电路分析网孔分析法和节点分析

合集下载

电路分析网孔分析法和节点分析

电路分析网孔分析法和节点分析
等效单口网络:当两个单口网络的VCR关系完全 相同时,称这两个单口是互相等效的。
将电路中的某些单口用其等效电路代替,可以简化 电路的分析和计算。
一、线性电阻的串联和并联
1.线性电阻的串联(见第一章)
2.线性电阻的并联(见第一章)
3.线性电阻的串并联 由若干个线性电阻的串联和并联所形成的单口网
络,就端口特性而言,等效于一个线性二端电阻。
i5 R2 i+2 R5 ib uS-2
支路电流: i1,i2,i3,i4,i5,i6 网孔电流:
假想沿网孔边沿流动的电流,
i4
R4 ic R6 i6
如图中ia,ib,ic
R3 +uS3-i3 参考方向可以任意选取。
若以网孔电流为求解变量, 所需方程数将大大减少。(重点)
一、网孔电流
设想电流i1、i2和i3沿每个
图中 节点1与公共点O间电阻称为R1 节点2与公共点O间电阻称为R2 节点3与公共点O间电阻称为R3
二、Δ形联接
当三个电阻依次联成一个 闭合电路,且三个联接点再 分别与外电路相联,叫Δ形 联接。
图中:
节点1与2间电阻称为R12 节点2与3间电阻称为R23 节点3与1间电阻称为R31
方法: Y-变换
R2
R12
R23 R12 R 23 R31
特例:当三电阻相等时,则
R 3RY

RY
1 3
R
历年考题:
9、图示电路,求u 。(2V)
10、图示电路,求i 。(9/13A)


i
+ 18V
+u–
1A
3Ω 2A 2Ω 4Ω




第三章网孔分析法和结点分析法

节点和网孔分析法

节点和网孔分析法
网孔方程建立
根据基尔霍夫电压定律(KVL),可以建立每个网孔的电压方程。对于每个网孔,其电压降等于该网 孔上所有元件电压降的代数和。通过列写网孔电压方程,可以得到一组以网孔电流为未知数的线性方 程组。
网孔阻抗矩阵形成与求解
阻抗矩阵形成
在列写网孔电压方程时,需要将电路中 的电阻、电感、电容等元件用阻抗表示 。将各元件的阻抗按照网孔电流的流向 排列成矩阵形式,即可得到网孔阻抗矩 阵。该矩阵是一个方阵,其阶数等于网 孔数。
在多个领域进行了实际应用验证,证明了 节点和网孔分析法的有效性和实用性。
未来发展趋势预测
跨领域应用拓展
随着节点和网孔分析法的不断完善,其应用领域将进一步拓展,包括 社交网络、交通网络、生物网络等多个领域。
动态网络分析
未来研究将更加注重动态网络的分析,探索网络结构和行为的动态演 化规律。
多层网络分析
节点导纳矩阵形成与求解
形成节点导纳矩阵
将节点电压方程中的系数按照一定规则排列成矩阵形式,得到节点导纳矩阵。 矩阵中的元素表示各节点之间的电导连接关系。
求解节点电压
根据节点导纳矩阵和给定的电流源,可以求解出各节点的电压值。一般采用高 斯消元法或迭代法进行求解。
03
网孔分析法
网孔定义及分类
网孔定义
随着多层网络研究的兴起,节点和网孔分析法将进一步拓展到多层网 络分析领域,揭示不同层级网络之间的相互作用和影响。
算法优化与创新
针对现有算法存在的问题和不足,未来研究将致力于算法的优化和创 新,提高节点和网孔分析法的准确性和效率。
THANKS。
05
节点和网孔分析法在电路中的 应用
复杂电路分析
01
02
03
节点分析法

第3章网孔分析法和节点分析法

第3章网孔分析法和节点分析法

5 13 1 2 1 2
i1 i3 2ia
补充方程
5i1 10 4i3 4 5i2 8 4ib
18 i1 8
1 i2
0
0 i3 0
练习
10Ω
_ 4ib +
+ 2ia _
ib
+
+

8V
_
u_a 5Ω
0.2ua
ia
作业
+ 4ix _ 4Ω
ix



1A
3.2 节点(结点)电压法 (node voltage method)

网孔1和网孔2看
i
+ 4V _
3
成一个网孔,即 超级网孔
2Ω 2Ω


+ 12V_
i
i
2A
1
2
+ 6_V
超级网孔 方程
超级网孔 自电阻
4i1 6i2 6i3 12 6 4
i1 i2 2 补充方程 2i1 4i2 10i3 4
超级网孔 与网孔3的
互电阻
作业1
列写网孔方程,并求出u0 4Ω

i
+

3

8V
_
i
2Ω i
1
2 2A
网孔电流等于支路电 流等于电流源电流
i2 2A
6i1 2i2 4i3 8 i2 2A 4i1 6i2 13i3 0
6i1 4i3 12 4i1 13i3 12
6 4
4
13
i1 i2
12 12
2、等效变换
5Ω + 6V _

第2章 网孔分析和节点分析法

第2章  网孔分析和节点分析法

。然后
,取b点为参考点,用Ga 表示节点a的节点电压,按式 (2―12)列出节点电压方程为
1 1 1 ( )U a I s1 I s I s 2 R1 R2 R3
求得节点电压
I s1 I s I s 2 4.5 3 1 Ua 6V 1 1 1 1 1 1 ( ) ( ) R1 R2 R3 2 4 3
节点(电压)方程一般形式 : G11Un1+G12Un2+G13Un3=is11
G21Un1+G22Un2+G23Un3=is22
G31Un1+G32Un2+G33Un3=is33 自电导G11、G22 、G33 :与相应节点连接的全部电 导之和,符号取“+”号; 互电导G12、G13 、G21 、G23 、G31 、G32 :1、2、3 相关节点之间的所有电导之和,符号取“-”号; 等效电流源iS11、iS22 、iS33 :节点1、2、3的等效电 流源,是流入相应节点的各电流源代数和。
以网孔1为例:
(R1+R5+R4)il1-R4il2+R5il3=0
一般形式 R11il1+R12il2+R13il3=us11
il1
方程左边: 自阻R11 : 该网孔所有支路电阻的总和. 互阻R12、 R13 : 与该网孔共有支路上的电阻
il2
il3
方程右边:网孔1的电压 源之和(网孔电流从正 极流出为正,否则为 负)。
I
IS R
º
转换
+ RIS
I
º
_ R
º
º
无伴电流源: 只属一个网孔:
例1 如图电路,用网孔法求电流I。

《电路分析》第二章 网孔分析和节点分析

《电路分析》第二章 网孔分析和节点分析
有6条支路、4个节点,共可建立3个 网孔方程根据元件VAR 、KVL列出以
下方程组:
对于回路Ⅰ 对于回路Ⅱ 对于回路Ⅲ
( R1 R2 Rg )i ( Rg )i ( R1 )i 0
( R3 R4 Rg )i ( Rg )i ( R3 )i 0
当电路中不含受控源时,R矩阵(称为电阻矩阵)为对称 矩阵,含受控源时,R矩阵不对称。
网孔分析法计算步骤:
1.在电路图上标明网孔电流及其参考方向。若全部网 孔电流均选为顺时针(或逆时针)方向,则网孔方程的全部 互电阻项均取负号。 2.用观察电路图的方法直接列出各网孔方程。 3.求解网孔方程,得到各网孔电流。 4.假设支路电流的参考方向。根据支路电流与网孔电 流的线性组合关系,求得各支路电流。 5.用VCR方程,求得各支路电压。
如果电路有m 个网孔,也不难得到列写网孔方程的通式为
R11i1 R12i2 R1m im u s11 R i R i R i u 21 1 22 2 2m m s 22 R i R i R i u m2 2 mm m smm m1 1
电流源 的电压
I m1 I m 2 7
(补充方程)
本例中电流源接在公共支路上,注意应假设电流源的电压, 并增加补充方程。
解法二:重选独立回路法

Im3 +
7V 1Ω
Im1
U
+ -
3Ω 7A 1Ω
-

Im2
使电流为一个回路所拥有,则该电流就是电流源电流,可减 少一个方程。
解法三:变形电路
R5i A ( R2 R5 R6 )iB R6iC us 2

第二章 网孔分析和节点分析

第二章 网孔分析和节点分析

un3 20 50 105 175V U un3 1 20 195V
I ( un 2 90) / 1 120 A
返 回 上 页 下 页

un1 100V
1 - U 20A + 3 2 2

100V
1
5.节点分析和网孔分析的比较:
1.网孔分析只适于平面电路;
+ : 流过互电阻的两个回路电流方向相同
Rkk:自电阻(为正)
Rjk =Rkj :互电阻
- : 流过互电阻的两个回路电流方向相反 0 : 无关
返 回 上 页 下 页
2. 网孔分析法的一般步骤(只适于平面电路):
(1) 选定m=b-(n-1)个网孔,并确定其绕行方向;
(2) 对m 个网孔,列写网孔方程(实质是KVL方程); 自电阻、互电阻、电压升。方程个数为b-(n-1)。 (3) 求解上述方程,得到m个网孔电流; (4) 求各支路电流(用网孔电流表示); (5) 其它分析。
(2) 用节点电压表示控制量。
u3 un 3 i un 2 R2
返 回 上 页 下 页
I

求U和I 。 应用节点法。
1
- 90V + 2
un 2 100 110 210V
注:与电流源串接的 电阻不参与列方程
0.5un1 0.5un 2 un3 20
+ - 110V
b ( n 1)
a i1 R1 uS1 + – i2 R2 + – iM2 i3
与支路电流法相比, 方程数减少n-1个。
(R1+ R2) iM1-R2iM2=uS1-uS2
i M1
R3
uS2

电路分析网孔分析法和节点分析

电路分析网孔分析法和节点分析

电路分析网孔分析法和节点分析电路分析是电路理论和实际电路设计中的重要部分。

在电路分析中,有两种主要的方法,即网孔分析法和节点分析法。

本文将详细介绍这两种方法,并从理论和实践两个层面对这两种方法进行比较和对比。

首先,我们来看网孔分析法。

网孔分析法是通过将电路划分为若干个网孔来进行分析的方法。

网孔是由电路元件组成的闭合路径。

在网孔分析法中,我们可以根据基尔霍夫定律和欧姆定律,得到各个网孔中的电流和电压之间的关系。

通过解这些方程,我们可以得到电路中各个元件的电流和电压。

相对而言,网孔分析法适用于复杂的电路,因为通过合理划分网孔,可以降低计算复杂度。

其次,我们来看节点分析法。

节点分析法是通过将电路划分为若干个节点来进行分析的方法。

节点是电路中的交叉点或连接点。

在节点分析法中,我们可以根据基尔霍夫定律和欧姆定律,得到各个节点的电流和电压之间的关系。

通过解这些方程,我们可以得到电路中各个元件的电流和电压。

相对而言,节点分析法适用于简单的电路,因为节点分析法只需要解线性方程组,计算较为简单。

接下来,我们比较和对比这两种分析方法。

首先,网孔分析法和节点分析法都是基于基尔霍夫定律和欧姆定律进行分析的。

这两个定律是电路分析的基础,无论是网孔分析法还是节点分析法,都离不开这两个定律。

其次,网孔分析法和节点分析法在计算复杂度上有所不同。

网孔分析法需要对每个网孔进行分析和计算,所以在实际应用中可能需要解较多的方程,计算复杂度较高。

而节点分析法只需要解线性方程组,所以计算复杂度相对较低。

因此,网孔分析法适用于复杂的电路,而节点分析法适用于简单的电路。

最后,网孔分析法和节点分析法在电路分析结果的表示上有所不同。

在网孔分析法中,我们通常会得到各个网孔中的电流值,而在节点分析法中,我们通常会得到各个节点的电压值。

所以,在实际应用中,我们可以根据需要选择不同的方法,以得到更加直观和实用的分析结果。

综上所述,网孔分析法和节点分析法都是重要的电路分析方法,在不同的场景下,可以选择不同的方法进行电路分析。

运用节点法和网孔法进行电路分析

运用节点法和网孔法进行电路分析
确定了节点电压,支路电流的计算可从欧姆定律的简单应用得出。 例子4.1 含超节点的节点分析
(4.25)
(4.26)
图7所示电路包含两个电压源,而且经我们指定参考节点,电压源 V 2 是一个浮动电压源。 如图中所示,超节点包括电压源和与它并联的电阻元件 R 4 。
图7 另一个超节点例子
首先,我们注意到通过电阻 R 4 的电流 I 4 由公式(4.27)给出:
R R1 R3
这种形式。如
果对角线上的某个元素由正、负两部分组成,那么一定有一个符号是错误的。 · 所有的对角线上的元素都是正的,其它元素都是负的,而且矩阵是对称的 Aij = A ji 。如果矩 阵不具有这个特性,那一定存在错误。 用上面的形式列写电路方程式,一定存在一组由真实电流值构成的解。 一旦我们把方程式变为矩阵形式,对结果进行逐条的检验。如果 det A = 0 ,那么就能得出 一组解。 未知电压 VK 为:
运用节点法和网孔法进行电路分析运用节点法和网孔法进行电路分析众所周知运用基尔霍夫定律和欧姆定律我们可以对任何一个电路进行分析以确定其运行条件电流和电压值
运用节点法和网孔法进行电路分析
众所周知,运用基尔霍夫定律和欧姆定律,我们可以对任何一个电路进行分析,以确定其 运行条件(电流和电压值)。一般电路分析的难点在于用最少的联立方程描述电路的运行特性。 在这一讲里,我们将介绍两种非常有效的可用于对任意电路进行分析的方法:节点法和网 孔法。这些方法是建立在对基尔霍夫定律的系统应用基础上的,我们将通过图1的例子电路来说 明求解的步骤。
图10 标注网孔电流方向 现在,让我们把注意力转移到标记各个支路上的元件电压。 电阻上电压极性与指定的网孔电流的方向一致。万一某一处支路被两个网孔共用,就像例 子中含有电阻 R 2 的支路,电压的极性与各自网孔中指定的网孔电流的方向一致。 在这个电路中,我们进行网孔分析的第一步是单独分析每个网孔,根据定义的网孔电流方 向在回路上应用KVL定律。 考虑网孔1 为了分析更方便,我们把网孔1从图11所示的电路中分离出来。这么做的时候,必须注意要 包括共享支路的所有信息。在这里,我们给出了网孔电流 I 2 在共享支路上的方向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

R2
R12
R23 R12 R 23 R31
特例:当三电阻相等时,则
R 3RY

RY
1 3
R
历年考题:
9、图示电路,求u 。(2V)
10、图示电路,求i 。(9/13A)


i
+ 18V
+u–
1A
3Ω 2A 2Ω 4Ω




第三章网孔分析法和结点分析法
3-1 网孔分析法(重点) 3-2 结点分析法 (重点) 3-3 含受控源的电路分析(重点) 3-4 回路分析法和割集分析法 3-5 计算机分析电路实例 3-6 树支电压与连支电流法
二、独立电源的串联和并联
根据独立电源的VCR,KCL、KVL方程可得到以下公式:
1.n个独立电压源的串联单口网络,如图所示,就端
口特性而言,等效于一个独立电压源,其电压等于各电压
源电压的代数和
n
uS uSk k 1
图 其中与uS参考方向相同的电压源uSk取正号,相反则取
负号。
2. n个独立电流源的并联单口网络,如图所示,就端 口特性而言,等效于一独立电流源,其电流等于各电流源 电流的代数和
n
iS iSk k 1
与iS参考方向相同的电流源iSk取正号,相反则取负号。

电压源、电流源、电阻网络混联
当电压源与电流源或电阻并联时,可等效为一个电压源.
a IS
b
+ R US

a

US -
b
电流源与电压源或电阻串联时,可等效为一个电流源.
a IS
b

US R的电阻单口网络
等效单口网络:当两个单口网络的VCR关系完全 相同时,称这两个单口是互相等效的。
将电路中的某些单口用其等效电路代替,可以简化 电路的分析和计算。
一、线性电阻的串联和并联
1.线性电阻的串联(见第一章)
2.线性电阻的并联(见第一章)
3.线性电阻的串并联 由若干个线性电阻的串联和并联所形成的单口网
络,就端口特性而言,等效于一个线性二端电阻。
当仅需求解电路某一部分的电压和电流时,常用这种 方法来简化电路分析。现举例加以说明。
§2-3 Y形和Δ形电阻网络的等效互换
元件间连接的方式除了串联,并联还有Y形和Δ形。
一、 Y形连接
当三个电阻的一端公共联接(如 图中O点),且与外电路不联,另一端 互不相联(如图中1点,2点,3点), 且分别与外电路相联的联接方式称为Y 形连接。
1
1
2 C
3
2
A
D
Rd
C
B
3 A
D
Rd
B
记忆如下公式:
三、Y形和Δ形电阻网络的等效互换关系
1、已知Y形电阻转换成Δ形各电阻。
Rmn
Y形电阻两两乘积之和 与Rmn相对端子所接的电阻
如:
R23
R1R2
R2 R3 R1
R3R1
2、已知Δ形电阻转换成Y形各电阻
Rk
K端所接两电阻的乘积 形三个电阻之和
如:
(这是方法之一,其它方法随着课程的深入将逐步介绍)
含源电 阻单口
i
外施电流 i,
+ 由 KVL 写出
u u=Ri+Uoc
R

Uoc

i+
u

- 外施电压 u, 由 KCL 写出
u
i= R -Isc
i


R
Isc u


历年考题:
9、图示电路,求u 。(2V)
10、图示电路,求i 。(9/13A)


i
+ 18V
+u–
1A
3Ω 2A 2Ω 4Ω




四、含源线性电阻单口两种等效电路的等效变换
含源线性电阻单口可能存在两种形式的VCR方程,即
u Roi uoc i Gou isc
相应的两种等效电路,如图(a)和(c)所示。
五、用单口等效电路简化电路分析
(用途:用于计算复杂支路中某一支路的VCR参数)
第三章 网孔分析法和节点分析
科学家研究世界 工程师创造崭新世界
第二章 用网络等效简化电路分析
2b法的缺点是需要联立求解的方程数目 太多,给求解带来困难。
本章通过两个途径来解决这个问题:
1. 利用单口网络的等效电路来减小电路规模, 从而减少方程数目。
2. 减少方程变量的数目,用独立电流或独立电 压源作变量来建立电路方程。
一般来说,由一些独立电源和一些线性电阻元件组成
的线性电阻单口网络,就端口特性而言,可以等效为一个 线性电阻和电压源的串联, 或者等效为一个线性电阻 和电流源的并联。可以通
过计算端口VCR方程,得 到相应的等效电路。
含独立电源的电阻单口的化简方法:
写出端口的VCR, 画出与之对应的电压源串联 模型或电流源并联模型。
§3-1 网孔分析法(重点)
本章介绍利用独立电流或 独立电压作变量来建立电路方 程的分析方法,可以减少联立 求解方程的数目,适合于求解 稍微复杂一点的线性电阻电路, 是求解线性电阻电路最常用的 分析方法。
例1 电路如图,求i1,i2,i3 .
+ i1 1Ω 5V

i3 2Ω 1Ω
i2 + -10V
§2-2 电阻单口网络
VCR相同
N1
等效
N2
单口网络:只有两个端钮与其它电路相连接的网 络,称为二端网络。当强调二端网络的端口特性,而 不关心网络内部的情况时,称二端网络为单口网络, 简称为单口(One-port)。
§2-2 电阻单口网络
VCR相同
N1
等效
N2
电阻单口网络的特性由端口电压电流关系(简称为 VCR)来表征(它是u-i平面上的一条曲线)。
网孔边界闭合流动而形成, 如图中箭头所示。这种在网 孔内闭合流动的电流,称为 网孔电流。
解 由KVL及KCL: i1 + i3 -5= 0

i 3
+2i2
+10
=0
i
3

i1+i2
=0
得 i1=1A, i2 = -3A, i3 = i1-i2 =4A
例2 求图电路各支路电流。
解:由KVL及KCL列方程;(相当复杂,如何简化?)
思路,采用网孔分析法! 何谓网孔分析法?
i1 R1 +
-uS1 ia -uS+4
图中 节点1与公共点O间电阻称为R1 节点2与公共点O间电阻称为R2 节点3与公共点O间电阻称为R3
二、Δ形联接
当三个电阻依次联成一个 闭合电路,且三个联接点再 分别与外电路相联,叫Δ形 联接。
图中:
节点1与2间电阻称为R12 节点2与3间电阻称为R23 节点3与1间电阻称为R31
方法: Y-变换
i5 R2 i+2 R5 ib uS-2
支路电流: i1,i2,i3,i4,i5,i6 网孔电流:
假想沿网孔边沿流动的电流,
i4
R4 ic R6 i6
如图中ia,ib,ic
R3 +uS3-i3 参考方向可以任意选取。
若以网孔电流为求解变量, 所需方程数将大大减少。(重点)
一、网孔电流
设想电流i1、i2和i3沿每个
相关文档
最新文档