。

如果需要调节信号参数,可以反复进行上述步骤。

函数信号发生器(F05A)

函数信号发生器(F05A)

目 录第一章概述 1 第二章主要特征 1 第三章技术指标 2一、函数信号发生器 2二、计数器 5三、其它 6 第四章面板说明7一、显示说明7二、前面板说明8三、后面板说明13 第五章使用说明14一、测试前的准备工作14二、函数信号输出使用说明 14三、计数器使用说明 32 第六章遥控操作使用说明34 第七章B路信号说明 52 第八章功率放大模块说明 57第九章注意事项与检修58 第十章附录USB接口驱动安装59 第十一章仪器整套设备及附件63南京盛普仪器科技有限公司 1本仪器是一台精密的测试仪器,具有输出函数信号、调频、调幅、FSK 、PSK 、猝发、频率扫描等信号的功能。

此外,本仪器还具有测频和计数的功能。

本仪器是电子工程师、电子实验室、生产线及教学、科研的理想测试设备。

1、采用直接数字合成技术(DDS )。

2、主波形输出频率为1µHz ~ 20MHz 。

3、小信号输出幅度可达1mV 。

4、脉冲波占空比分辨率高达千分之一。

5、数字调频、调幅分辨率高、准确。

6、猝发模式具有相位连续调节功能。

7、频率扫描输出可任意设置起点、终点频率。

8、相位调节分辨率达0.1度。

9、调幅调制度1% ~ 100% 可任意设置。

10、输出波形达30余种。

11、具有频率测量和计数的功能。

12、机箱造型美观大方,按键操作舒适灵活。

13、具有第二路输出,可控制和第一路信号的相位差。

概述 12主要特征南京盛普仪器科技有限公司 2一、函数发生器1、波形特性主波形:正弦波、方波波形幅度分辨率:12 bits 采样速率:200Msa/s正弦波谐波失真:-50dBc (频率≤ 5MHz ) -45dBc (频率≤ 10MHz ) -40dBc (频率>10MHz )正弦波失真度: ≤0.2%(频率:20Hz ~ 100kHz )方波升降时间: ≤ 25ns (SPF05A ≤ 28ns )注:正弦波谐波失真、正弦波失真度、方波升降时间测试条件:输出幅度2Vp-p (高阻),环境温度25℃±5℃储存波形:正弦波,方波,脉冲波,三角波,锯齿波,阶梯波等26种波形,TTL 波形(仅F20A ,输出频率同主波形) 波形长度:4096点波形幅度分辨率:12 bits脉冲波占空系数:1.0% ~ 99.0%(频率≤10kHz ),10% ~ 90%(频率10kHz ~ 100kHz )脉冲波升降时间: ≤1uS直流输出误差:≤±10%+10mV (输出电压值范围10mV~10V ) TTL 波形输出:(F05A 、F10A )输出频率:同主波形输出幅度:低电平 < 0.5 V 高电平 > 2.5 V 输出阻抗:600 Ω2、频率特性频率范围:主波形:1µHz ~ 5MHz (SPF05A 型) 1µHz ~ 10MHz (SPF10A 型) 1µHz ~ 20MHz(SPF20A 型)储存波形: 1µHz ~ 100kHz3技术指标分辨率:1µHz频率误差:≤±5×10-4 频率稳定度:优于±5×10-53、幅度特性幅度范围:1mV ~ 20Vp-p(高阻),0.5mV ~ 10Vp-p(50Ω)最高分辨率:2µVp-p (高阻),1µVp-p(50Ω)幅度误差:≤±2%+1mV (频率1KHz正弦波)幅度稳定度:±1 % /3小时平坦度:±5%(频率≤5MHz正弦波), ±10% (频率>5MHz 正弦波)±5%(频率≤50 kHz其它波形), ±20% (频率>50 kHz 其它波形)输出阻抗:50Ω幅度单位:Vp-p,mVp-p,Vrms,mVrms,dBm4、偏移特性直流偏移(高阻):±(10V-Vpk ac),(偏移绝对值≤2×幅度峰峰值)最高分辨率:2µV(高阻),1µV(50Ω)偏移误差:≤±10% +20mV (高阻)5、调幅特性载波信号:波形为正弦波,频率范围同主波形调制方式:内或外调制信号:内部5种波形(正弦、方波、三角、升锯齿、降锯齿)或外输入信号调制信号频率:1Hz ~ 20kHz(内部)100Hz ~ 10kHz(外部)失真度:≤1% (调制信号频率1KHz正弦波)调制深度:1% ~ 100%相对调制误差:≤±5% +0.5 (调制信号频率1KHz正弦波)外输入信号幅度:3Vp-p(-1.5V~ +1.5V)6、调频特性载波信号:波形为正弦波,频率范围同主波形调制方式:内或外(外为选件)调制信号:内部5种波形(正弦、方波、三角、升锯齿、降锯齿))或外输入信号调制信号频率:1Hz ~ 10kHz(内部)100Hz ~ 10kHz(外部)南京盛普仪器科技有限公司 3频偏:内调频最大频偏为载波频率的50%,同时满足频偏加上载波频率不大于最高工作频率+100 kHz 失真度:≤1% (调制信号频率1KHz正弦波) 相对调制误差:≤±5%设置值±50Hz (调制信号频率1KHz正弦波)外输入信号幅度:3Vp-p(-1.5V~ +1.5V)FSK:频率1和频率2任意设定控制方式:内或外(外控:TTL电平,低电平F1;高电平F2)交替速率:0.1ms ~ 800s7、调相特性基本信号:波形为正弦波,频率范围同主波形PSK:相位1(P1)和相位2(P2)范围:0.1 ~ 360.0°分辨率:0.1°交替时间间隔:0.1ms ~ 800s控制方式:内或外(外控TTL电平,低电平P2,高电平P1)8、猝发基本信号:波形为正弦,频率范围同主波形猝发计数:1 ~ 30000个周期猝发信号交替时间间隔:0.1ms ~ 800s控制方式:内(自动)/外(单次手动按键触发、外输入TTL脉冲上升沿触发)9、频率扫描特性信号波形:正弦波扫描频率范围:扫描起始点频率:主波形频率范围扫描终止点频率主波形频率范围。

函数信号发生器工作原理

函数信号发生器工作原理

函数信号发生器工作原理函数信号发生器是一种可以产生不同形式的波形信号的电子设备。

它通常用于测试电路或设备的响应,及验证系统的可靠性和性能。

本文将介绍函数信号发生器的工作原理及其基本组成。

1、函数信号发生器的基本原理函数信号发生器使用内部电路产生信号波形,这些波形可以是正弦波、方波、三角波等,也可以是随时间变化的任意模拟波形信号,称为任意波形(Arbitrary Waveform)。

任意波形信号可以通过数字信号处理器(DSP)和相应的算法产生,可以控制其幅值、频率、相位、周期等参数,与旋钮手动调节产生的波形相比,任意波形信号更具有可重复性和精度。

任意波形成为了近年来函数信号发生器的重要特点之一。

函数信号发生器的工作原理基于模拟电路和数字技术的结合。

如下图所示,函数信号发生器的主要部件包括信号发生器主控板、波形发生控制板、数字信号处理器(DSP)和高精度数字模拟转换器(DAC)等。

其中波形发生控制板控制信号发生器主控板的输出电压幅值、频率、相位等参数,主控板再将这些参数转换成数字信号通过DSP和DAC产生电压波形输出到信号输出端。

2、函数信号发生器的基本组成(1)信号发生器主控板信号发生器主控板是函数信号发生器的核心控制板,它负责启动、控制和调节函数信号发生器的各种功能。

主控板内包含高速时钟电路、微控制器、输出放大器等部件,通过接收波形控制板发来的指令从而产生需要的波形输出并控制其电压幅值、频率、相位等参数。

(2)波形发生控制板波形发生控制板负责产生波形控制信号,这些信号包括电压幅值、频率、相位等参数。

它和信号发生器主控板通过数字接口连接,主控板根据波形控制板的指令产生相应的波形信号输出。

(3)数字信号处理器(DSP)数字信号处理器(DSP)是函数信号发生器中的重要部件,它用于实现任意波形信号的产生和输出。

DSP通过高精度滤波器将输入的数字信号处理成需要的波形信号,再将这些信号通过DAC转换成模拟信号输出到信号输出端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数信号发生器[1]目录摘要 (3)1方案的选择 (4)1.1问题的提出 (4)1.2基本原理 (4)1.3提出解决问题的方案及选 (5)1.4可行性分析 (10)1.5参数的确定 (10)2.仿真结果及分析 (12)3.心得体会 (13)4.元器件清单 (14)5.参考文献 (14)摘要函数信号发生器是一种能能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

产生正弦波,方波,三角波的方案有多种,如先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波。

现在我要设计一个能变换出三角波、正弦波、方波的简易发生器。

在达到课题要求的前提下保证最经济、最方便、最优化的设计策略。

按照设计的方案利用Pspice进行仿真1方案的选择1.1问题的提出设计一个函数发生器使得能够产生方波、三角波、正弦波。

1、主要技术指标频率范围10Hz~100Hz,100Hz~1000Hz,1kHz~10kHz频率控制方式通过改变RC时间常数手控信号频率通过改变控制电压Uc实现压控频率VCF输出电压正弦波Up p≈3 V 幅度连续可调;三角波Upp≈5 V 幅度连续可调;方波Upp≈14 V 幅度连续可调.波形特性方波上升时间小于2s;三角波非线性失真小于1%;正弦波谐波失真小于3%。

2、设计要求(1)根据技术指标要求自选方案设计出原理电路图,分析工作原理,计算元件参数。

(2)列出所有元、器件清单。

(3)利用Pspice进行仿真。

(4)观察并分析结果。

1.2基本原理:1、函数发生器的组成函数发生器一般是指能自动产生正弦波、方波、三角波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器。

1.3提出解决问题的方案及选取由运算放大器单路及分立元件构成,方波——三角波——正弦波函数发生器电路组成如图1所示,方波由比较器产生,三角波是方波输入积分器而输出的,这就解决了方波与三角波的产生方案.因此方案的关键在于三角波到正弦波的变换。

图1首先介绍方波—三角波发生电路:如图所示为产生电路原理图:电路工作原理如下:若a 点断开,运放与R 1,R2及R3,RP1 组成电压器,R1称为平衡电阻,C1称为加速电容,可加速比较器的翻转;运放的反相端接基准电压,即V-=0, 同相端接输入电压via ;比较器的输出vo1的高电平等于正电源电压+Vcc,低电平等于负电源电压—V EE (︱+V CC ︱=︱-V EE ︱),当比较器V+=V-=0时,比较器翻转,输出vo1从高电平 +Vcc 跳到低电平-V EE ,或者从低电平-V EE 跳到高电平+Vcc 。

设vo1=+Vcc,则 013213)(1322=+++++++=+Via RP R R RP R Vcc RP R R R V (1-1)式中,RP1指电位器的调整值(以下同)。

将上式整理,得比较器翻转的下门限点位 Via-=Vcc RP R R Vcc RP R R 132)(132+-=++- (1-2)若Vo1=-V EE ,则比较器的翻转的上门限点位 Via+=Vcc RP R R Vcc RP R R 132)(132+=-+- (1-3)比较期的门限宽度V H =Via+-Via-=2Vcc RP R R 132+ (1-4)A 点断开后,运放A2与R4,RP2、C2及R5组成反相积分器,其输入信号万恶为方波vo1,则积分器的输出 Vo2=⎰+-dt vo C RP R 12)24(1(1-5)当vo1=+Vcc 时, Vo2=t C RP R Vcct C RP R Vcc 2)24(2)24()(+-=++- (1-6)当vo1=-VEE 时, Vo2=EE ()(42)2(42)2V Vcct t R RP C R RP C --=++ (1-7)可见,当积分器的输入为方波时,输出是一个上升速率和下降速率相等的三角波,其波形关系如图所示A 点闭合,即比较器首尾相连,形成闭环电路,则自动产生方波-三角波。

三角波的幅度Vo2m=Vcc RP R R 132+ (1-8)方波-三角波的频率f=2)24(2413C RP R R RP R ++ (1-9)由式(1-8)及式(1-9)可以得出以下结论 .1.电位器RP2在调整方波-三角波的输出频率时,一般不会影响输出波形幅度。

若要求输出 频率范围较宽,可用C2改变频率的范围,RP2实现频率微调。

2.方波的幅度约等于电源电压+Vcc 。

三角波的输出幅度不超过电源电压+ Vcc 。

电位器RP1可实现幅度微调,但会影响方波-三角波的频率。

下面就来根据方波—正弦波变换形式的不同来确定不同的方案:方案一:用差分放大电路实现三角波到正弦波以及集成运放组成的电路实现函数发生器:波形变换的原理是利用差分放大器的传输特性曲线的非线性,波形变换过程如图2所示。

由图可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim 应正好使晶体接近饱和区域或者截至区域。

图2方案一的完整电路图如图3(下一页)图表3方案二:用二极管折线近似电路以及集成运放组成的电路实现函数发生器用二极管折线近似电路实现三角波——正弦波的变换二极管折线近似电路图4根据二极管折线近似电路实现三角波——正弦波的变换的原理图,可得其输入、输出特性曲线如图4所示。

频率调节部分设计时,可先按三个频率段给定三个电容值:1000pF、0.01Μf、0.1μF然后再计算R的大小。

手控与压控部分线路要求更换方便。

为满足对方波前后沿时间的要求,以及正弦波最高工作频率(10kHz)的要求,在积分器、比较器、正弦波转换器和输出级中应选用Sr值较大的运放(如LF353)。

为保证正弦波有较小的失真度,应正确计算二极管网络的电阻参数,并注意调节输出三角波的幅度和对称度。

输入波形中不能含有直流成分。

方案二的完整电路图如图(5)图(5)方案三:用单片集成函数发生器5G8038图(6)是由μA741和5G8038组成的精密压控震荡器,当8脚与一连续可调的直流电压相连时,输出频率亦连续可调。

当此电压为最小值(近似为0)时。

输出频率最低,当电压为最大值时,输出频率最高;5G8038控制电压有效作用范围是0—3V。

由于5G8038本身的线性度仅在扫描频率范围10:1时为0.2%,更大范围(如1000:1)时线性度随之变坏,所以控制电压经μA741后再送入5G8038的8脚,这样会有效地改善压控线性度(优于1%)。

若4、5脚的外接电阻相等且为R,此时输出频率可由下式决定:f=0.3/RC4设函数发生器最高工作频率为2kHz,定时电容C4可由上式求得。

电路中RP3是用来调整高频端波形的对称性,而RP2是用来调整低频端波形的对称性,调整RP3和RP2可以改善正弦波的失真。

稳压管VDz是为了避免8脚上的负压过大而使5G8038工作失常设置的。

图(6)1.4可行性分析:上面三种方案中,方案一与方案二中三角波——正弦波部分原理虽然不一样,但是他们共同的地方就是有相同的方波—三角波产生电路图。

而方案三采用集成芯片使得电路大大简化,但是由于实验室条件和成本的限制,我首先抛弃的是第三种方案。

其次是对方案一与方案二的比较,方案一中用的是电容和电阻运放和三极管等电器原件,方案二是用的二极管、电阻、三极管、运放等电器原件,所以从简单而且便于购买的前提出发我选择方案一为我最终的设计方案。

1.5参数的确定:1、 从电路的设计过程来看电路分为三部分:①正弦波部分 ②方波部分③三角波部分2、 正弦波部分由于我们选取差分放大电路对三角波——正弦波 进行变换,首先要完成的工作是选定三极管,我现在选择KSP2222A 型的三极管,其静态曲线图像如右图所示。

根据KSP2222A 的静态特性曲线,选取静态 工作区的中心5,0.250.12,20c ce I mA I mA V V ββ====由直流通路有:112CE c C R I V =⨯+⇒12c c R R ==20 k Ω22 6.8B B B V R I R =⨯⇒=B2 k Ω4240.710022p o E p R V I R =+⨯⇒≈Ω 因为静态工作点已经确定,所以静态电流变成已知。

根据KVL 方程可计算出镜像电流源中各个电阻值的大小: 可得432,8E E R R k R k ==Ω=Ω 3、 方波部分与三角波部分参数的确定 根据性能指标可知 由442314()1P P R R R C T R R f⨯+⨯==+,可见f 与c 成正比,若要得到1Hz~10Hz ,C 为10F μ。

10Hz~100Hz,C 为1F μ。

则42p R R +=7.5k Ω~75k Ω,则4R =5.1k Ω 则2p R =2.4k Ω或者2p R =69.9 k Ω ∴2p R 取100 k Ω∵231pR V V R R =+三角方波由输出的三角形幅值与输出方波的幅值分别为5v 和14v ,有231514p R R R =+⇒231p R R R +=514∴2R =10k Ω则1p R ≈47 k Ω,3R =20 k Ω根据方波的上升时间为两毫秒,查询运算放大器的速度,可以选择74141型号的运放。

2.仿真结果及分析:由于有些元器件找不到,还有一些元器件的参数设置后波形出不来,以致得不到我所需要的仿真结果.3.心得体会:这次课程设计是我进入大学以来第一次真正的在实际中用到所学的知识,有句话说:知识到用时方恨少.一点都没错!通过这次课程设计我才知道我学到的是多么的少!这是我这个专业的第二个专业课,尽管书很厚,尽管课时少,但没学到东西的错在自己.这次课程设计也增加了我对学习模电的兴趣,以前只听老师讲,不知道它有什么用,现在知道了,它是“高科技”的基础,在下一个学期里,我将更努力的学心它为自已未来的事业打好基础。

还有一个就是平时我总认为查资料没什么难的,不就是在百度或是Google里输入一些汉字,然后回车吗,但在这次课程设计中,我查资料的水平真是不行,找来找去只能找到一些被别人传来传去的东西,我不能确定那些都是不是对的。

还有,好象大学网站里没什么东西,不知是各个大学不愿把自已的东西拿到网上还是我找不到。

最后一点体会就是武汉理工真是太水了,这个课程设计竟然让我们纸上谈兵,还不让我们进实验室,这几天又要考试,连个自习的地方都没有,寝室又冷,我在自已的电脑前冻了几天才终于把这个弄完了。

那些什么校长啊,教务长啊不知干什么吃的,学校资源这么紧张也同意扩招,我真不知他们是怎样想的。

相关文档
最新文档