反应釜的温度控制系统的设计毕业设计论文
反应釜温度控制系统设计

在化工行业中,反应釜是最常用的一种反应容器,而它的最关键的技术在于其温度的控制,反应釜也被应用于化肥的生产过程中,其中,反应釜温度的控制直接影响其产品质量,对于化肥的生产是一个极其关键的因素。
反应釜中的传热介质也有一定的要求,这种介质要求温度保持恒定,通过控制这种介质的流入量来控制反应釜内反应物所需要的温度要求。
而随着社会和现代工业的不断发展,人们对产品的质量提出了更高的要求。
反应釜内反应物的温度常常要控制在一定的范围内,而传统的手工调节流量的做法已经不能够满足现代工业的要求,自动化智能调节控制系统将会被赋予使命。
1 国内研究发展现状1.1 研究现状自从20世纪以来,我国工业迅猛的发展起来,而由于工业过程控制的需求,特别是随着我国科学技术的发展和计算机的应用,自动控制系统逐渐浮出了水面。
而国外温度控制系统的发展非常迅速,在智能化、自动化等方面取得了非常大的成果,在这个方面,国外西方国家的技术就处于非常领先的水平,他们自动化、智能化温度控制系统广泛地应用于化工业的生产中。
1.2 发展前景随着时间的推移,自动化技术随着化工工艺和化工装备技术的不断发展而发展。
而随着社会的发展,工厂对生产提出了更高的要求,对生产的稳定性要求更高,随着现代化技术的发展,对温度控制以及自动化技术水平的要求也越来越严格。
除此之外,激烈的市场竞争也为工厂自动化技术水平提出了新的更高的目标与要求。
同时,信息化技术的到来,也为化工产业自动化技术的发展注入了新的活力。
2 反应釜结构工艺特点在化工行业中,反应釜是最常用的一种反应容器,而它最关键的技术在于其温度的控制。
反应釜温度的控制主要有两方面,一方面是热水的通入,另一方面是冷水的通入,这两方面通过控制两个阀门就能够实现。
通过其容器内自带的搅拌装置使不同的反应物进行混合,使其能够均匀受热。
在需要升高反应釜内的温度时,打开热水的阀门,通过热传递介质升高釜内的温度,当温度达到需要的温度之后,关闭热水阀门;当反应釜内的温度过高时,打开冷水阀门,从而降低釜内的温度,当降到所需温度时,关闭冷水阀门,使釜内的温度能够保持恒定的状态。
基于反应釜自动控制系统的夹套温度控制研究

基于反应釜自动控制系统的夹套温度控制研究摘要:随着时代发展,规模各异的化工厂在我国大地不断崛起。
与此同时,由于工业自动化技术的发展,化工行业正逐步实现自动化。
在现代合成化工企业中,常见的一种反应器就是聚合反应釜。
本设计以某化工公司的间歇式PVC聚合反应釜为例,对其自动控制系统中的夹套温度控制展开研究讨论。
关键词: 聚合反应釜;温度控制;串级控制;参数整定本文以具体的一个化工厂的氯乙烯聚合反应釜为例,阐述一个间歇式PVC聚合反应釜的自动控制系统。
PVC聚合反应釜的自动控制系统包含着进料控制、悬浮辅助水的液位控制以及温度控制,本文具体介绍夹套温度串级控制的控制方案。
一、分程调节在PVC聚合反应中,夹套的温度控制可分为蒸汽加热升温过程与冷却水换热冷却过程,而这两个过程也是这个反应的主体控制部分。
为了更好的实现两个阀门的分程控制,在此处可安装两个两位五通电磁阀,采用DCS控制电磁阀的动作,分别控制两个阀门的动作从而构成温度分程控制系统。
在这里特别要注意,反应釜夹套的热水排出端口安装的调节阀应选用气开阀,相应的在冷却水出水端选用气关阀。
DCS控制系统启动反应后,根据釜内温度与夹套温度来调整夹套的蒸汽和冷却水出口调节阀的阀开度,在完成分程控制后,蒸汽阀门关闭,冷却水阀门根据温度保持调节状态。
二、温度控制步骤根据工艺要求,我们可以把反应釜的温度控制部分分为加热、过渡、反应、结束四个阶段。
整个控制系统的转化率主要依赖于温度控制,加热速率控制后,恒温稳定控制成为整个系统的核心。
通过DCS控制系统的控制,PVC聚合反应时反应釜的温度控制通常采用顺序控制方法,自动程序控制如框图1所示:图1顺序控制程序框图示意图1、加热阶段:根据PVC的合成配方,虽然PVC的聚合反应是放热反应,但反应物要达到一定温度反应才会进行聚合反应,因而在反应开始前要在夹套中通入加热蒸汽使反应釜内温度上升,使得反应物更快到达引发聚合反应的温度从而引发聚合。
过程控制装置反应釜液位控制毕业设计

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊安徽工业大学毕业设计(论文)任务书课题名称过程控制装置反应釜液位控制学院电气信息学院专业班级测控技术与仪器081班姓名学号毕业设计(论文)的主要内容及要求:主要内容:1.介绍控制系统的硬件组成,所采用的控制方案;2.利用西门子S7-300可编程逻辑控制器实现反应釜液位PID控制;3.使用组态王对系统组态;4.监控液位PLC 控制系统的运行情况。
要求:1. 以过程控制实验装置中的反应釜液位作为被控对象设计一个控制系统,实现对反应釜液位的恒值控制;2.组态测控界面上,实时设定并显示液位给定值、测量值及控制器输出值;3.实时显示液位给定值实时曲线、液位测量值实时曲线;4.选择合适的整定方法确定PID参数,并能在组态测控界面上实时改变PID参数。
5.设计的反应釜液位控制系统要能够实现反应釜液位的自动控制,控制效果好,运行稳定,操作方便。
指导教师签字:┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊过程控制装置反应釜的液位控制摘要反应釜自1912年发明以来取得迅猛发展,至今全球仍以每年3—5%的速度递增。
全世界反应釜的消费总量达3500万。
我国正处于反应釜生产和消费应用的高速增长期,已广泛应用于石油、化工、轻工、食品、酿酒、制药、家电、水电、机械、建筑、市政和各种民用器具中。
不锈钢反应釜具有加热迅速、耐高温、耐腐蚀、卫生、无环境污染、勿需锅炉自动加温、使用方便等特点。
在相当多的领域里,反应釜的性能优劣决定了产品的质量好坏。
目前反应釜的控制系统大都采用以微处理器为核心的计算机控制技术,既提高设备的自动化程度又提高设备的控制精度。
本次设计的主要任务是利用西门子S7-300PLC和组态王软件设计一个恒液位控制系统,使液位维持在设定值附近。
本文首先介绍了过程控制实验装置和反应釜单元的一些基本资料,包括系统组成和工作原理。
张铁刚--1209624009--自动化--反应釜温度控制系统设计

南阳理工学院本科生毕业设计(论文)学院(系):电子与电气工程学院专业:自动化学生:张铁刚指导教师:***完成日期2014年 5 月南阳理工学院本科生毕业设计(论文)反应釜温度控制系统设计Design of Reactor Temperature Controlling System总计:毕业设计(论文)25页表格:6个公式:3个插图:24幅南阳理工学院本科毕业设计(论文)反应釜温度控制系统设计Design of Reactor Temperature Controlling System学院:电子与电气工程学院专业:自动化学生姓名:张铁刚学号: 1209624009指导教师:尹应鹏(导师)评阅教师:完成日期:南阳理工学院Nanyang Institute of Technolo gy反应釜温度控制系统设计自动化张铁刚[摘要] 本设计以STC公司生产的8位STC89C52单片机为硬件核心处理器,首先,通过PT100热电阻型传感器采集反应釜内温度值,然后再通过使用双向积分型A/D模数转化器TLC7135将脉冲信号经过标度转化为单片机可处理的脉冲频率信号送给STC单片机处理,并通过液晶显示模块LCD1602显示电压值、脉冲值及温度参数值等信息。
设计流程结构上采用模块化分割设计,先将各个模块设计出来再通过主程序调用各个模块,具有可读性好,移植性强,便于发现解决问题。
[关键词] 单片机;PT100;LCD1602Design of Reactor Temperature Controlling SystemAutomation Specialty Zhang Tie-gangAbstract:Hold this design by famous STC company's eight STC89C52 single-chip microcomputer as the hardware core processor,first of all, through the thermal resistance PT100 temperature sensor acquisition in the reaction kettle,and then through the use of double integral type A/D module converter TLC7135 pulse signal through scale into pulse frequency signal to microcontroller can pick up on STC microcontroller processing,and through LCD1602 LCD module display the voltage value,pulse and temperature parameter values and other information.Modular division is used to design structure of design process, first the various modules designed by the main program calls each module, has a good readability, portability, easy to find and solve the problem.Key words:STC89C52; PT100; LCD1602目录1 引言 (1)2 系统的总体方案设计 (2)2.1 方案比较 (2)2.2 控制系统总体设计 (3)2.3 温度控制系统总体方框流程 (4)2.4反应釜控制总体流程设计 (4)2.5 系统软件总体设计 (5)3 温度控制系统硬件设计 (5)3.1 温度控制系统硬件设计原则 (5)3.2 微处理器应用 (6)3.3 A/D模数据转换设计 (7)3.3 温度检测模块设计 (8)3.5 操作界面 (9)3.6 液晶显示单元设计 (10)3.7 按键电路设计 (11)3.8 数据保护电路设计 (12)3.9 驱动控制部分 (12)3.10 电加热型反应釜 (13)4 温度控制系统软件设计 (14)4.1软件设计概述 (14)4.2 按键模块设计 (14)4.3 液晶显示模块设计 (15)4.4 主控制器模块软件设计 (16)5 系统的调试运行结果及分析 (18)5.1系统调试 (18)5.2系统运行结果 (19)结束语 (22)参考文献 (23)附录 (24)致谢 (25)1 引言反应釜广泛应用于染料、医药、石油化工及大专院校隶属的科研单位,凭借它优良的密封性克服了机械密封和填料密封无法解决的泄漏问题,是易燃、易爆、剧毒、贵重等物质加温、加压搅拌反应的理想设备容器,也是目前市场上最理想最流行的无泄漏反应装置[2]。
反应釜温度智能控制系统设计 (3)

增益规划的模糊温度控制器的单向输入系统摘要:在许多化工和半导体的生产过程中,温度是获得所需产品质量的一个非常重要的控制参数。
一般来说,温度控制系统拥有非线性时变、慢响应、时延、单向输入控制的特点。
一般很难估计它的精确动态模型,因此也很难设计一个通用的温度控制器去获得好的控制效果。
本文提出了一种不需要特定模型的智能增益规划的模糊控制策略,设计了一个只有温度输入的封闭的铁室温度控制器。
增益规划的概念是指为了获得较好的控制性能而在控制的过程中调整隶属函数的变化范围。
实验结果显示,应用这个控制策略,阶跃响应的稳态误差总是低0.2%,而且没有超调。
它非常适合工业上的温度控制系统。
关键词:模糊控制,增益规划,单向输入的温度控制1简介在化工、材料、半导体等生产过程中,温度是一个非常重要的控制参数。
例如,材料的热处理、薄膜沉积、电视玻璃熔炉等都需要适当的温度控制系统。
一些温度控制系统需要加热和冷却阶段,其他的就只需要加热阶段。
他们的动态表现拥有明显的区别。
只有加热输入的温度控制系统相比于双输入的控制系统更难监控,更难获得较好的控制性能。
在控制领域,怎样去设计一个通用的温度控制器使之在工业应用中拥有较好的响应速度、较小的稳态误差、没有超调,这任然是一个挑战。
目前,开关控制和PID控制策略被应用在商业生产。
PID控制器诞生于1936年。
在工业生产的自动控制系统中被广泛的应用。
然而,怎样调整增益是执行PID控制器的关键因素。
如果系统的精确模型是可以获得的,那么可以应用Zigler-Nichols和IMC整定方法得到适当的控制增益。
然而,加热设备拥有时滞和非线性的的特点。
因此很难获得一个精确地动态模型,从而难以实现PID控制器设计。
一般,为了获得一个较好的控制响应,它需要反复的测试过程。
当系统遇到外加干扰或者是设定值时,系统的瞬态响应将会变坏。
这就需要在线的调整去重新适应这种变化或者换成人工控制。
这就不是一个方便的应用,并且在生品产品过程中产品的参数可能就不会保持好的水平。
化工反应釜温度控制系统的研究与设计

化工反应釜温度控制系统的研究与设计一、本文概述化工反应釜作为化工生产中的核心设备,其温度控制对于确保产品质量、提高生产效率以及保障生产安全具有至关重要的作用。
然而,由于化工反应过程中涉及的物质种类繁多,反应条件复杂多变,因此,如何实现精确、稳定且可靠的温度控制一直是化工领域的重要研究课题。
本文旨在深入探讨化工反应釜温度控制系统的研究与设计,以期为解决当前化工生产中存在的温度控制问题提供理论支持和实践指导。
本文将首先概述化工反应釜温度控制的重要性和挑战性,接着详细介绍现有的温度控制技术及其优缺点。
在此基础上,本文将提出一种新型的化工反应釜温度控制系统设计方案,包括硬件结构、软件编程以及控制策略等方面。
该方案将充分利用现代自动化控制技术,如传感器技术、数据处理技术和智能控制算法等,以提高温度控制的精度和稳定性。
本文还将对新型温度控制系统的性能进行仿真分析和实验研究,以验证其在实际应用中的可行性和有效性。
本文将对研究成果进行总结,并提出未来的研究方向和展望,以期为化工反应釜温度控制技术的发展贡献力量。
二、化工反应釜温度控制系统的基本原理化工反应釜是化工生产过程中的核心设备,其内部反应过程中的温度控制对于保证产品质量、提高生产效率以及保障生产安全具有至关重要的作用。
因此,研究和设计一套高效、稳定的化工反应釜温度控制系统是化工行业的重要任务。
化工反应釜温度控制系统的基本原理是通过对反应釜内部温度的实时监测和精确控制,实现对化学反应过程的有效管理。
这一系统通常由温度传感器、控制器和执行机构等核心组件构成。
温度传感器负责实时监测反应釜内部的温度,并将这一信息转化为电信号传递给控制器。
控制器接收到温度信号后,会根据预设的温度曲线或控制算法,计算出当前应施加的热量或冷量,以调节反应釜内的温度。
执行机构则根据控制器的指令,通过调节加热或冷却介质的流量,实现对反应釜温度的精确控制。
在温度控制系统的设计和实现过程中,需要考虑多种因素,如反应釜的材质、结构、反应特性等,以及环境温度、压力等外部条件的影响。
化学反应釜最优温度控制系统的设计与实现

一
在化 工 生 产 过 程 中 ,化 学反 应 釜 是 使 原 料 转 变 成 产 品 的 必 备 设 备 , 釜 内 温度 控 制 的效 果 是 决 定 产 品 质量 高低 , 产 效 率 其 生 快 慢 的 重要 因素 之 一 。 通 常情 况 下 , 制 温 度 的做 法 是 将 不 同 在 控 的 高低 温导 热 流 体 直 接 通人 反应 釜 的夹 套 中 , 以此 来 调 节 釜 内 温度 , 这样 做往 往 使 得 反 应 釜 夹 套 内 的 流体 相 当混 乱 , 内 温度 釜 也 很 难 达 到 预 期 效 果 。 文 针 对 这 一 问题 , 本 设计 了一 套 仅 使 用单
p ame e s ofc c de ar t r as a PI c tol D onr l bas t sa ar o I er ed on he t nd d f TAE.
Key wors: m pe aur n r s sem,e ctrop i c n r d t e r t e co tol y t r a o , t mal o tol
和釜 中物 料 。 将 釜 内 T 并 1温 度 作 为 主控 对 象 , 套 内的 温度 T 夹 2
加 热器 , 此 时 加热 器 是 停 止 工 作 的 。 当 反 应 釜需 要 升 温 时 , 但 制
冷 压 缩 机 停 止 工 作 , 热 器 启 动 。系 统 控 制 的 硬 件采 用 P C 可 加 L 编 程 控 制 器 , 温 度 测 点 分 别 布 置在 夹套 的进 出 口 、 应 釜 内 、 将 反 夹 套 内 、 发 器 的进 出 口和 冷 凝 器 出 I。 压 力 测 点 布置 在真 的手 段 , 出 了基 于 IA i l 仿 n 求 T E准则 下 的 串级 PD最 优 I 控 制器 , 善反 应 釜 温 控 效 果 。 完
反应釜的温度控制系统 毕业设计论文

反应釜的温度控制系统毕业设计论文安徽工业大学毕业设计(论文)任务书课题名称反应釜的温度控制系统学院电气信息学院专业班级仪表093姓名学号099064035摘要反应釜是化工生产过程中的重要设备,反应过程中伴随有大量的吸、放热现象,具有大滞后、时变、非线性、反应机理复杂等特点.传统的PID控制是一种基于过程参数的控制方法。
具有控制原理简单、稳定性好、可靠性高、参数易调整等优点,但其设计依赖于被控对象的精确数学模型,在线橄定参数的能力差,而反应釜因为机理复杂、各个参数在系统反应过程中时变,不能建立精确的数学模型,不能满足系统在不同条件下对参数自整定的要求,因而采用一般的PID控制器无法实现对反应釜的精确控制。
模糊控制是一种基于规则的语言控制,在设计中不需要建立被控对象的精确数学模型,鲁棒性强,干扰和参数变化对控制效果的影响被大大减弱,控制效果好。
但模糊控制器是以误差和误差变化作为输入变量,这种控制器具有模糊比例一微分控制作用,精度不太高、稳态误差较大、自适应能力有限和易产生振荡现象。
预测控制是一种优化控制算法,它是通过对某一性能指标的最优来确定未来的控制作用的,具有对模型要求低、鲁棒性好、适用于数字计算机控制的优点。
由于计算机模型预测控制具有良好的跟踪性能,能有效地提高系统的稳定性和消除误差,对滞后过程有明显控制效果,更加符合工业温度控制的实际要求,从而大大提高了温度控制系统的性能。
本文比较全面的分析了反应釜温度变化的特点以及控制难点,总结当前温度控制系统精度差的根本原因,在此基础上采用基于预侧的模糊自整定PID集成控制技术实现反应釜温度控制,其主要思想是利用系统模型的预测输出,结合常规PID的控制经验,采用模糊推理方法,对控制器算法进行改进。
实验结果表明,与通常的PID控制方案相比,该方案提高了系统的鲁棒性和适应性,较好的解决了反应釜温度控制的难题。
课题完成了反应釜温度控制系统的硬件电路的设计、系统软件的编译与调试,对基于预测的模糊自整定温度控制系统进行了仿真与实验研究,与PID控制方法相比,控制性能更加稳定,可靠性更高,实时性、适应性、鲁棒性都显著增强,控制效果较好。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊安徽工业大学毕业设计任务书学院、系:电气信息学院自动化系专业:自动化学生姓名:学号:设计题目:基于HDU4000过程控制系统的反应釜温度控制系统的设计起迄日期:设计地点:指导教师:系主任:┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊毕业设计任务书┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊毕业设计任务书3.对毕业设计课题成果的要求〔包括毕业设计、图纸、实物样品等〕:1、毕业设计说明书(包括纸质版和电子版)2、毕业设计说明书应包括英文资料全文及翻译稿,3、必要的程序和电路图。
4.毕业设计课题工作进度计划:起迄日期工作内容2013年2月25日~3月31日4月1日~4月30日5月1日~6月10日6月11日~6月15日6月16日~6月20日6月20日~6月25日检索并仔细阅读有关技术资料,严格按学校对毕业设计开题报告的要求认真完成毕业设计开题报告;翻译英文资料,原稿和译文要附于论文之后;按毕业论文课题的具体工作内容要求,撰写论文,一定要注意的是论文格式严格按系里的要求完成。
指导教师审阅论文的电子稿;严格按要求修改论文,打印装订,评阅老师评阅;论文答辩。
学生所在系审查意见:系主任:年月日┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊摘要温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关。
在科学研究和生产实践的诸多领域中,温度控制占有着极为重要的地位, 特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。
对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。
例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等。
温度控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。
反应釜中的温度控制是整个化工生产过程中的核心控制部分之一,它具有温度惯性、大的延迟时间等特性,对过程控制造成非常大的困难。
为了达到比较理想的控制效果,经过比较和分析,这里采用西门子公司的S7-300系列PLC设备,配以上位机监控系统,并以PID控制为理论基础,实现对反应釜的温度控制。
该系统使用STEP7和Wincc软件进行编程,在仿真器上进行的模拟调试以及利用组态画面进行的试验都获得了成功,可以证明这种方案符合基本工艺需求,是实际可行的,可以为实际操作提供应用参考。
关键词:S TEP7;反应釜;PID控制;温度控制系统;Wincc监控软件┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊AbstractTemperature is one of common working parameters in industrial production, any physical change process is closely related to temperature. In many areas of scientific research and production practice, the temperature control occupies very important position, especially in metallurgy, chemical industry, building materials, food, machinery, petroleum and other industries, plays a decisive role. Under different production conditions and technological requirements for temperature control, heating mode, fuel, the control scheme is also different. Such as metallurgy, machinery, food, chemical industry etc widely used in all kinds of industrial production of all kinds of heating furnace,heat treatment furnace,reactor,etc. Fuel is coal gas, natural gas, oil, electricity, etc. The technological process of the temperature control system is complicated and uncertain, so the system requires more advanced control technology and control theory.In the reaction kettle temperature control is one of the core control portion of the whole chemical production process, it has the character of inertia, large delay time, temperature on the process control cause great difficulties. To achieve ideal control effect, through comparison and analysis, it adopts Siemens S7-300 series PLC equipment, with more than a machine monitoring and control system, and based on the theory of PID control, the realization of the reaction kettle temperature control.The system is edited by STEP7 and WinCC software, the successful of the debug on the simulator and the tests carried out by the configuration screens, can prove that this scheme can meet the demand of basic technology, it is practical, can be reference for practical applications.Key words :PLC,The reaction kettle,PID control,Temperature control system, WINCC monitoring software┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊目录第一章绪论 (9)1.1 选题的背景 (9)1.2 国内外研究现状 (9)1.3 发展现状 (10)1.4 展望 (11)第二章连续搅拌反应釜工艺简介 (13)2.1 连续搅拌反应釜的基本结构 (13)2.2 连续搅拌反应釜工作原理 (14)2.3 连续搅拌反应釜温度控制难点 (14)2.4 微机控制系统软件 (15)2.5 使用设备 (15)第三章PID控制方案 (17)3.1 PID控制器的应用与发展 (17)3.2 PID控制原理 (17)3.2.1 PID控制器基本概念 (17)3.2.2 PID控制器的参数整定 (17)3.2.3 数字PID算法 (18)3.2.4 数字PID控制器的控制作用 (20)3.3 PID控制器的主要优点 (22)3.4 闭环控制系统的概念与特点 (22)3.5 反应釜的PID控制方案 (22)3.5.1 PLC在PID闭环控制系统中的应用 (22)第四章系统硬件选择 (26)4.1 可编程控制器总体概述 (26)4.2 PLC工作原理 (26)4.3 PLC组成结构 (27)4.4 S7-300简介 (29)第五章下位机过程系统设计 (31)5.1 PLC STEP7编程 (31)5.2 SIMA TIC S7-300可编程控制器模块选型: (34)5.3 下位机程序设计 (35)5.3.1 下位机程序设计 (36)第六章控制系统上位系统设计 (38)6.1 监控画面设计 (38)6.1.1 WinCC组态软件介绍 (38)6.1.2 WinCC与S7-300之间通讯的实现 (38)6.1.3 监控画面的设计 (39)6.2组态WinCC编程 (39)6.2.1 PLC通信 (40)6.2.2 WinCC与Step7-300通讯 (41)6.2.3 WinCC编程 (51)第七章下位机具体程序与结果分析 (55)7.1 反应投料运行程序 (55)7.2 反应釜的温度控制程序 (59)7.3 结果分析 (63)第八章总结与展望 (67)8.1 总结 (67)8.2 展望 (67)参考文献 (68)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊致谢 (69)附录 (70)┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊第一章绪论1.1 选题的背景石油化工工业是国家经济发展的支柱性产业,反应釜作为化工生产中实现化学反应的主要设备,其自动控制方法的研究具有非常重要的意义。