二次函数与一元二次方程讲义

合集下载

二次函数与一元二次方程(第1课时)PPT课件

二次函数与一元二次方程(第1课时)PPT课件
(1) h和t的关系式是什么?
解 :1 .h 5 t24t.0
(2) 小球经过多少秒后落地?你 有几种求解方法?与同伴进行交
流. ①图象法
②解方程 -5t2+40t=0
议一议 二次函数与一元二次方程
画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(1).每个图象与x轴有几个交点?
(1)2.个,1个,0个程
二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象如图所示.
y=x2+2x
y=x2-2x+1
y=x2-2x+2
(2) 一元二次方程x2+2x=0,x2-2x+1=0有几个根?验 证一下一元二次方程x2-2x+2=0有根吗?
2.抛物线y=ax2+bx+c(a≠0)的图象全部在x
轴下方的条件是( D )
(A)a<0 b2-4ac≤0(B)a<0 b2-4ac>0 (C)a>0 b2-4ac>0 (D)a<0 b2-4ac<0
小结 拓展 我思考,我进步
一个关系:二次函数图象与一元二次
我 方程根的关系:

函数
方程
的 收
y=ax2+bx+c(a≠0)
9
想一想 二次函数与一元二次方程
思考在本节一开始的小球上抛问题中,
何时小球离地面的高度是60m?你是如 何知道的? 能否达到80米?100米呢?
结论3 当y取定值时,二次函数可转
化为一元二次方程。

二次函数与一元二次方程二次函数优秀ppt课件

二次函数与一元二次方程二次函数优秀ppt课件
7.一元二次方程 3 x2+x-10=0的两个根是x1=-
2 ,x2=5/3,那么二次函数 y= 3 x2+x-10与x轴的交
点坐标是_(-2_,_0_) _(5_/3,__0).
8.已知抛物线y = ax2+bx+c的图象如图,则关 于x的方程ax2 + bx + c-3 = 0根的情况是( A)
有 (2.5,0), (-1,0)
归纳:一元二次方程ax2+bx+c=0的两个根为 x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标 是(x1,0),(x2,0)
随堂练习
1.不与x轴相交的抛物线是( D )
A. y = 2x2 – 3
B. y=-2 x2 + 3
C. y= -x2 – 3x D. y=-2(x+1)2 -3
一般地,当y取定值时,二次函数为一元 二次方程。
如:y=5时,则5=ax2+bx+c就 是一个一元二次方程。
从以上可以看出,
已知二次函数y的值为m,求相应自变量x的 值,就是求相应一元二次方程的解.
例如,已知二次函数y=-X2+4x的值为3,求自变 量x的值. 就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0 就是已知二次函数y=X2-4x+3的值为0,求自变量 x的值.
考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
20 m
2s
(2)当 h = 20 时, 20 t – 5 t 2 = 20 t 2 - 4 t +4 = 0 t1=t2=2 当球飞行 2s 时,它的高度为 20m .

《二次函数与一元二次方程、不等式---第一课时》名师课件

《二次函数与一元二次方程、不等式---第一课时》名师课件
道谁的范围,谁就是主元,求谁的范围,谁就是参数.
变式训练
高中数学
ZHONGSHUXUE
3.对一切实数,关于的不等式 2 − + < 0 恒成立,
求实数的取值范围.
解:要使 2 − + < 0对一切实数恒成立,
则有:
⑴当=0时,原不等式化为−<0,解得 > 0,不合题意;
成立,求的取值范围.
解析
要使 2 − − 1 < 0对一切实数恒成立,
则有:
⑴当=0时, < 0 化为-1<0,恒成立,符合题意;
< 0,
⑵当≠0时,则有ቊ
, 解得−4 < < 0.
2
△=(−) + 4 < 0
综合两种情况可得的取值范围为 | − 4 < ≤ 0 .
对a是否为
①当a=0时,b=0,c<0;
零要进行
②当a≠0时, ቊ
> 0,
△ < 0.
讨论.
当堂练习
高中数学
ZHONGSHUXUE
1.不等式(3x-2)(2-x)≥0的解集是( A )
A.
2
,2
3
C.
3
,2
2
2
B.ቀ−∞, ቃ∪[2,+∞)
3
D.
2
− ,2
3
2
3
2
3
解析:原不等式等价于(x- )(x-2) ≤0,解得 ≤x≤2,故选A.
y = 2 + +
(>0)的图象
方程 2 + + = 0
(>0)的根

二次函数和一元二次方程-辅导讲义

二次函数和一元二次方程-辅导讲义

讲义内容知识概括知识点一:一元二次方程ax2+bx+c=0(a≠0)的解的情况等价于抛物线y=ax2+bx+c(c≠0)与直线y=0(即x 轴)的公共点的个数。

抛物线y=ax2+bx+c(a≠0)与x轴的公共点有三种情况:两个公共点(即有两个交点),一个公共点,没有公共点,因此有:(1)抛物线y=ax2+bx+c与x轴有两个公共点(x1,0)(x2,0)一元二次方程ax2+bx+c=0有两个不等实根△=b2-4ac>0。

(2)抛物线y=ax2+bx+c与x轴只有一个公共点时,此公共点即为顶点一元二次方程ax2+bx+c=0有两个相等实根,(3)抛物线y=ax2+bx+c与x轴没有公共点一元二次方程ax2+bx+c=0没有实数根△=b2-4ac<0.(4)事实上,抛物线y=ax2+bx+c与直线y=h的公共点情况方程ax2+bx+c=h的根的情况。

抛物线y=ax2+bx+c与直线y=mx+n的公共点情况方程ax2+bx+c=mx+n的根的情况。

方法总结:⑴求二次函数的图象与x轴的交点坐标,需转化为一元二次方程;⑵求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶根据图象的位置判断二次函数2y ax bx c=++中a,b,c的符号,或由二次函数中a,b,c的符号判断图象的位置,要数形结合;⑷二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a++≠本身就是所含字母x的二次函数;下面以0a>时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:∆>抛物线与x轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x轴只有一个交点二次三项式的值为非负一元二次方程有两个相等的实数根0∆<抛物线与x轴无交点二次三项式的值恒为正一元二次方程无实数根.题型一 求字母系数的取值范围【例1】若二次函数)1(24)1(22-+--=k kx x k y 的图象与x 轴有两个交点,求k 的取值范围;练习1:已知:关于x 的函数772--=x kx y 的图象与x 轴总有交点,求k 的取值范围?练习2:已知抛物线2234y x kx k =+-(k 为常数,且k >0).证明:此抛物线与x 轴总有两个交点;练习3:已知关于x 的二次函数y =x 2-(2m -1)x +m 2+3m +4.探究m 满足什么条件时,二次函数y 的图象与x 轴的交点的个数.题型二 一次函数图象和二次函数图象的交点问题【例2】已知抛物线C 经过(-5,0),(0,25),(1,6)三点,直线l 的函数表达式为32-=x y ;(1)求抛物线的表达式;(2)证明抛物线C 与直线l 无交点;(3)若与l 平行的直线m x y +=2与抛物线C 只有一个公共点P ,求点P 的坐标;练习1:已知二次函数y=﹣x 2+bx+c 的图象如图所示,它与x 轴的一个交点坐标为(﹣1,0),与y 轴的交点坐标为(0,3).(1)求出b ,c 的值,并写出此二次函数的解析式;(2)根据图象,写出函数值y 为正数时,自变量x 的取值范围.题型三 关于二次函数图象交点的综合问题【例3】已知抛物线2234y x kx k =+-(k 为常数,且k >0).(1)证明:此抛物线与x 轴总有两个交点;(2)设抛物线与x 轴交于M 、N 两点,若这两点到原点的距离分别为OM 、ON ,且1123ONOM-=,求k 的值.练习1:抛物线2y x bx c =-++的部分图象如图所示,则方程02=++-c bx x 的两根为 .练习2:下列命题:①若0a b c ++=,则240b ac -≥;②若b a c >+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ③若23b a c =+,则一元二次方程20ax bx c ++=有两个不相等的实数根; ④若240b ac ->,则二次函数的图像与坐标轴的公共点的个数是2或3. 其中正确的是( ).A.只有①②③B.只有①③④C.只有①④D.只有②【例4】已知二次函数y=x2+bx﹣c的图象与x轴两交点的坐标分别为(m,0),(﹣3m,0)(m≠0).(1)证明4c=3b2;(2)若该函数图象的对称轴为直线x=1,试求二次函数的最小值.练习:已知关于x的方程mx2﹣(3m﹣1)x+2m﹣2=0.(1)求证:无论m取任何实数时,方程恒有实数根;(2)若关于x的二次函数y=mx2﹣(3m﹣1)x+2m﹣2的图象与x轴两交点间的距离为2时,求抛物线的解析式;(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.。

《二次函数与一元二次方程的关系》PPT课件

《二次函数与一元二次方程的关系》PPT课件

要化成 一般式
感谢您的阅读! 为 了 便于学习和使用, 本文档下载后内容可 随意修改调整及打印。
学习永远不晚。 JinTai College
课堂小结
1.二次函数y=ax2+bx+c与X轴交点个数的确定
2. 二次函数与一元二次方程的关系

y=ax2+bx+c
ax2+bx+c=k 形
与直线 y=k
y取定值k
例2 :已知抛物线与X轴交于A(-1,0),B(2,0)
并经过点M(0,2),求抛物线的解析式?
思考: 你能用什么方法做呢? 哪个方法更好?
y
解:设所求的二次函数为 y=a(x+1)(x-2)
x
因为 点M( 0,2 )在抛物线上
o
所以:a(0+1)(0-2)=2 得 : a=-1
故所求的抛物线为 y=- (x+1)(x-2) 即:y=-x2+x+2
九年级数学(上)第30章 二次函数
二次函数与一元二次方程的关系
复习提问
1、 一元二次方程ax2+bx+c=0(a≠0)的根的判别式△ = b2-4a。c
有两个不等实数根
方程根的情况是:当△﹥0 时方程

当△=0时,方程 有两个相等实数根 ; 当△﹤0时,方程 没有实数根 。
2 、 二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像
y=x2+2x与 x轴交点 令
y=0 x2+2x=0方程的根是
(-2,0) (0,0) X1 =-2 X2 =0
y=x2-6x+8与x轴交点是 (2, 0)(4,0 )

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程》说课稿

《二次函数与一元二次方程(第1课时)》说课稿一、教材分析《二次函数与一元二次方程》是人教版九年级上册第22章第二节的第1课时的内容。

教材从一次函数与一元一次方程的关系入手,通过类比引出二次函数与一元二次方程之间的关系问题,并结合一个具体的实例讨论了一元二次方程的实根与二次函数图象之间的联系。

这一节是反映函数与方程这两个重要数学概念之间的联系的内容。

本节主要内容是用函数的观念看一元二次方程,探讨二次函数与一元二次方程的关系。

用函数的观点看方程,可以把方程看成函数值为某个定值时的情况,所以,研究函数与方程的关系是对函数的进一步深化。

学生在一次函数时已经了解了一次函数与一元一次方程、一元一次不等式、二元一次不等式组之间的联系,本章专设一节,通过探讨二次函数与一元二次方程的联系,再次展示函数与方程之间的联系。

这样既深化学生对一元二次方程的认识,又可以运用二次函数解决一元二次方程的相关问题,体现了知识之间的联系。

二、学情分析学生已经学习了一元一次方程和一次函数,一元二次方程,二次函数的图像和性质等知识,对函数与方程的关系已有初步认识。

但是运用函数的思想解决问题的意识还不够,仍习惯于孤立地看待方程与不等式的问题。

本节学习可以帮助学生进一步建立函数与方程的联系,提升用函数思想解决问题的意识和能力。

三、教学目标1.了解一元二次方程的根的几何意义;理解抛物线与横轴的三种位置关系对应一元二次方程的根的三种情况.2.经历探索二次函数与一元二次方程关系的过程,结合图象,进一步体会函数与方程之间的联系。

3.运用函数思想解决问题,体会事物之间的转化,提升思维品质。

四、教学重难点重点:二次函数与一元二次方程的联系,利用函数解决方程的有关问题.难点:将方程问题转化为函数问题,运用函数的思想解决问题。

五、教学策略由一次函数与一元一次方程的关系说起,采用类比的方法研究二次函数与一元二次方程的关系。

以实际问题为情境从数与形两个角度理解函数与方程之间的联系。

二次函数与一元二次方程ppt课件

二次函数与一元二次方程ppt课件
垂直于直线x=2于点E.
在Rt△AQF中,
AQ2=AF2+QF2=1+m2,
在Rt△BQE中,
BQ2=BE2+EQ2=4+(3-m)2,
∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,
∴Q点的坐标为(2,2).
数学
返回目录
(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.
一个交点的横坐标为1,则另一个交点的横坐标为
A.-1
B.-2
C.2
D.3
D(
)
数学
返回目录
2.抛物线y=x2+4x+5-m与x轴有两个不同的交点,则m的取值

(

)
A.m<-1
B.0<m≤1
C.m<1
D.m>1
D

数学
返回目录
3.若二次函数y=ax2+bx+c的图象经过点(-1,0),(2,0),则关于x
∴两个交点之间的距离为1-(-3)=4,故选C.
答案:C
数学
返回目录
▶▶ 对应练习
1.抛物线y=x2+4x+4与x轴的交点个数为 ( B
A.0个
B.1个
C.2个
D.3个
)
数学
返回目录
2.已知二次函数y=(m-1)x2+3x-1与x轴有交点,则m的取值范
D
围是
(
)
5
A.m>4
5
C.m>- 且m≠1
A,B,∴A(1,0),B(0,3).
又∵抛物线y=a(x-2)2+k经过点A(1,0),

《二次函数与一元二次方程的关系》ppt课件

《二次函数与一元二次方程的关系》ppt课件

结论和要点
通过本课件,我们了解到二次函数与一元二次方程之间的密切关系,以及它们在实际应用中的重 要性和用途。
密切关系
二次函数与一元二次方程存在密切的对应关系。
实际应用
二次函数与一元二次方程在建筑设计、汽车行驶路程、项目成本控制等实际应用中发挥重要 作用。
二次函数与一元二次方程的关系
二次函数与一元二次方程是密切相关的,通过二次函数的系数可以求解一元二次方程的根,反之亦然。
1
系数的求解
通过一元二次方程的系数可以确定二次函数的形式。
2
根的求解
通过二次函数的图像可以推导出一元二次方程的根。
3
相互转换
二次函数与一元二次方程可以相互转换,实现从函数到方程的求解和从方程到函数的绘 图。
如何由一元二次方程求解二次函数的 系数
通过一元二次方程的系数可以确定二次函数的形式,具体步骤包括:
1 步骤一
找出一元二次方程的a、b、c。
2 步骤二
将a、b、c代入二次函数的表达式。
3 步骤三
得到二次函数的形式。
如何由二次函数求解一元二次方程的 根
通过二次函数的图像可以推导出一元二次方程的根,具体步骤包括:
1 步骤一
观察二次函数的图像。2 Leabharlann 骤二根据图像找到方程的根。
实际应用中的例子
二次函数与一元二次方程在实际应用中有广泛的应用,例如:
建筑设计
二次函数的抛物线形状可以用于 建筑设计中的拱形结构。
汽车行驶路程
通过二次函数的图像可以预测汽 车行驶的路程。
项目成本控制
通过二次函数的图像可以进行项 目成本的控制和优化。
《二次函数与一元二次方 程的关系》
本课件将介绍二次函数与一元二次方程之间的关系,包括定义与图像、基本 形式、系数的求解、根的求解、实际应用的例子以及结论和要点。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与一元二次方程
1•通过探索,理解二次函数与一元二次方程之间的联系.
2•能运用二次函数及其图象确定方程和不等式的解或解集.
3•根据函数图象与x轴的交点情况确定未知字母的值或取值范围. 、情境导入
如图,是二次函数y = ax2+ bx + c图象的一部分,你能通过观察图象得到一元二次方程ax2+ bx + c = 0的解集吗?不等式ax2+ bx + c<0的解集呢?
二、合作探究
探究点一:二次函数与一元二次方程
【类型一】二次函数图象与x轴交点情况判断
F列函数的图象与x只有一个交点的
A. y= x2+ 2x —3
B. y = x2+ 2x + 3
C. y = X2—2x + 3 D . y= x2—2x + 1
解析:选项 A 中b2—4ac= 22—4X1 x(—3) = 16 >0 ,选项B 中b2—4ac = 22—4x i x 3= —8 v 0,选项C 中b2—4 ac= (—2)2—4 x i x3 = —8 v 0,选项D 中b2—4 ac = (—2)2—
4x i x i = 0 ,所以选项D的函数图象与X轴只有一个交点,故选 D.
【类型二】利用二次函数图象与x轴交点坐标确定抛物线的对称轴
如图,对称轴平行于y轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为___________
解析:•••点(1 , 0)与(3 , 0)是一对对称点,其对称中心是(2 , 0) ,•••对称轴的方程是x =
2.
方法总结:解答二次函数问题,若能利用抛物线的对称性,则可以简化计算过程.
【类型三】利用函数图象与x轴交点情况确定字母取值范围
1
若函数y = mx2+ (m + 2)xm + 1 的图象与x轴只有一个交点,那么m的值为()
A. 0 B . 0 或2
C. 2 或—2
D. 0, 2 或—2
解析:若m丸,二次函数与x轴只有一个交点,则可根据一元二次方程的根的判别式
1 为零来求解;若m = 0,原函数是一次函数,图象与x轴也有一个交点.由(m + 2)2—4m$
m + 1)= 0,解得m = 2或一2,当m = 0时原函数是一次函数,图象与x轴有一个交点,
所以当m = 0, 2或一2时,图象与x轴只有一个交点.
方法总结:二次函数y = ax2+ bx + c,当b2—4ac >0时,图象与x轴有两个交点;当
b2—4ac= 0时,图象与x轴有一个交点;当b2—4ac v0时,图象与x轴没有交点.
【类型四】利用抛物线与x轴交点坐标确定一元二次方程的解
小兰画了一个函数y = x2+ ax + b的图象如图,则关于x的方程x2+ ax + b = 0的解是()
A •无解
B.x = 1
C.x =—4
D.x=— 1 或x= 4
解析:T二次函数y= x2+ ax + b的图象与x轴交于(一1, 0)和(4, 0),即当x=—1或
4 时,x2+ ax + b = 0 ,「•关于x 的方程x2+ ax+ b = 0 的解为X1 =—1 , X2= 4,故选D.
方法总结:本题容易出错的地方是不知道二次函数的图象与一元二次方程的解的关系导
致无法求解.
探究点二:二次函数y = ax2+ bx + c中的不等关系
【类型一】利用抛物线解一元二次不等式
抛物线y = ax2+ bx + c(a v 0)如图所示,则关于x的不等式ax2+ bx + c>0的解集是()
A.x v 2
B.x>- 3
C.—3 v x v 1
D. x v—3 或x> 1
解析:观察图象,可知当一 3 v x v 1时,抛物线在x轴上方,此时y > 0,艮卩ax2+ bx
+ c>0,「.关于x的不等式ax2+ bx + c>0的解集是—3v x v 1.故选C.
方法总结:抛物线y = ax2+ bx + c在x轴上方部分的点的纵坐标都为正,所对应的x 的所有值就是一元二次不等式ax2+ bx + c> 0的解集;在x轴下方部分的点的纵坐标均为
负,所对应的x的所有值就是一元二次不等式ax2+ bx + c v 0的解集.
【类型二】确定抛物线相应位置的自变量的取值范围
二次函数y = ax2+ bx + c(a丸)的图象如图所示,则函数值y> 0时,x的取值范围是()
A.x v—1
B.x>3
C.—1 v x v 3
D.x v — 1 或x> 3
解析:根据图象可知抛物线与x轴的一个交点为(—1, 0)且其对称轴为x= 1,则抛物
线与x轴的另一个交点为(3 , 0).当y> 0时,函数的图象在x轴的上方,由左边一段图象可知x v —1,由右边一段图象可知x>3•因此,x v—1或x>3•故选D.
方法总结:利用数形结合思想来求解,抛物线与x轴的交点坐标是解题的关键.
三、板书设计
强调学生自主探索和合作交流,通过观察二次函数与x轴的交点个数,讨论一教学过程中,
元二次方程的根的情况.体会知识间的相互转化和相互联系。

相关文档
最新文档