现代气候学 第3章

合集下载

现代气候学 第4章 气候系统的水循环

现代气候学 第4章 气候系统的水循环
• 4 水文循环与生态平衡 水是生命之源,又是生命有机体的基本组成物质……水循环的强 度及其时空变化还制约一个地区的生态环境平衡或失调的关 键……
降水影响海南岛 东西植被差异
海南岛西部属 于典型的热带 半干旱气候区, 是我国惟一的 热带稀树干草 原沙漠化地区
三、水循环作用与效应
• 5 水分循环与水资源开发利用 水是廉价、清洁的能源……如果自然界不存在水循环,那水资源 亦不能再生,无法持续利用。
泊或消失在沙漠戈壁中的河流叫内流河,给内流河提供径流的区域叫内流区)
• 陆地上内流区,其多年平均降水量等于蒸发量,自成一 个独立的水循环系统;
塔里木盆地 及内流河流 塔里木河 冰川融水补给 是重要来源。
• 地面上并不直接和海洋相沟通,水分交换以垂向为主; • 仅借助于大气环流,在高空与外界之间,进行一定量的 水汽输送和交换。
水-土-植系统
气候系统内不同尺度水分循环
二、水分循环机理与特征
• 1、水分循环服从质量、能量守恒定律。 • 水分循环是物质与能量的传输、储存和转化的过程。
蒸发中有什么物质和能量传递?
二、水循环机理与特征
• 1、水循环服从质量、能量守恒定律。 • 水循环是物质与能量的传输、储存和转化的过程。 • 在蒸发环节中,伴随液态水转化为气态水的是能量的吸收,伴随 着凝结降水是潜热的释放,所以蒸发与降水就是地面向大气输送 热量的过程。
第一节 水的物理性质
一、 水的密度 4℃时最大,1Kg/L 二、水的热力属性 (1)传热性比其他液体小;不同状态下传热率差异 明显; (2)水的比热容大---水受热时,其温度不易升高,
失热时其温度不易降低
三、水的表面张力:表面张力大,降水时水很容 易湿润植被、土壤等

第三章(继续)气候变化的诊断方法

第三章(继续)气候变化的诊断方法
1
第二章 基本气候状态的统计量
the statistics represent climate
在气候诊断中,用一些量来表征基本气 候状态的分布,主要有4类:表示气候 变量中心趋势、变化幅度、分布形态 和相关程度。它们是统计学的基本内 容,计算简单,易懂,下面做一个简 介。
2
第一节 中心趋势统计量
相关系数临界值表(table )
α n
1 2 „ 15 16 17 .. 20 25 „ 30 35 .. 40 .. 100
0.1 0.98769 0.9 0.4124 0.4 0.3887 0.3598 0.3233 0.296 0.2746 0.2573 0.1638
0.05 0.9969 0.95 0.4821 0.4683 0.4555 0.4277 0.3809 0.3494 0.324 0.3044 0.1946
1
二 气候诊断研究的内容
• 对气候数值模拟结果与实际变化状况 之间的差异进行统计诊断。
• 研究气候诊断的新方法,提高气候诊 断水平。
1
三 现代气候统计诊断技术的发展概况
气候统计诊断使用的统计技术涉及到统 计学多个分支,如:统计检验、时间 序列分析、谱分析、多元分析、变量 场展开等经典方法,随着科学技术的 发展,许多新方法渗入到气候诊断中 来,与经典方法比较,现代统计诊断 技术的发展主要体现在:
1
四 气候诊断的一般步骤
• (3)选择诊断方法: 根据研究目的 和研究对象,选择合适的诊断方法进行 研究。 • (4)科学综合和诊断: 气候诊断 是统计学与气候学的交叉学科,不能盲 目套公式,对统计结果要进行显著性检 验。不通过显著性检验的结果是没有分 析价值的,这一点常常被忽略。要得到 科学的结论,重要的是运用深厚的气候 学知识,对计算结果进行科学的综合和 细致的分析

现代气候学原理重点知识总结

现代气候学原理重点知识总结

现代气候学原理第一章导论气候的定义及其表示;气候学定义与分支;气候学研究的三个阶段;国内外气候研究计划。

第二章天文气候与物理气候天文辐射与日地关系;太阳辐射在大气中的传输;辐射物理气候特征。

第三章地球—大气系统的能量平衡能量平衡基本方程;辐射平衡的变化特征;全球热量平衡;地球—大气系统的能量平衡模式;能量的经向调整;辐射加热率和辐射冷却率;大气的温室效应。

第四章大气环流与气候大气环流;大气环流形成的基本因子;一般大气环流模式;大气环流基本特征;角动量输送与平衡;海陆分布对大气环流的影响;大气环流对气候影响;气团、锋与气候;气旋、反气旋与气候第五章海—陆分布与气候海陆物理特征的差异;海陆分布的温度效应;海陆分布与大气水分;海陆分布与周期性风;海陆间水分平衡与水分循环第六章海流与气候海流形成与分类;海流对温度和降水的影响;海流异常与厄尔尼诺现象第七章地形与气候地形与辐射;地形与温度;地形与降水;地面特性与气候第八章气候分类气候带和气候型;气候分类;气候变化的事实;气候变化的研究方法;气候变化的可能原因;气候预报问题;气候变化的影响评估。

第九章气候变化及其影响第一章导论气候的定义及其表示;气候系统的构成与反馈机制;气候学定义与分支;气候学研究的三个阶段;国内外气候研究计划1 气候的各种定义传统:1、某地的气候就是该地长时期内天气状态的综合反映 ---天气气候学。

2、某地气候就是该地在多年时期内的大气平均状态---地理气候学。

如1845年,亚历山大冯洪堡1. 1 气候的定义及其表示(1769年~1859年)洪堡出生在柏林,是最早的科学家兼探险家之一。

洪堡进行过两次重要的探险活动。

第一次始于1799年,是去南美洲。

他们的主要目的是研究所旅行地区的自然史,因此携带了很多当时最新的科学仪器。

他们的调查还包括对秘鲁海岸外洋流的研究(这个地区的一股洋流以洪堡的名字命名)。

在一次充满危险的河上旅行中,他们证实了奥利诺科学河是与亚马孙河相通的。

现代气候学3气候系统的热力过程

现代气候学3气候系统的热力过程
ABCD面: 地球水平面
D1
A1
C1
B1
D Ah B

任意日地距离(一天)某个时刻、大气
上界、单位时间、地球水平面单位面积接收
到的全部波长的太阳辐射能为:
I
I0
2
sinh
(J/m2s)
S为太阳在天球的位置 HH’为观测地地平圈, 弧SD太阳高度h AA′为天赤道 弧SB赤纬δ 球面角ZPS为时角ω 地理纬度Φ
主要辐射 3~120µm
第一节 太阳辐射
一、天文辐射
1、天文辐射:大气上界与地球表面同心 球面上接收到的太阳辐射,或者说不考虑大 气圈影响,地表面接收到的太阳辐射称为天 文辐射。
2、太阳常数:日地平均距离时,单位时 间、垂直投射到地球大气上界、单位面积 的太阳辐射能。 I01367W m 2
第一节 太阳辐射
太阳辐射
太阳辐射光谱
太阳表面温 度6000K,中 心约为2万K。 太阳辐射最强 的波长为0.457µm, 称短波辐射。
50%
实线大气上界太阳辐射光谱
虚线6000k黑体辐射光谱
7%
43%
主要辐射 0.15~0.76µm
50% 43%
7%
50%
大气约250K,大气辐射称长波辐射。 地面约300K,地面辐射称长波辐射。
③日照时间: 日出-日没的时间间隔
si n s ih sn i n c o c s o c s o
日出、日落时刻 sin h0
costg tg
日出时角 日落时角
可照时数的季节变化:
北半球(φ>0,): 从春ห้องสมุดไป่ตู้~秋分δ >0,cosω0<0,
ω0 >90°(> 12小时),昼长夜短,夏至时, 昼最长夜最短。

现代气候学 总结资料

现代气候学 总结资料

现代气候学第一章绪论1、气候系统的定义:大气圈、与水圈(海洋)、冰雪圈、岩石圈和生物圈相互作用的整体。

气候是天-地-生相互作用下的大气系统的较长时间的平均状态2、天气:某一地区在某一瞬间或某一短时间内大气现象(风、云、雨、雪、干、湿、雷、电等)及其状态(温度、压强、湿度、密度等)的综合。

3、气候:在某一时间段内气候要素的平均值和变率的统计描述4、现代气候学:在太阳辐射和气候系统各子系统相互作用下,地球上某一区域在某一特定时段内气候要素的平均值和变率的统计状态。

气候标准时段:30年(1971-2000年,1980-2010年)5.、现代气候学与传统气候学的区别:传统气候学描述一定区域的气候特点现代气候学研究气候形成和变化的原因,要求预测某个地区或全球范围的各个时间尺度的气候变化,即围绕平衡态的扰动或对平衡态的偏差或距平。

6、气候学发展史(1)萌芽时期:16世纪中叶以前,感性和经验认识阶段,零碎的定性观察和描述。

(2)发展初期:16世纪中叶~19世纪中叶a)观测方面:气象仪器的发明、建立地面气象观测站和观测网,开始气象要素的观测和积累。

b)理论研究方面:气象学和气候学由单纯定性的描述进入了可以定量分析的阶段,逐渐发展为独立的学科。

(3)发展时期早期:19世纪末~20世纪中叶a)观测方面地面观测内容更加丰富和精确,观测站网扩大。

气象观测从地面向高空发展。

b)理论研究方面锋面气旋学说长波理论降雨学说气候学方面:创立了气候型的概念和几种气候分类法、出版了五卷《气候学手册》(4)近期a)观测方面先进的观测技术常规气象观测网的加密开展大规模的综合观测试验b)理论研究方面建立数值模式,进行定量数值模拟试验,使气象学、气候学进入试验科学阶段。

气候学领域中的科学革命。

7、现代气候学阶段的三个特点(王绍武,2005):从气候变化来研究气候;从气候系统来研究气候;从气候动力学来研究气候。

第二章气候系统1、气候系统的定义:大气圈、水圈(海洋)、冰雪圈、岩石圈和生物圈相互作用的整体。

课件4:3.4 世界的气候

课件4:3.4 世界的气候

影响气候的因素之三:
地形因素的影响,气候不同。
气候与人类活动
寒 带
热带
小结


气温
受纬度位置、海陆 位置、地形影响


同 的 气 候


降水

(长时间,较稳定)
练一练
、狂风暴雨
C、今天风和日丽
D、东边日出西边雨
C 2、下列气候类型中不属于热带的气候类型是 (
④ 人间四月芳菲尽,山寺桃花始盛开。( 地形 )
100 0
终年严寒干燥
终年高温多雨 终年严寒干燥
影响气候的因素之一:
纬度位置不同,各地气候不同。
新 疆
差同

异一
里 木 盆
为纬 什度

么,
那两

么地

大的
海 滨 一
?景 观

影响气候的因素之二:
海陆位置不同,各地气候不同。
在山地地区,气温 随海拔的升高而降 低
迎风坡
背风坡
山地迎风坡降水多,背风坡降水少。
第三章 天气与气候
第四节 世界的气候
以下词语是不是描述天气?
气候的含义:
气候是一个地方多年的天气平均状况; 一个地方的气候具有一定的特征,一般变化 不大。
我们这里一年到头都很热,几乎天天下雨。
我们这里一年到头也很热,却极少下雨。
我们这里四季分明。夏季热,常下雨;冬季冷,很干燥。
热带沙漠气候 热带草原气候
热带季风气候 热带雨林气候
温带海洋性气候 地中海气候
温带季风气候 温带大陆性气候
亚热带季风和季风性湿润气候
活动
分布地区 热带 温带 寒带

《现代气候学(Ⅱ)》课程笔记

《现代气候学(Ⅱ)》课程笔记

《现代气候学(Ⅱ)》课程笔记第一章:引论一、气候学的定义和重要性1. 定义:气候学是研究地球气候系统及其变化规律的学科,包括大气圈、水圈、冰冻圈、陆地表面和生物圈等多个组成部分。

2. 重要性:气候对人类活动、生态系统、水资源、农业生产等具有重要影响。

了解气候规律,有助于应对和适应气候变化,减轻气候灾害带来的损失。

二、气候学的研究方法1. 观测:通过地面气象站、卫星、雷达等手段收集气候数据,包括气温、降水、风速、湿度等。

2. 模式模拟:利用气候模式对气候系统进行数值模拟,研究气候形成和变化过程。

3. 气候重建:通过地质、生物等手段,恢复过去气候状况,了解气候演变历史。

4. 气候情景预测:基于气候模式,预测未来气候发展趋势和变化趋势。

三、气候系统的基本组成1. 大气圈:地球外围的气体层,包括对流层、平流层等,对气候形成和变化具有重要影响。

2. 水圈:地球上的水资源,包括海洋、湖泊、河流、地下水、冰雪等,参与水循环,影响气候。

3. 冰冻圈:地球上的冰雪资源,包括冰川、冰盖、冻土等,对气候形成和变化具有重要影响。

4. 陆地表面:地球表面的陆地,包括山地、平原、沙漠等,对气候形成和变化产生影响。

5. 生物圈:地球上的生物体系,包括植被、动物、微生物等,参与碳循环、水循环等,影响气候。

四、气候系统的能量平衡1. 太阳辐射:地球气候系统的能量主要来源于太阳辐射,包括短波辐射和长波辐射。

2. 地球辐射:地球表面和大气层向外辐射能量,维持地球气候系统的能量平衡。

3. 能量传输:大气圈、水圈等通过热量传递、水汽输送等过程,实现能量的传输和分配。

五、气候变化与人类活动1. 自然因素:太阳辐射、火山爆发、地球轨道参数变化等自然因素导致气候波动。

2. 人类活动:工业发展、土地利用变化、化石燃料燃烧等人类活动对气候产生影响。

3. 气候变化:全球变暖、极端气候事件频发、海平面上升等气候变化现象。

4. 应对策略:低碳发展、节能减排、适应性措施等应对气候变化的策略。

现代气候学中国大学mooc课后章节答案期末考试题库2023年

现代气候学中国大学mooc课后章节答案期末考试题库2023年

现代气候学中国大学mooc课后章节答案期末考试题库2023年
1.下列哪个参数决定天文辐射的日变化()
答案:
时角
2.下列哪个参数决定天文辐射的季节变化()
答案:
太阳赤纬
3.长波辐射传输方程中,描述Z高度向上长波辐射的两个角度,天顶距和方
位角的变化范围分别是()
答案:
0°~90°和0°~360°
4.北纬40°处,春分和夏至在中午时刻的太阳高度角分别为()
答案:
50°和73.45°
5.下列随太阳高度角增大而减小的是()
答案:
大气质量数
6.大气柱温室气体浓度增加,从大气顶到地表整个大气柱的光学厚度如何变化?
()
答案:
增加
7.全球大气柱向下的大气逆辐射与向上的长波辐射通量密度的关系是()
答案:
后者小于前者
8.大气柱中温室气体浓度增加,大气柱的净辐射和地-气系统净辐射的直接效
应是()
答案:
前者减小,后者增加
9.以下四个因素:(1)日地距离,(2)太阳高度角,(3)经度,(4)日照时间中,
不是影响瞬时天文辐射的因素有()
答案:
(3)(4)
10.下列因子:(1)日地距离;(2)太阳高度角;(3)大气透明度;(4)
大气质量数中,哪些对太阳直接辐射日变化有影响()
答案:
(2)(4)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

I
0
I0 D2
(JM-2S-1)
太阳高度角是指太阳光的入射方向和地平面之间的夹角 天顶角即入射光线与当地天顶方向(地面法线)的夹角(与太阳高度角互余)
太阳高度角为90°时,地面接收的太阳辐射?
纬度 – 太阳高度角
太阳高度角
高度角越大,能量越集中 高度角越小,能量越分散



北极圈

北回归线 赤道 南回归线
I0 1367 7WM 2
日地平均距离: r0=1.496×108km 近日点日地距离:1.471×108km 远日点日地距离:1.521×108km
大气上界、任意日地距离时、垂直于太阳光线方向、单位时间、单位面积接 收到的所有波长的太阳辐射能。
r D
r0
日地平均距离: r0=1.496×108km
经线的间隔随纬度增大而减小
East China Normal University

一 太阳辐射
节 地球围绕太阳的公转导致了地球出现了, 季节变化、日辐射总量的变化(日出、 日落时间的变化) 太阳常数
1)太阳光谱
2)日地距离
3)太阳辐射强度
太阳光谱
太阳表面温度约6000oC, 其发出的能量基本为短波辐射
e ,T a ,T
E ,T
Eλ,T只是波长和温度的函数。
推论 对不同性质的物体,放射能力较强的物体,吸收能力 也较强;反之,放射能力弱者,吸收能力也弱,黑体 的吸收能力最强,所以它也是放射能力最强的物体。
对同一物体,如果在温度T时它放射某一波长的辐射, 那么,在同一温度下它也吸收这一波长的辐射。
第三章 气候系统的能量平衡
3.1 太阳辐射 3.2 大气中的辐射传输过程 3.3 气候系统的辐射平衡 3.4 地—气系统的热量平衡 3.5 全球热量平衡
辐射的基本定律
基尔荷夫(kirchoff)定律(选择吸收定律)
定律
在一定温度下,任何物体对于某一波长的放射能力(eλ,T) 与物体对该波长的吸收率(aλ,T)的比值,只是温度和波长的 函数,而与物体的其它性质无关。即:
维恩(Wien)位移定律
从图中还可看出,黑色单体辐射极大值所对应的 波长是随温度升高而逐渐向波长较短的方向移动
维恩(Wien)位移定律 定律 绝对黑体的放射能力最大值对应的波长(λm) 与其本身的绝
对温度(T)成反比。即: λm=C/T 或 λm T=C
如果波长以nm为单位,则常数C=2,897×103nm· K,于是
经度和纬度 纬度是线面角,即本地法线与赤道平面的交角; 经度是两面角,即本地子午面与本初子午面的交角。
地理坐标 一地的经度和纬度相结合,叫做该地的地理坐标 (x,y) (经度,纬度)
纬向(在同一纬度上) 例如“纬向速度”或者 “纬向风” u 经向(在同一经度上) 例如“经向速度”或者 “经向风” v
不同温度下黑体辐射强度与温度的关系
➢地球上的经线和纬线
• 纬线:垂直于地轴的平面同地球相割而成的圆 • 经线:南北线(子午线)
: • 本初子午线 通过英国Greenwich(格林尼治)天文台的0°经线(1884年确定)。
纬线和经线 纬线平面垂直于地轴,经线平面都通过地轴
➢经度和纬度
纬度:
一地相对于赤道平面的南北方向和角度
上式为: λmT=2897×103nm·K
本定律由德国物理学家威廉·维恩(Wilhelm Wien)于 1893年通过对实验数据的经验总结提出
意义 物体的温度愈高, 放射能量最大值 的波长愈短,随 着物体温度不断 增高,最大辐射 波长由长向短位 移。 太阳辐射是短波 辐射,人、地 面和大气辐射 是长波辐射。
纬度是一种线面角,即本地法线与赤道平面的交角;
纬度在本地经线上度量,南北纬各分90度。共180度 (-90°,90 ° )
: 经度
本地子午面的东西方向和角距离
经度是两面角,本初子午面为起始面, 本地子午面为终面;
经度通常在赤道上度量,东西经各分180度。 共360度 (-180 °,180 ° ),或者(0,360 ° )
基本圈:天赤道
基本要素:赤纬圈、 赤经圈(时圈)
坐标:
Q’
赤经度(时角)t
赤纬
XT= QT = t
Seasons
Fig 3.6 Sun paths
不同坐标之间的转换
Z的赤纬
P的地平 高度
z= 90 h 90
hp z sinh sin sin cos cos cost
O
T’
T
南极圈
北寒带 北温带
6633N
2327N
热带
南温带 南寒带
0
2327S
6633S
地球的五带
General Circulation
Fig 9.2 Three-Cell Model
Seasons
Fig 3.3 Reason for seasons
第 一
•太阳高度角: 太阳光线与地球水平面的夹角

A1B1C1D1面: 垂直于太阳光线
已知:Z 、 A,求 δ、 t
sinδ = sinφcosz – cosφsinzcosA
cosδ sin t = sinzsinA
cosδ cos t = cos zcosφ+sinzsinφcosA
已知: δ t,求 Z A cosz = sinφ sinδ + cosφcosδcos t sin z sinA = cosδsin t sin z cosA = -sinδcosφ+cosδsinφcost
斯蒂芬—波尔兹曼(Stefan-Boltzmann)定律
斯蒂芬—波尔兹曼(Stefan-Boltzmann)定律 定律 黑体的总放射能力(ET)与它本身绝对温度(T)的四
次方成正比。即:
ET =σT 4
式中σ=5.67×10-8W.m-2.K-4为斯蒂芬—波尔兹曼常数。 意义 物体温度愈高,其放射能力愈强。
A1
ABCD面: 平行于地球水平面



任意时刻,大气上界,单位时间、单位面积接收到的太阳辐射能为:
D1 C1
B1 C
I
I0
sinh
I0 D2
sinh
(J/M2s)
地平坐标系
基本圈:真地平
基本要素:地平纬圈 地平经圈
坐标:
地平纬度 h(地平高度) 地平经度A(方位角)
零地平 经圈
真地平
时角坐标系
黄道面就是地球的公转轨道所在平面
黄道(ecliptic)地球绕太阳公转的轨道平面与天球相交的大圆 12星座即黄道12宫,是占星学描述太阳在天球上经过黄道的12个区域
第 一 节
太阳常数: 大气上界、日地平均距离处、垂直于太阳光线方向、单位时间、单位 面积接收到的所有波长的太阳辐射能。 数值及单位:
相关文档
最新文档