第六章弯曲变形_材料力学
材料力学(理工科课件)第六章 弯曲变形)

§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
材料力学第六章 弯曲变形

4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学课件 第六章弯 曲 内 力(土木专业)

M
A
0
FRA
A
a
F1
C
F2
D
FRB
B
FRB l F1a F2b 0
MB 0
c
E
F
d
FRAl F1 ( l a ) F2 ( l b) 0
FRA F1 ( l a ) F2 ( l b) l
b l
FRB
F1a F2b l
第六章
记 E 截面处的剪力为
FRA
A
弯曲内力
a F1 C F2 D B
FSE 和弯矩 ME ,且假设
FSE 和弯矩ME 的指向和转 向均为正值.取左段为研究
E
c b l
F
d
对象。
Fy 0 , M 0,
E
FRA FS E 0
M E FRA c 0
FRA
A E
FSE
解得 FSE FRA
ME
M E FRA c
第六章
6.1引言
1.弯曲的概念
弯曲内力
工程实例
第六章
工程实例
弯曲内力
第六章
弯曲内力
车刀轴
第六章
弯曲内力
火车轮轴
第六章
弯曲内力
起重机大梁
第六章
弯曲内力
镗刀杆轴
第六章
基本概念
弯曲内力
1.弯曲变形 (1) 受力特征 外力(包括力偶)的作用线垂直于杆轴线. (2) 变形特征 变形前为直线的轴线,变形后成为曲线. 2.梁 以弯曲变形为主的杆件 3.平面弯曲 作用于梁上的所有外力都在纵向对称面内,弯曲变形后的轴 线是一条在该纵向对称面内的平面曲线,这种弯曲称为平面弯曲.
材料力学第6章弯曲变形

M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
材料力学-第六章

第15单元第六章 弯曲变形§6-1 引言应用:梁的刚度问题,静不定梁,压杆稳定挠曲轴:变弯后的梁轴(当外力位于梁对称面内时,挠曲线为平面曲线)。
挠度()y x : 横截面形心的位移 转角()θx :横截面绕中性轴的转角挠曲轴方程:()y y x = (挠曲轴的解析表达式)()tg dy dxy x θ=='()θθ≈='tg y x(通常θ<︒1=0.01745弧度)§6-2 梁变形基本方程目的:求()y x ,()()[]θx y x =' 途径:建立微分方程求解 一、挠曲轴微分方程1.中性层曲率表示的弯曲变形公式()1ρ=M x EI(其中M 可以通过弯矩方程表示为x 的函数,ρ为曲率半径,它可由'y 和''y 表示) 2.由数学()11232ρ=±''+'y y3.挠曲轴微分方程()()±''+'=y y M x EI1232(1) 4.方程简化,挠曲轴近似微分方程 小变形,()'≈<y θ0.0175(弧度)'<<y 21112+'≈y ((1)式分母等于1)正负号确定——确定坐标系:y 向上''>y 0(从数学) ''<y 0M >0(本书规定) M <⇒选正号()∴''=y M x EI二、积分法计算梁的变形()θ='=+⎰y M x EI dx C()y M x EIdx Cx D =++⎰⎰C 、D 为积分常数,它由位移边界与连续条件确定。
三、位移边界与连续条件边界条件:固定端 y A A ==00,θ 固定铰,活动铰 0,0==F E y y 自由端:无位移边界条件 连续条件 y y C C C C 左右左右===00θθy y y y B BG G G G 左右左右左右===θθ例1:()M x M =0,()''=y x M EI 0()()θ='=+y x M EI x C 0()y x M EIx Cx D =++022由()()y D y C 00000=='==()()∴==y x M EIxx M EIx022θ例2:求挠曲轴微分方程AB 段: BC 段''=y M EI x l 10 ''=-⎛⎝ ⎫⎭⎪y M EI x l201y M EI x lC xD =++03116 y M EI x l x C x D =-⎛⎝ ⎫⎭⎪++0322262边界和连续条件()y 100= ()y l 20=y l y l 1222⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪(连续条件)'⎛⎝ ⎫⎭⎪='⎛⎝ ⎫⎭⎪y l y l 1222 (光滑条件)四个方程定4个常数()()y x M x lEI x l 1022244=- ()()y x M x l EIl2024=-例3:1.画剪力弯矩图2.列挠曲线的位移和连续条件3.画挠曲线大致形状(注明凹凸性与拐点) 位移与连续条件 A :()y 100= B:()()()()a y a y a y a y 2121'='=,C:()()020232==a y a y ,()()a y a y 2232'=' D:无挠曲线大致形状的画法 (1)根据弯矩图定凹凸性, +→⋃-→⋂,(2)弯矩图过零点处为拐点 (3)支座限定支座处的位移§6-3 计算梁位移的奇异函数法奇异函数法仍属积分法。
材料力学6弯曲变形

=
M 0 L2 9 3EI Z
<[f ]
刚度满足要求。 刚度满足要求。
例二、长度为 的梁 的梁AC, 为常数, 例二、长度为L的梁 ,其EI为常数,在自由端承受集 为常数 中力P(如图),试求自由端C的挠度和转角 ),试求自由端 的挠度和转角。 中力 (如图),试求自由端 的挠度和转角。 外力分析: 解: 1)外力分析:
解: 1)外力分析: )外力分析: M0 M0 RA = (↓), R B = (↑ ) L L 2)内力分析:(M方程 方程) )内力分析: 方程
3)挠曲线方程和转角方程: )挠曲线方程和转角方程:
M0 M(x) = − x (0 ≤ x ≤ L ) L
M0 2 d2V M0 EIzθ= − x +C x EIz 2 = − 2L dx L M0 3 EI z V = − x + Cx + D 6L
思考题: 思考题:求VB
试用叠加法求C截面的挠度和转角 例5、试用叠加法求C截面的挠度和转角 (I2=2I1)。
EI 2 A a C a EI1
A
C a
m0= Pa A a P
解:(1)BC段变形,AC段刚化 :(1)BC段变形,AC段刚化 段变形 ( VC(1) = 0 θ C1) = 0 B (2)AC段变形 BC段刚化 段变形, (2)AC段变形,BC段刚化 P 3 2 Pa Pa VCP = ( ↑) θ CP = ( ) 3EI 2 2EI 2 B Pa 2 ( ) Pa 3 θ Cm0 = VCm0 = ( ↑) EI 2 2 EI 2 P 5Pa 3 VC( 2 ) = VCP + VCm0 = ( ↑) 6 EI 2 3Pa 2 B ( θ C2 ) = θ CP + θ Cm0 = ( ) 2 EI 2 (3)总变形 (3)总变形
工程力学c材料力学部分第六章 弯曲变形

A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
材料力学 第6章 梁的弯曲变形

(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实例
车床主轴:变形过大,会使齿轮啮合不良,轴与轴承产生非均匀磨损
,产生噪声,降低寿命,影响加工精度。
吊车梁:变形过大会出现小车爬坡现象,引起振动。
研究变形目的
建立刚度条件,解决刚度问题
建立变形协调条件,解决超静定问题
为振动计算奠定基础。
概念
以简支梁为例,以变形前的轴线为x轴,垂直向上为y轴,xoy平面为梁的纵向对称面。
挠曲线:
在对称弯曲情况下,变形后梁的轴线为xoy平面内的一条曲线,此曲线称为挠曲线
挠度:
梁的任一截面形心的竖直位移称为挠度。
挠曲线的方程式:
转角:
弯曲变形中,梁的横截面对其原来位置转过的角度θ,称为截面转角。
根据平面假设,梁的横截面变形前,垂直于轴线,变形后垂直于挠曲线。
故
:
挠度w和转角θ是度量弯曲变形的两个基本量。
挠度与转角符号规定:在图示坐标中,挠度向上为正,反时针的转角为正。
此式为挠曲线的近似微分方程。
挠曲线的曲率表示式:
纯弯曲:
横力弯曲:
“
细长梁,
忽略Fs影响。
挠曲线的曲率表达式
纯弯曲:
(a)
横力弯曲:
对细长梁而言,忽略剪力Fs的影响
(b)
高等数学中对曲率的定义及表达式
于是式(a)转化为
(c)
在我们选定的坐标系内,若弯矩M 为正,则挠曲线向下凸,(如图所示),随着弧长S的增加,θ也是增加的,即正增量d S对应的dθ也是正的,于是考虑符号后,式(c)可写成
(d)因为
所以
注意到
代入式(d)及:
(e)
此为挠曲线的微分方程,适用于弯曲变形的任意情况,它是非线性的。
在小变形的情况下,梁的挠度w一般都远小于跨度,挠曲线w=f(x)是一非常平坦的曲线,转角θ也是一个非常小的角度,于是
(f)
式(e)
,
于是式(e)可写成
(g)
此式为挠曲线的近似微分方程。
挠曲线的近似微分方程
对等直梁而言,EI为常量,于是上式可写成
积分可得转角方程,再积分可得挠曲线方程
边界条件:
在挠曲线的某些点上,挠度或转角有时是已知的这类条件称为边界条件。
连续条件:
挠曲线是一条光滑连续的曲线,在挠曲线的任一点上有唯一确定的挠度和转角这就是连续条件。
刚度条件:
例题
Example1
图示梁受均布载荷,已知,试用积分法求梁的转角和挠度方程,、 .
Solution.
列弯矩方程:
列微分方程及积分
求积分常数
边界条件:当时,
∴
转角方程及挠度方程:
求,
将=0代入以上二式
Example2
内燃机的凸轮轴或齿轮轴计算简图,试求转角方程及挠度方程,及、。
Solution.
求反力:
列弯矩方程:
(AC)
(CB)
列微分方程及积分
(AC)
(CB)
求积分常数
边界条件:
连续条件:
∴
转角方程及挠度方程
(AC)
(a)
(b)
(CB)
(c)
(d)
最大挠度,最大转角
当时,
当时,
若,则,
若,则,
最大挠度
当时,为极值,所以应首先确定为零的截面位置。
.
若在式(a)中,令,可求的
若,则为正值。
可见从截面A到截面C转角由负变正,改变了符号,挠曲线既为光滑连续曲线,=0的截面必然在(AC)段。
令式(a)等于零:
即为挠度为最大值的截面横坐标。
以代入式(b)的最大挠度
当F作用于中点时,即,最大挠度发生在中点。
极端情况,当F无限接近右支座时,以省略,于是
可见即是在这种极端情况下,最大挠度仍然发生在跨度中点附近,也就是最大挠度总在靠近跨度中点。
所以可以用跨度中点的挠度近似代替最大挠度,因此,在式(b)中令
求出跨度中点挠度为:
即是在极端情况下,→0时
误差分析:
用代替所引起的误差
结论
可见在简支梁中,只要挠曲线无拐点,总可用跨度中点的挠度代替最大挠度不会引起很大误差。
优点:
可以求得挠曲线的转角方程和挠曲线方程,因此可求任意截面的转
角和挠度是最基本的方法。
缺点:
积分法比较麻烦。
在小变形,线弹性前提下(材料服从胡克定律),挠度与转
角均与载荷成线性关系。
因此,当梁上有多个载荷作用时,可以分别求出每一
载荷单独引起的变形,把所得变形叠加即为这些载荷共同作用时的变形,这就
是弯曲变形的叠加法。
为了便于工程计算,把简单基本载荷作用下梁的挠曲线方程,最大挠度,
最大转角计算公式编入手册,以便查用。
Example 1
Given:
Find :,
,
Solution:
查表P190
Example 2
Given:
Find :,,,
Solution:
P189-190
查表
多余约束(redundant restraint)
多余支反力(redundant reaction)
相当系统(equivalent system)静定基
变形比较法
超静定梁求解步骤
判断梁的静不定度;
解除“多余”约束,代之以相应的多余支反力,得到原静不定梁的相当系统;
基本静定梁变形情况与原超静定梁变形情况应该相同,这就是变形协调条件。
由变形协调条件和力与变形间的物理关系求得补充方程;
由平衡方程和补充方程求得全部支座反力或内力。
三度静不定
支座沉陷
梁的刚度条件
梁的合理刚度设计
梁的变形除了与梁的支承和载荷情况有关外,还与材料、截面和跨度有关。
挠度的最大值可综合概括为:
由上式可见,欲提高梁的抗弯刚度,可采取如下措施。
提高梁弯曲刚度的措施
增大梁的抗弯刚度EI
由于各类钢材的弹性模量E值相差甚少,因此虽采用高强度钢可以大大提高梁
的强度,但对增大梁的刚度却意义不大。
增大截面的惯矩I是提高刚度的主要途径。
与此同时强度也可得以提高。
从刚度方面考虑,应增大整个梁截面的惯矩I。
(在同一强度下,变截面梁比等截面梁的柔性大。
减小梁的跨度或增加支承
梁的挠度(或转角)与跨度的n次幂成正比,因此为减小梁的变形,采取减小梁跨的办法是一个很有效的措施。
利用对梁采取增加支承的办法,会使梁的最大挠度值降低。
增加约束后,原来的静定梁就会变成超静定梁。
减小弯矩数值
由于弯矩是引起梁弯曲变形的主要因素,因此减小弯矩数值也是提高梁弯曲刚度的一项重要措施。
.
图示结构中CD为刚性杆,C、D处为铰接,AD与DE梁的EI相同,试求E端约束反力
解:
一次超静定,去掉钢杆CD,代以反力F,且CD为钢杆,故
,。