用牛顿迭代法求解非线性方程

合集下载

牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案

牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案

1. 非线性方程组求解1.分别用牛顿法,及基于牛顿算法下的Steffensen 加速法。

(1) 求ln(sin )x x +的根。

初值0x 分别取0.1,1,1.5,2,4进行计算。

(2) 求sin =0x 的根。

初值0x 分别取1,1.4,1.6,1.8,3进行计算。

分析其中遇到的现象与问题。

(1)牛顿法牛顿法实质上是一种线性化方法,其基本思想是将非线性方程()0f x =逐步归结为某种线性方程来求解。

将已知方程()0f x =在近似值k x 附近展开,有()()()()'0k k k f x f x f x f x x ≈+-=,构造迭代公式,则1k x +的计算公式为:()()1',0,1,,k k k k f x x x k f x +=-= (1-1)根据Taylor 级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解()0f x =的过程,第一次迭代()()'1000/x x f x f x =-,其中()()'00/f x f x 的几何意义很明显,就是0x 到1x 的线段长度(这可以从直角三角形的知识得到)。

第二次迭代()()'2111/x x f x f x =-,其中()()'11/f x f x 的几何意义很明显,就是1x 到2x 的线段长度。

同理可以进行第三次迭代第四次迭代,可以明显的看出x 的取值在不断逼近真实解*x 。

如图1-1所示:图1-1○1求ln(sin )=0x x +的根时,迭代公式为()1ln(sin )sin 1cos k k x x x x x x x+++=++,0示。

计算结果见附录1表F.1-1所示。

初值取1.5,2,4进行计算时结果不收敛。

表 1-1 牛顿法计算结果○2求sin =0x 的根时,迭代公式为1cos k k x x x+=+,初值0x 分别取1、1.4、1.6、1.8、3计算时结果收敛,误差小于510-时,近似解如表1-2所示。

非线性方程求根—牛顿迭代法(新)

非线性方程求根—牛顿迭代法(新)

非线性方程求根——牛顿迭代法一、牛顿迭代法的基本思想基本思想:将非线性方程逐步归结为某种线性方程求解。

设方程f (x )=0有近似根x k (f `(x k )≠0),将f (x )在x k 展开:(ξ在x 和x k 之间)2()()()()()()2!k k k k f f x f x f x x x x x ξ'''=+-+-()()()()k k k f x f x f x x x '≈+-可设记该线性方程的根为x k +1,则()()()0k k k f x f x x x '+-=1()()k k k k f x x x f x +=-'故f (x )=0可近似表示为即为Newton 法迭代格式。

(k =0,1,……)例:用Newton 迭代法求方程310x x --=在x 0=1.5附近的近似实根。

解:32()1,()31f x x x f x x '=--=-迭代公式为312131kk k k k x x x x x +--=--计算步骤如下:(1)取初值x 0=1.5;(2)按照迭代公式计算x 1;(3)若|x 1-x 0|<=0.00001,终止迭代;否则,x 0=x 1;转(2);(4)输出迭代次数和近似根.二、牛顿迭代法的实现MATLAB求解程序设计:方程及一阶导数函数:function[fun,dfun]=fun0(x)fun=x^3-x-1;%求原函数的值dfun=3*x^2-1;%求一阶导数的值计算主程序:clearx0=1.5;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=1;while abs(x1-x0)>1e-5x0=x1;[fun,dfun]=fun0(x0);x1=x0-fun/dfun;i=i+1;enddisp('the solution is x1=')x1disp('the iter time is ')i计算结果为:the solution is x1=x1 =1.3247the iter time isi =4可见经过4次迭代即到达要求的精度,原方程的一个近似实数根为1.3247.三、牛顿迭代法的收敛性牛顿迭代法的迭代函数:)()()(x f x f x x '-=ϕ222)]([)()()]([)()()]([1)(x f x f x f x f x f x f x f x '''='''-'-='ϕ设f (x *)=0,f `(x *)≠0,则ϕ`(x *)=0,故Newton 迭代法在x *附近至少平方收敛。

非线性方程组的迭代解法

非线性方程组的迭代解法

非线性方程组的迭代解法
非线性方程组是指由非线性函数组成的方程组,它们通常无法使用数学公式解出解析解。

一种常用的求解非线性方程组的方法是迭代法。

迭代法是一种近似求解方法,它通过不断进行迭代来逼近解。

常用的迭代法有牛顿迭代法、共轭梯度法、线性共轭法等。

牛顿迭代法是一种常用的迭代法,它使用了泰勒展开式来逼近非线性函数,并使用这个近似函数的零点来迭代求解非线性方程组。

共轭梯度法是一种高效的迭代法,它使用了共轭梯度来求解非线性方程组。

线性共轭法是一种高效的迭代法,它通过使用共轭梯度来求解非线性方程组,并使用线性共轭条件来加速收敛。

这些迭代法都是基于迭代的方法,需要给定初始解和终止条件,并且在迭代过程中可能会出现收敛问题,所以需要设计合适的迭代步骤来保证收敛性。

牛顿迭代法在求解非线性方程重根问题中的研究

牛顿迭代法在求解非线性方程重根问题中的研究

牛顿迭代法在求解非线性方程重根问题中的研究摘要:牛顿迭代法是求解非线性方程的根的常用方法。

在实际计算中往往会遇到重根情况,针对这种情况,我们在牛顿迭代法的理论基础上,探讨了三种不同的迭代格式。

为了对比这三种方法,本文进行了两个实验,分别是含有重根的非线性方程求解问题实例和牛顿迭代法在求解购房按揭利率的应用实例。

在分析运算结果后,得出了三种算法优势和劣势。

关键词:牛顿迭代法;MA TLAB;重根Abstract:Newton iteration method is a common method to solve the roots of nonlinear equations. In order to solve this problem, we discuss three different iteration schemes based on Newton iteration method. In order to compare the three methods, two experiments are carried out in this paper, one is the solving of nonlinear equations with heavy roots, and the other is the application of Newton iteration method in solving house mortgage interest rate. The advantages and disadvantages of three algorithms are obtained after analyzing the results.Key words:Newton iterative method;MA TLAB;Root weight目录摘要 (Ⅰ)Abstract (Ⅰ)目录 (Ⅱ)1 相关概念 (1)1.1 非线性方程 (1)1.2 重根问题 (1)1.3 不动点和不动点迭代法 (1)1.4 迭代法的收敛性 (2)2 牛顿迭代法 (2)2.1 牛顿迭代算法 (2)2.2 重根情形 (3)3 牛顿迭代法的数值实验 (5)3.1 实验一 (5)3.2 实验二 (7)4 结论 (8)参考文献: (9)附录 (10)附录A 算法1 (10)附录B 算法2 (10)附录C 算法3 (11)附录D 实验一程序 (11)附录E 算法1 (12)附录F 算法2 (12)附录G 算法3 (13)附录H 实验二程序 (13)1 相关概念1.1 非线性方程在科学和工程计算中存在大量的方程()0f x =求根的问题,比如代数方程10110n n n n a x a x a x a --++++=,其中00a ≠,当1,2n =时其解是熟知的,当3,4n =时解的公式可以在数学手册上查到,但是当5n ≥时,方程的跟是不能用四则运算和根式运算的公式表示出来的。

牛顿迭代法在人工智能中的应用

牛顿迭代法在人工智能中的应用

牛顿迭代法在人工智能中的应用牛顿迭代法是一种基于牛顿-拉夫森定理的数值方法,可以用来求解非线性方程,对于人工智能领域中的优化问题,牛顿迭代法也有广泛的应用。

本文将探讨牛顿迭代法在人工智能中的应用,并介绍其原理和算法流程。

一、牛顿迭代法的原理牛顿迭代法是一种求解非线性方程的数值方法,它基于牛顿-拉夫森定理,即对于一个实数x,如果f(x)=0,则可以得到以下近似公式:$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$其中,$f'(x_n)$是函数f(x)在$x_n$处的导数。

牛顿迭代法的原理就是不断利用这个公式进行迭代求解,直到满足所设定的精度要求。

二、牛顿迭代法在人工智能中的应用2.1. 参数的优化在机器学习领域中,我们常常需要通过训练生成一个模型,使得模型可以尽可能地拟合数据,并且可以在未知数据上有良好的泛化能力。

这时候,我们需要对模型中的参数进行优化,以使得它在训练数据上的误差最小。

这个问题可以看作是一个非线性方程的求解问题,我们可以利用牛顿迭代法来进行优化。

具体来说,我们可以将训练过程看作是在求解一个函数的极小值,使用牛顿迭代法来寻找函数的驻点,进而得到最优的参数值。

2.2. 图像处理在图像处理领域中,我们常常需要对图像进行灰度化、降噪、边缘检测等处理,其中大量的任务可以看作是求解非线性方程的问题。

例如,对于图像矩阵中的某一个像素点,我们可以定义一个非线性转换函数,将其转换为另一个像素值。

这个过程可以看作是求解一个非线性方程,我们可以利用牛顿迭代法来求解最优的像素值。

这个过程可以极大地提升图像处理的效率和精度。

2.3. 机器人导航在机器人导航领域中,机器人通常需要通过传感器获取自身位置的信息,然后根据目标位置计算出一条最优的路径。

这个过程可以看作是一个非线性方程的求解问题,我们可以利用牛顿迭代法来寻找最优的路径并优化机器人导航的效率。

具体来说,我们可以将机器人在地图上的位置看作是一个变量,然后利用牛顿迭代法来求解机器人到目标位置的最短路径。

解非线性方程组的牛顿法

解非线性方程组的牛顿法
§6 解非线性方程组的迭代法
考虑非线性方程组
f1(x1, x2, , xn ) 0,
f2(x1, x2, , xn ) 0,
fn (x1, x2, , xn ) 0. 利用向量记号写为
F (X ) O. 这里F (X )是定义在某区域D Rn上向量值函数. 若存在 X* D, 使得F (X*) O, 则称X*为非线性方程组的解.
.
逐次迭代得结果.
Step 5 Set x x y
Step 6 If y TOL then OUTPUT(x)
Step7 Set k k 1
STOP.
Step8 OUTPUT (‘Maximum number of iterations exceeded’) STOP.
为了说明上述算法,我们可以看看下面的例子。设
s1
145 272

145 272
T
.
x2 x1 s1 0.092,3.092 T .
显然,我们只经过两步计算,所得到的 x2就已经非常靠近 解 0,3T .
例1 用牛顿法求解方程组
k x (k) 0 (1.5, 1.0)T
f1( f2(
x1 x1
,x2 ,x2
) )
x1 2 x12
定理 2 设G : D Rn Rn在D内有一不动点X *且G在X *可导,
(G(X*)) 1, 则存在开球 S S( X*, ) D, 对X (0) S, 迭代序列{X (k)}
收敛于X *.
牛顿迭代公式:
X (k1) X (k) F( X (k) ) 1 F ( X (k) ),
其中
f1
F
(
X
(k
)
)

非线性方程的求解方法

非线性方程的求解方法

非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。

然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。

本文将介绍几种非线性方程的求解方法。

一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。

该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。

牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。

牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。

二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。

与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。

割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。

三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。

该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。

二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。

二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。

四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。

它和二分法类似,都是通过缩小根所在的区间来逼近根。

不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。

牛顿迭代法的定义和基本思想

牛顿迭代法的定义和基本思想

牛顿迭代法的定义和基本思想牛顿迭代法是一种求解非线性方程的有效方法。

与一般的数值方法不同,牛顿迭代法是一种局部迭代法,其基本思想是通过对函数的一阶导数和二阶导数进行逐步逼近,求解方程的近似解。

在数学、物理、工程等领域中有着广泛应用。

本文将从牛顿迭代法的定义、基本思想和优缺点三方面进行介绍。

一、定义牛顿迭代法,又称为牛顿-拉夫逊迭代法,是一种通过逼近函数在某点的切线来求解方程近似解的迭代方法。

其迭代格式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$是原方程,$f'(x)$是$f(x)$的一阶导数,$x_n$是第$n$次迭代得到的近似解,$x_{n+1}$是下一次迭代得到的近似解。

二、基本思想牛顿迭代法的基本思想是通过函数在某点的切线来逼近函数的根。

具体地,利用当前点的切线与$x$轴的交点作为下一个点的近似解,逐步逼近函数的根。

在每一次迭代中,我们都需要计算函数在当前点的一阶导数和二阶导数,来得到切线方程和切线与$x$轴的交点。

牛顿迭代法的基本思想可以通过几何直观来理解。

假设我们要求一个函数$f(x)$在$x_0$的根,我们先假设一个近似解$x_1$,然后求出$f(x_1)$和$f'(x_1)$,接着我们计算出函数$f(x)$在$x_1$处的切线,将切线与$x$轴的交点作为下一个近似解$x_2$。

这样,我们就可以得到函数在$x_2$处的一阶近似,继续重复上述过程,逐步逼近函数的根。

三、优缺点牛顿迭代法作为一种高效的求解非线性方程的方法,有着其优缺点。

优点:首先,牛顿迭代法的收敛速度很快,在很少的迭代次数下就能得到精确的解。

其次,牛顿迭代法可以通过改变初值来得到不同的解,因此可以同时求解多个解。

最后,牛顿迭代法还可以求解函数的极值问题。

缺点:虽然牛顿迭代法收敛速度很快,但其收敛性不如其他数值方法稳定。

特别是当函数的导数在某些点发生剧烈变化时,容易出现迭代失败的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数值分析实验报告(一)
实验
名称
用牛顿迭代法求解非线性方程实验时间2011年11 月19日姓名班级学号成绩
一、实验目的
1.了解求解非线性方程的解的常见方法。

2.编写牛顿迭代法程序求解非线性方程。

二、实验内容
分别用初值
0.01
x=,
10
x=和
300
x=求113,要求精度为5
10-。

三、实验原理
设113
x=,则21130
x-=,记f(x)= 2113
x-,问题便成为了求2x -113=0的正根;
用牛顿迭代公式得
2
1
113
2
k k
k
k
x
x x x
+
-
=-,即
1
1113
()
2
k k
k
x x x
+
=+(其中k=0,1,2,3,…,)
简单推导
假设f(x)是关于X的函数:
求出f(x)的一阶导,即斜率:
简化等式得到:
然后利用得到的最终式进行迭代运算直至求到一个比较精确的满意值。

如果f函数在闭区间[a,b]内连续,必存在一点x使得f(x) = c,c是函数f在闭区间[a,b]内的一点
我们先猜测一X初始值,然后代入初始值,通过迭代运算不断推进,逐步靠近精确值,直到得到我们主观认为比较满意的值为止。

回到我们最开始的那个”莫名其妙”的公式,我们要求的是N的平方根,令x2 = n,假设一关
于X的函数f(x)为:
f(X) = X2 - n
求f(X)的一阶导为:
f'(X) = 2X
代入前面求到的最终式中:
X k+1 = X
k
- (X
k
2 - n)/2X
k
化简即得到我们最初提到求平方根的迭代公式:
四、实验步骤
1.根据实验题目,给出题目的C程序。

当初值为0.01、10、300时,即x=0.01,10,300
分别应用程序:
#include "stdio.h"
int main()
{ float number;
printf("Please input the number:");
scanf("%f", &number);
float x=1;
int i;
for (i=0;i<1000;i++)
{
x = (x + number/x)/2;
}
printf("The square root of %f is %8.5f\n", number ,x);
}
得出结果
2.上机输入和调试自己所编的程序。

当x=0.01时,结果为:10.63015
x=10时,结果为:10.63015
x=300时,结果也为:10.63015
3.实验结果分析。

当初值取0.01、10、300时取不同的初值得到同样的结果10.63015。

五、程序
#include "stdio.h"
int main()
{float number;
printf("Please input the number:");
scanf("%f", &number);
float x=1;
int i;
for (i=0;i<1000;i++)
{
x = (x + number/x)/2;
}
printf("The square root of %f is %8.5f\n", number ,x);
}
六、实验结果及分析
实验结果:
当x=0.01时,结果为:10.63015
x=10时,结果为:10.63015
x=300时,结果也为:10.63015
实验结果分析:
取不同的初值得到同样的结果
用牛顿迭代法求解非线性方程是一种逐次逼近法,迭代过程的实质上是一个逐步显示化的过程。

但迭代法的效果并不是总令人满意,有些隐式方程的迭代过程事发散的,一个发散的迭代过程,计算也比较复杂,但它的收敛速度比较快。

相关文档
最新文档