现代控制理论最小二乘法辨识

合集下载

现代控制理论_第14章_最小二乘法辨识

现代控制理论_第14章_最小二乘法辨识
i 1 n i 0 n n
y n 2 ai y n 2 i bi u n 2 i n 2
i 1 i 0
n
y n N ai y n N i bi u n N i n N

y k ai y k i bi u k i v k ai v k i
i 1 i 0 i 1
n
n
n
(14-3)
假设v k k 1,2,, n 是均值为零的独立分布的平稳随机序列,且与 序列u k k 1,2,, n 相互独立。设
ˆ 表示 y 的最优估值,则有 设ˆ 表示 的最优估值, y
ˆ ˆ y
(14-12)
式中
ˆ n 1 y a ˆ ˆ y n 2 ˆ ˆ y , b ˆ ˆ y n N
T 的展开式如下所示:
y n 1 y n y n y n 1 y 1 y 2 T u n 1 u n 2 u n 1 u n u 2 u 1 y n N 1 n 1 y n N 2 n 2 yN u n N u n N 1 n N uN
1
因为ˆ 有解与 T 正定等价,所以可以保证 T 正定来确定对输 入 u k 序列的要求。由式(14-9)可知
Y U
(14-20)

YT U YT U Y T Y U T T T U Y U U U

最小二乘法辨识

最小二乘法辨识

T 1 T T 1 T ˆ E [ θ ] E [ θ ( Φ Φ ) Φ ξ ] θ E [( Φ Φ ) Φ ξ ]
LS无偏估计的充要条件为:
E [( Φ Φ )
T 1
Φ
T
ξ] 0
下面讨论无偏估计的充分条件。
y ( k ) a1 y ( k 1) a n y ( k n ) b 0 u ( k ) b1u ( k 1) b n u ( k n ) ( k )
最小二乘的最早思想: 未知量的最大可能的值是这样 一个数值,它是实际观测值和计算 值的差值的平方和达到最小的数值。
基本的最小二乘估计 解决问题:在模型阶次n已知的情况下,根据系 统的输入输出数据,估计出系统差分方程的各 项系数。 1.基于输入/输出数据的系统模型描述
SISO系统的差分方程为
x ( k ) a 1 x ( k 1) a n x ( k n ) b 0 u ( k ) b n u ( k n ) y (k ) x(k ) n(k )
(k ) n(k )
a n(k i)
i i 1
n
则当前输出为:
y ( k ) a1 y ( k 1) a n y ( k n ) b 0 u ( k ) b1u ( k 1) b n u ( k n ) ( k )
ˆ min J

下面我们推导θ估计值的计算方法。
J取得最小值,也即J为极值,则有:
J ˆ θ

0
ˆ T ˆ [ (Y Φ θ ) (Y Φ θ ) ] ˆ θ
0
T ˆ 2 Φ (Y Φ θ ) 0

第五章 最小二乘法辨识

第五章 最小二乘法辨识

服从正态分
❖ 4)有效性
❖ 定理4:假设 (k) 是均值为零,方差为 2I 的正态
白噪声,则最小二乘参数估计量
^
是有效估计
量,即参数估计误差的协方差达到Cramer-Rao不
等式的下界
E (^
^
)(
)T
2E
(
T N
N
) 1
M 1
❖ 其中M为Fisher信息矩阵。
4、适应算法
❖ 随着更多观测数据的处理,递推最小二乘法对线性 定常系统的参数估计并非越来越精确,有时会发现
❖ 现举例说明最小二乘法的估计精度 ❖ 例5.1:设单输入-单输出系统的差分方程为
y(k) a1y(k 1) a2 y(k 2) b1u(k 1) b2u(k 2) (k)
❖ 设 u(k)是幅值为1的伪随机二位式序列,噪声 (k)是 一个方差 2可调的正态分布 N(0, 2 )随机序列。
❖ 为了克服数据饱和现象,可以用降低旧数据影响的 办法来修正算法。而对于时变系统,估计k时刻的 参数最好用k时刻附近的数据估计较准确。否则新 数据所带来的信息将被就数据所淹没。
❖ 几种算法:渐消记忆法,限定记忆法与振荡记忆法
❖ 矩阵求逆引理:设A为 n n 矩阵,B和C为 n m 矩阵,
并且A, A和 BCT I CT都A是1B 非奇异矩阵,则有矩
阵恒等式
A BCT 1 A1 A1B(I CT A1B)1CT A1


A
PN1
,B
N 1
,C
T N 1
,根据引理有
PN1
T N 1 N 1
1
❖ 算法中,^ N 为2n+1个存贮单元(ai ,bi ,i 1,2, , n), 而 PN 是 (2n 1) (2n 1)维矩阵,显然,将 N 换成 PN 后,存贮量大为减少(因为n为模型的阶数,一般 远远小于N)

最小二乘类辨识算法

最小二乘类辨识算法

L
1 n
,则模型
计值为
zL H L nL 的参数估
ˆMV
(H
T L
1 n
H
L
)1
H
T L
Z 1
nL
相应的参数估计偏差的协方差为
cov{~MV
}
E{(H
T L
1 n
H
L
)1}
40
推论 2
若模型 zL H L nL 中的 nL 是零均值的白噪
声向量,且加权矩阵取 L I ,则参数估计偏
开始
产生输入信号 M 序列

产生输出信号 z(k)



给出样本矩阵 H m 和 Z m


估计参数



分离估计参数 a1 、 a2 、 b1 和 b2


画图:输入/输出信号和估计参数


结束
4.5 最小二乘参数估计值的统计性质
最小二乘参数估计值具有随机性,因此需要研究 它们的统计性质
1. 无偏性 2. 参数估计偏差的协方差性质 3.一致性 4. 有效性 5. 渐近正态性
第4 章 最小二乘类参数辨识方法
1
主要内容
引言 最小二乘辨识算法 自适应辨识算法 偏差补偿最小二乘法 增广最小二乘算法 广义最小二乘法 辅助变量法 系统的结构辨识
2
4.1 引言
如果
仅仅关心所要辨识的过程输入输出特性 可以将所过程视为“黑箱” 而不考虑过程的内部机理
3
过程的“黑箱”结构
u(k) 和 z(k) 分别是过程的输入和输出 G(z 1 ) - 描述输入输出关系的模型,称为过程模型

系统辨识—最小二乘法

系统辨识—最小二乘法

最小二乘法参数辨识1 引言系统辨识是根据系统的输入输出时间函数来确定描述系统行为的数学模型。

现代控制理论中的一个分支。

通过辨识建立数学模型的目的是估计表征系统行为的重要参数,建立一个能模仿真实系统行为的模型,用当前可测量的系统的输入和输出预测系统输出的未来演变,以及设计控制器。

对系统进行分析的主要问题是根据输入时间函数和系统的特性来确定输出信号。

对系统进行控制的主要问题是根据系统的特性设计控制输入,使输出满足预先规定的要求。

而系统辨识所研究的问题恰好是这些问题的逆问题。

通常,预先给定一个模型类μ={M}(即给定一类已知结构的模型),一类输入信号u和等价准则J=L(y,yM)(一般情况下,J是误差函数,是过程输出y和模型输出yM的一个泛函);然后选择使误差函数J达到最小的模型,作为辨识所要求的结果。

系统辨识包括两个方面:结构辨识和参数估计。

在实际的辨识过程中,随着使用的方法不同,结构辨识和参数估计这两个方面并不是截然分开的,而是可以交织在一起进行的。

2 系统辨识的目的在提出和解决一个辨识问题时,明确最终使用模型的目的是至关重要的。

它对模型类(模型结构)、输入信号和等价准则的选择都有很大的影响。

通过辨识建立数学模型通常有四个目的。

①估计具有特定物理意义的参数有些表征系统行为的重要参数是难以直接测量的,例如在生理、生态、环境、经济等系统中就常有这种情况。

这就需要通过能观测到的输入输出数据,用辨识的方法去估计那些参数。

②仿真仿真的核心是要建立一个能模仿真实系统行为的模型。

用于系统分析的仿真模型要求能真实反映系统的特性。

用于系统设计的仿真,则强调设计参数能正确地符合它本身的物理意义。

③预测这是辨识的一个重要应用方面,其目的是用迄今为止系统的可测量的输入和输出去预测系统输出的未来的演变。

例如最常见的气象预报,洪水预报,其他如太阳黑子预报,市场价格的预测,河流污染物含量的预测等。

预测模型辨识的等价准则主要是使预测误差平方和最小。

最小二乘参数辨识方法及原理

最小二乘参数辨识方法及原理
v ( k ) 是均值为 0 的随机噪声。
2.2 一般最小二乘法原理及算法
z (k ) a i y (k i) bi u (k i) v (k )
i 1 i 1 n n
如果定义
h ( k ) [ y ( k 1), y ( k 2 ), , y ( k n ), u ( k 1), u ( k 2 ), , u ( k n )]
1 1 1
1 1 1
1
1
1
z1 1 1 ( z 1 z 2 ) 2 z2
r 1 0 0 1 1 4 r 1 1 1 1
2、最小二乘辨识方法的基本概念
通过试验确定热敏电阻阻值和温度间的关系
t (C ) R ( )
t1 R1
t2 R2

tN
1
tN RN
RN
1
R a bt
• 当测量没有任何误差时,仅需2个测量值。 • 每次测量总是存在随机误差。
y i R i v i 或 y i a bt v i
v i y i R i 或 v i= y i a bt i
常见做法:
太复杂 使
max | y i R i |
1 i N
N
最小 /* minimax problem */ 不可导,求解困难
使 |y
i 1
i
Ri |
最小
最小
使 |y
i 1
m
i
Ri |
H
2
1 1
r R 0
0 4r

系统辨识方法之最小二乘法

系统辨识方法之最小二乘法

目录一、系统辨识的定义.................................................................................................................. - 2 -二、最小二乘法的引出.............................................................................................................. - 2 -三、最小二乘法的原理.............................................................................................................. - 3 -3.1 最小二乘法一次完成推导[1]........................................................................................ - 3 -3.2最小二乘法的缺陷[ 5].................................................................................................... - 5 -四、其他系统辨识方法.............................................................................................................. - 5 -4.1 基于BP神经网络的系统辨识方法特点[3]................................................................. - 5 -4.2 基于遗传算法的系统辨识算法................................................................................... - 6 -五、结论...................................................................................................................................... - 7 -六、参考文献.............................................................................................................................. - 7 -系统辨识方法简介摘要:在研究一个控制系统过程中,建立系统的模型十分必要。

2014《现代控制理论》学习指导书及部分题目答案

2014《现代控制理论》学习指导书及部分题目答案

现代控制理论学习指导书第一部分重点要点线性系统理论线性系统数学模型稳定性、可控性和可观测性单变量极点配置的条件和方法。

最优控制理论变分法极小值原理最优性原理动态规划最优估计理论参数估计方法掌握最小方差估计和线性最小方差估计方法状态估计方法预测法,滤波系统辨识理论经典辨识方法最小二乘辨识方法系统模型确定方法自适应控制理论用脉冲响应求传递函数的原理和方法。

两种设计方法智能控制理论掌握智能控制的基本概念、基本方法以及智能控制的特点。

了解分级递阶智能控制、专家控制、神经网络控制、模糊控制、学习控制和遗传算法控制的基本概念第二部分练习题填空题1.自然界存在两类系统:______静态系统____和______动态系统____。

2.系统的数学描述可分为___外部描述_______和___内部描述_______两种类型。

3.线性定常连续系统在输入为零时,由初始状态引起的运动称为___自由运动_______。

5.互为对偶系统的__特征方程________和___特征值_______相同。

6.任何状态不完全能控的线性定常连续系统,总可以分解成____完全能控______子系统和____完全不能控______ 子系统两部分。

7.任何状态不完全能观的线性定常连续系统,总可以分解成__完全能观测________子系统和____完全不能观测______子系统两部分。

8.对状态不完全能控又不完全能观的线性定常连续系统,总可以将系统分解___能控又能观测、能控但不能观测、不能控但能观测、不能控又不能观测四个子系统。

9.对SISO系统,状态完全能控能观的充要条件是系统的传递函数没有__零极点对消_。

10.李氏稳定性理论讨论的是动态系统各平衡态附近的局部稳定性问题。

11.经典控制理论讨论的是__在有界输入下,是否产生有界输出的输入输出稳定性问题,李氏方法讨论的是_动态系统各平衡态附近的局部稳定性问题。

12. ___状态反馈_______和__输出反馈________是控制系统设计中两种主要的反馈策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

元人民币(大写),在双方签订本协议当日由乙方一次性付清;费用包含:报名
( 1)指定学习内容,由学生自主学习。包括课前的预习、测试、以及课后复习。老师将给出预习和复习的思路和目标,并给以测试时间,在对测试进行评定后 予以讲解。 ( 2)面授:老师将根据学生预习的内容以及授课计划,确定本次授课内容,并向乙方或学生出示本次备课笔记,乙方或学生必须签字确认。 ( 3)电话助学:在非授课时间,学生以电话形式按照当周计划规定时间主动向老师汇报当天学习情况、作业完成情况和周计划执行情况,以利于甲方对学生进 行监督和指导,督促学生学习,培养良好的学习习惯,及时 解决学习过程中出现的问题。电话助学情况由老师进行记录,并由乙方签字确认。 6、甲方根据学生学习情况和考试重点为学生提供配套试题,定期对学生进行适量的强化训练和测验;甲方教务部为对学生进行电话回访,监督学生的学习状况, 跟踪辅导过程和效果,及时对教学计划进行调整,并在必要时对乙方进行家访。
六、协议期限:签订之日起至

考试结束。
弃权利,甲方不予办理。
八、协议正本一式两份,甲方执一份,乙方执一份;本协议签订后,双方须共同遵守。本协议由甲乙双方协商签订,不属于格式合同或格式条款,均可修 改、变更;本协议未尽事宜,双方友好协商解决,协商不能达成一致的则通过仲裁委员会仲裁解决。
九、乙方已通读上述条款,甲方已应乙方的要求作了相应说明,乙方对所有内容无异议。
一对一个性化辅导协议
甲 方:艾尔培训中心白河分校(服务方,以下简称甲方) Nhomakorabea乙 方:
(家长姓名,以下简称乙方)
为使乙方学生
得到切实有效的课外辅导,提高学习成绩,甲乙双方在平等自愿的情况下,本着公平诚信原则,就乙方委托甲方对其子 /女
进行课外辅导事宜达成如下协议:
一、目前学生学习成绩状况:学生最近一次在学校的考试为
甲方:艾尔培训中心白河分校(盖章)
校长(签字): 码:
教务电 话: 电话:
乙方(签字):
身份证号 联系
签订日期:
期:






签订日
试,在此次考试中
科总成绩
分,平均分数为
语文 数学 英语 物理 化学 生物 理综 政治 历史 地理 文综
(以上学生资料由乙方提供)
学校 ,班级排名为
年级的

,需要辅导的科目具体分数为:
二、辅导目标:甲乙双方均认为,经过乙方及学生在学习方面的努力并积极配合甲方的课外辅导,该学生在


有能力达
三、乙方需向甲方支付辅导费用
五、乙方权利和义务 1、乙方向甲方提供学生真实有效的详细资料,为甲方的后续服务提供依据。 2、老师首次授课时乙方及学生都应在场,积极主动与老师进行沟通,全面了解老师的授课特点及质量,及时与甲方教务部门联系,告知首次授课结果,提出意 见和建议。 3、每次授课后,乙方及学生应认真填写授课质量评定单,并交由老师交上由教务部门主管保管,而后交与甲方认定专家鉴定,作为甲方监督老师授课质量之用, 乙方有义务如实填写。 4、授课前,乙方学生应按教老师的要求,认真预习和复习,并将辅导作业交给老师检查。因学生原因未完成预习、复习或作业,老师在面授时间安排学生完成, 由此而导致教学计划无法正常完成的,由乙方负完全责任,甲方不承担任何责任。 5、如乙方认为额外需要增加课时的,可向甲方提出申请,所发生费用由乙方承担。 6、乙方监督学生配合甲方的教学,按照甲方老师的安排认真完成测试和训练的题目,执行甲方制定的学习计划,乙方有权对学习计划提出合理的修改建议。 7、乙方不得将甲方提供的专用试题以任何形式泄漏给第三方。 8、乙方学生因自身原因而未能正常参加考试或被取消考试资格和成绩的,甲方不承担任何责任。
相关文档
最新文档