第31章氨基酸的生物合成

合集下载

生物化学-生化知识点_第四章 氨基酸及其重要衍生物的生物合成.

生物化学-生化知识点_第四章  氨基酸及其重要衍生物的生物合成.

一一一氨基酸及其重要衍生物的生物合成下册P340 31章§4.1 概论不同生物合成氨基酸的能力不同,合成氨基酸的种类也有很大差异。

必需氨基酸:肌体维持正常生长所必需而又不能自己合成,需从外界获取的氨基酸。

人和大白鼠需以下十种氨基酸(由大白鼠喂饲试验得来):Phe、Lys、Ile、Leu 、Met、Thr、Trp、Val、(His、Arg)。

对于成人为前八种,对幼小动物为十种。

非必需氨基酸:肌体可以通过其他原料自己合成的氨基酸。

高等植物可以合成自己所需全部氨基酸。

微生物合成氨基酸能力有很大差距。

E.coli可合成全部所需氨基酸,乳酸菌则不能合成全部。

§4.2 氨基酸生物合成途径:可用为生物遗传突变株研究。

使突变株在氨基酸的某个合成环节上产生缺失,造成某种中间物积累,从而判明各个中间代谢环节,由此已阐明20种氨基酸的生物合成途径。

在生物合成中,氨基酸的氨基多来自Glu的转氨基反应,而各种碳骨架起源于TCA、糖酵解等代谢途径,由此划分为若干类型。

根据生物合成起始物的不同,可将氨基酸生物合成途径归纳为六族。

P341 图31-1为氨基酸生物合成的分族情况:①谷氨酸族②天冬氨酸族③丝氨酸族④丙氨酸族⑤芳香氨基酸族⑥组氨酸。

P341图31-2为20种氨基酸生物合成概貌。

一一一谷氨酸族氨基酸的生物合成:均以α-酮戊二酸为前提。

α-酮戊二酸形成Glu后可生成Gln、Pro和Arg(P344,P345 图31-6,P346 图31-7);在真菌中还可生成Lys(P347图31-8)。

一一一天冬氨酸族氨基酸的生物合成:草酰乙酸生成Asp后可生成Asn,经天冬氨酸β-半醛可生成Lys(P349图31-9),再经高丝氨酸可生成Thr,进一步生成Ile,还可生成Met(P350图31-10,P351 图31-11,图31-12)。

一一一丙氨酸族氨基酸的生物合成:丙酮酸可直接生成Ala,经α-酮异戊酸可生成Val和Leu(P352 图31-13,P353 图31-15)。

氨基酸合成

氨基酸合成

吲哚-3-甘油磷酸
色氨酸合成酶是通 道多酶复合体的一 个典型的例子。
由苯丙氨酸生成 酪氨酸的途径
组氨酸的生物合成
N1-5′-磷酸 核糖-ATP
组氨醇
组氨酸
N1-5′-磷酸 核糖-AMP 组氨醇磷酸
咪唑丙酮磷酸
咪唑甘油磷酸
N1-5′-磷酸核酮糖亚氨甲基-5氨基咪唑-4-羧酰核苷酸
N1-5′-磷酸核酮糖亚氨甲基 -5-氨基咪唑羧酰核苷酸
对氨基苯甲酸 邻氨基苯甲酸 对羟基苯甲酸预来自酸质体醌木质素
分支酸的生物合成
5-脱氧奎尼酸 2-酮-3脱氧7-磷酸庚酮糖酸
5-脱氧莽草酸
3-稀丙基莽草酸
莽草酸
分支酸
邻氨基苯甲酸
苯丙氨酸、 酪氨酸及色 氨酸的生物 合成
预苯酸 N-(5′-磷酸核糖) -氨基苯甲酸 稀醇式L-(O-羧基 苯氨酸)-L-脱氧 核酮糖-5-磷酸
6-腺苷基α-氨基己酸
α-氨基己二酸
α-酮己二酸
蕈类和眼虫L-赖氨 酸的生物合成途径
酵母氨酸
(二) 天冬氨酸 族的生物合成: L-天冬氨酸,L天冬酰胺,L-甲 硫氨酸,L-苏氨 酸
L-天冬氨酸的生物合成
L-天冬酰胺的生物合成
L-甲硫氨酸,L-苏氨酸和 L-赖氨酸的生物合成途径
六氢吡啶-2,6-二羧酸
肉桂酸
Many neurotransmitters are derived from amino acids
基本要求
1.熟悉生物固氮的基本过程(教材第32章)。 2.熟悉氨基酸生物合成的基本过程。 3.熟悉氨基酸生物合成的调节。 4.熟悉氨基酸转化为其他重要代谢物的过程。
(三) 肌酸 (creatine)的生 物合成

氨基酸生产——精选推荐

氨基酸生产——精选推荐

氨基酸⽣产第⼀章氨基酸的概述⼀、氨基酸的物理性质氨基酸系⽆⾊或⽩⾊晶体,具有200℃以上的⾼熔点,熔融的同时也分解。

除了脯氨酸和羟脯氨酸溶于酒精外,⼀般都不溶于有机溶剂,⽽易溶于⽔,在⽔中的溶解度随氨基酸的种类⽽异,在酸性或碱性中溶解度增⼤。

1、氨基酸的酸碱度α-氨基酸中存在α-氨基和α-是他们在结构。

按其酸碱性质的不同,可将其分为三⼤类。

即酸性氨基酸,碱性氨基酸和中性氨基酸。

其中以种性氨基酸的种类最多。

2、两性电解质特性氨基酸分⼦内含有氨基和羧基,汽⽔溶液随PH值不同⽽离解,但是,侧链上的氨基,羧基,咪唑基,酚基等的存在,PK,PI受到影响、氨基酸直接⽤离⼦交换树脂和离⼦交换膜分离,间接⽤溶度差晶析分离都是利⽤氨基酸阴阳离⼦的两性电解质性质。

⼆、氨基酸的化学性质氨基酸的化学性质与其分⼦的特殊官能团如羧基、氨基和⽀链R集团是分不开的氨基酸的羧基具有-羧酸羧基的性质,氨基酸的氨基具有伯胺氨基的性质,NH基与COOH2基共同参加的离⼦交换反应,与⾦属离⼦形成配合物等。

三、氨基酸的⽤途氨基酸是构成蛋⽩质的基本单位,是合成⼈体激素、酶及抗体的原料,参与⼈体新陈代谢和各种⽣理活动,再⽣命中显⽰特殊作⽤。

因此各种不同的氨基酸可以⽤来治疗不同的疾病。

不但氨基酸本⾝有治疗作⽤,氨基酸的衍⽣物也有治疗作⽤。

20多年来,氨基酸在医药、保健⽅⾯的应⽤进展迅速,作为营养剂代谢改善剂、抗溃疡、防辐射、抗菌、治癌、镇痛,以及为特殊病⼈配制⼈⼯合成膳⾷等应⽤越来越多,议案计算为原料的激素,抗菌素,酶抑制剂,抗癌药等⽣物活性多肽,层出不穷。

氨基酸是组成蛋⽩质的基本单位,也是蛋⽩质在体内代谢的基本形式,各种氨基酸的代谢异常往往产⽣蛋⽩质代谢紊乱,可以⽤某些氨基酸治疗这些疾病。

此外,由于胃肠消化系统功能障碍,烧伤、外伤、⼿术等⼤出⾎造成的蛋⽩质缺损或低蛋⽩证,⽤氨基酸复合制剂治疗,具有良好的效果;对⼀些特殊环境下的⼯作⼈员的特殊营养亦需⽤专门的氨基酸制剂。

生物化学8 氨基酸代谢与合成

生物化学8 氨基酸代谢与合成

蛋白质降解和氨基酸的分解代谢蛋白质的降解细胞总是不断地从氨基酸合成蛋白质,又把蛋白质降解为氨基酸。

从表面上看,这样的变化过程看似是一种浪费,实际上它有二重功能,其一是排除那些不正常的蛋白质,它们一旦积聚,将对细胞有害;其二是通过排除积累过多的酶和调节蛋白使细胞代谢的井然有序得以进行。

蛋白质降解的特性蛋白质有选择地降解非正常蛋白质,例如血红蛋白与缬氨酸类似物结合,得到的产物在网织红细胞中的半存活期约10min,而正常血红蛋白可延续红细胞的存活期最终可达120天。

正常的胞内蛋白被排除的速度是由它们的个性决定的,绝大多数快速降解的酶都居于重要的“代谢控制”位置,而较稳定的酶在所有生理条件下有较稳定的催化活性。

降解速度还因它的营养及激素状态而有所不同。

在营养条件被剥夺的情况下,细胞提高它的蛋白质降解速度,以维持它的必需营养源使不可或缺的代谢过程得以进行。

蛋白质降解的反应机制真核细胞对于蛋白质降解有两种体系,一个是溶酶体的降解体质和一种ATP-依赖性的以细胞溶胶为基础的机制。

溶酶体溶酶体是具有单层被膜的细胞器,其中个含有50多种水解酶,包括不同种的蛋白酶,称之为组织蛋白酶。

溶酶体保持其内部PH在5左右,而它含有的酶的最适PH就是酸性。

如此可以抵制偶然的溶酶体渗漏从而保护了细胞,因此在细胞溶胶PH下,溶酶体的大部分酶都是无活性的。

溶酶体对细胞各组分的再利用是通过它融合细胞质的膜被点块即自(体吞)噬泡,并随即分解其内容物实现的。

溶酶体的阻断剂有抗虐药物——氯代奎宁(是一种弱碱,在不带电形式随意穿透溶酶体,在溶酶体内积累形成特电荷型,因此增高了溶酶体内部的pH,并阻碍了溶酶体的功能。

溶酶体降解蛋白质是无选择性的,而rong'mei't'抑制剂对于非正常蛋白或短寿命酶无快速的降解效应,但是它们可以防止饥饿状态下蛋白质的加速度崩溃。

许多正常的和病理活动都伴随溶酶体活性的升高。

ATP-依赖真核细胞蛋白质的降解主要是溶酶体的作用,但是缺少溶酶体的网织红细胞却可选择性的降解非正常蛋白质,这里有ATP-依赖的蛋白质水解体系存在ATP依赖蛋白质需要有泛肽存在。

生物化学复习要点-氨基酸代谢

生物化学复习要点-氨基酸代谢

氨基酸代谢一、教学大纲基本要求蛋白质的消化、吸收,氨基酸代谢库,必需氨基酸,氮平衡,氨基酸代谢概论,氨基酸的脱氨基、转氨基、联合脱氨基作用;蛋白质降解,尿素循环,氨基酸合成代谢;氨基酸的脱羧基作用,氨基酸的碳链代谢,氨的排出、转运。

二、本章知识要点(一)氨基酸代谢概述蛋白质作为动物体的主要组成成分,总是在不断地进行着新陈代谢。

而蛋白质的基本组成单位是氨基酸,所以氨基酸代谢是蛋白质代谢的重要内容。

1.蛋白质的消化、吸收(1)蛋白质的消化动物的唾液中虽有少量唾液蛋白质酶能分解蛋白质,但在整个消化过程中,其作用不大。

蛋白质食物主要是在胃和小肠中进行消化的。

胃粘膜主细胞可分泌胃蛋白酶原,胰液能提供胰蛋白酶原、糜蛋白酶原、弹性蛋白酶原和羧基肽酶原,这些酶原激活后可转变成有活性的酶,在这些酶以及动物体所含的氨肽酶、羧肽酶和二肽酶等共同作用下,来完成日粮中蛋白质的消化过程。

(2)蛋白质的吸收在正常情况下,只有氨基酸及少量二肽、三肽能被动物体吸收进入血液。

这种吸收主要在小肠粘膜细胞上进行,肾小管细胞和肌肉细胞也能吸收,这是一个耗能、需氧的主动运输过程。

关于氨基酸吸收的机理,目前仍未完全解决。

A.Meister在1968-1969年,从肾脏研究中,提出关于氨基酸吸收的“γ-谷氨酰基循环”假说,具有一定理论意义。

他认为氨基酸吸收或向各组织、细胞内转移是通过谷胱甘肽起作用,这个过程由六步连续的酶促反应完成。

2.氨基酸的代谢库动物体吸收进入血液的氨基酸与体内游离的氨基酸构成了氨基酸代谢库。

在正常情况下,氨基酸代谢库中的氨基酸维持在一个动态平衡中。

一方面,氨基酸被消耗,或用来合成蛋白质,或合成其它含氮物质,或氧化分解提供能量;另一方面,可由体外吸收、体内合成或体内蛋白质分解所产生的氨基酸补充。

3.必需氨基酸必需AA是指机动物体内不能合成或合成量不足,必须由日粮提供的一类氨基酸,构成天然蛋白质的20种氨基酸中有10种氨基酸是多数动物的必需氨基酸:3种碱性AA(赖AA、精AA、组AA),3种支链AA(亮AA、异亮AA、缬AA),2种芳香AA(苯丙AA、色AA),1种含硫AA(甲硫AA),1种羟基AA(苏AA)。

氨基酸的生物合成

氨基酸的生物合成
Байду номын сангаас
N2 NH3
反硝化作用
异化作用 分解代谢
NO3-
绝大多数植 物及微生物
氨基酸 核苷酸 叶绿素
生物合成
分解代谢
有机界
蛋白质 DNA、RNA 多糖 脂类
生物体利用3种反应途径把氨转化为有机 化合物,这些有机物进一步合成氨基酸。
1、氨甲酰磷酸合成酶催化CO2(以HCO3-的形式) 及ATP合成氨甲酰磷酸,通过尿素循环合成精氨酸。 2、谷氨酸脱氢酶催化-酮戊二酸还原、氨化,生 成谷氨酸。
从谷氨酸经转氨作用而来
氨基酸的生物合成的碳架来源
(1)非必需氨基酸的生物合成
a、由α-酮酸氨基化生成 b、由某些非必需氨基酸转化而来 c、由某些必需氨基酸转变而来
(2)各族氨基酸的前体及相互关系
非 必 需 氨 基 酸 的 生 物 合 成
种 氨 基 酸 的 前 体 及 相 互 关 系
丝氨 酸族
His 和 芳香族
α-酮戊二酸
转氨酶
α-酮酸
氨基酸
谷氨酰胺合成酶是催化氨转变为有机含氮物的主要酶
(普遍) 由α-酮戊二酸形成谷氨酰胺和谷氨酸的关系图
3、由谷AA
精AA
4、由谷AA
脯AA
5、L-赖氨酸的生物合成
L赖氨酸的生物合成在不同生物有完全不同的
两条途径。覃类(和眼虫)L-赖氨酸的合成
以-酮戊二酸为起始物。细菌和绿色植物则是
丙氨 酸族
天冬氨 酸族 谷氨酸族
三、氨基酸生物合成的调节
(一)通过终端产物对氨基酸生物合成的抑制
1、简单的终端产物抑制
2、不同终端产物对共经合成途径的协同抑制
3、不同分支产物对多个同工酶的特殊抑制——酶的多重性抑制

氨基酸的生物合成整理版

氨基酸的生物合成整理版

氨基酸的生物合成[整理版]第九章氨基酸的生物合成第一节氮循环氮是组成生物体的重要元素。

自然界中的不同氮化物相互转化形成氮循环。

生物界的氮代谢是自然界氮循环的主要因素。

第一步:固氮作用,将氮气还原为氨。

可工业固氮和生物固氮完成,自然界中由固氮生物固氮酶完成的分子氮向氨的转化约占总固氮的三分之二,由工业合成氨或其他途径合成的氨只有三分之一。

第二步:硝化作用,将氨转化为硝酸盐。

在土壤中含量丰富的硝化细菌进行着氧化氨形成硝酸盐的过程,因此土壤中几乎所有氨都转化成了硝酸盐。

第三步:成氨作用,将硝态氮转化为氨态氮。

植物体所需要的氮除了来自生物固氮外,绝大部分还是来自土壤中的氮,它们通过根系进入植物细胞。

然而硝态氮并不能直接被植物体利用来合成各种氨基酸和其他有机氮化物,必须先转变成为氨态氮。

第四步:同化作用,氨经谷氨酰胺合成酶和谷氨酸合成酶同化为谷氨酸。

这些有机氮化合物可随食物或饲料进入动物体内,转变为动物体的含氮化合物。

第五步:分解作用,各种动植物遗体及排泄物中的有机氮经微生物分解作用,形成无机氮。

这样,在生物界,总有机氮和总无机氮形成了一个平衡。

第二节固氮作用1、大气固氮:闪电和紫外辐射固定氮约占总固氮量的15%。

2、工业固氮:氮气中的氮氮三键十分稳定,1910年提出的作用条件在工业氮肥生产中一直沿用至今。

500?高温和30MPa条件下,用铁做催化剂使氢气还原氮气成氨。

约占总固氮量的25%。

3、生物固氮:是微生物、藻类和与高等植物共生的微生物通过自身的固氮酶复合物把分子变成氨的过程。

自然界通过生物固氮的量可达每年100亿公斤。

约占地球上的固氮量的60%。

固氮生物的类型有自生固氮微生物和共生固氮微生物。

前者如鱼腥藻、念球藻,利用光能还原氮气,好气性固氮菌利用化学能固氮;后者如与豆科植物共生固氮的根瘤菌,其专一性强,不同的菌株只能感染一定的植物,形成共生的根瘤。

在根瘤中植物为固氮菌提供碳源,而细菌利用植物提供的能源固氮,为植物提供氮源,形成一个很好的互利共生体系。

生物化学第三版第31章--氨基酸的生物合成

生物化学第三版第31章--氨基酸的生物合成
α-酮戊二酸 转氨酶
氨基酸 α-酮酸
谷氨酰胺合成酶是催化氨转变为有机含氮物的主要酶
(普遍)
由α-酮戊二酸形成谷氨酰胺和谷氨酸的关系图

3、由谷AA
精AA
4、由谷AA 脯AA
5、L-赖氨酸的生物合成
L赖氨酸的生物合成在不同生物有完全不同的 两条途径。覃类(和眼虫)L-赖氨酸的合成 以-酮戊二酸为起始物。细菌和绿色植物则是 通过丙酮酸和天冬氨酸-β-半醛的缩合途径。
(存在于哺乳动物中)
(2)
(存在于细菌中)
3、细菌和植物L-赖氨酸的生物合成
起始于无机氮,即无机氮先转变为 氨气,再转变为含氮有机化合物。
无机氮和有机氮的相互代谢转化
无机界
固氮 某些微生物 作用
N2 NH3
反硝化作用 硝酸基还原
NO3-
绝大多数植 物及微生物
同化作用 生物合成
氨基酸
异化作用 分解代谢
核苷酸
叶绿素
生物合成
有机界
蛋白质 DNA、RNA 多糖、脂类
分解代谢
(二)按碳骨架的来源氨基酸的合成分
组氨酸
生物体利用3种反应途径把氨转化为有机 化合物,这些有机物进一步合成氨基酸。
1、氨甲酰磷酸合成酶催化CO2(以HCO3-的形式) 及ATP合成氨甲酰磷酸,通过尿素循环合成精氨酸。 2、谷氨酸脱氢酶催化-酮戊二酸还原、氨化,生 成谷氨酸。
3、谷氨酰胺合成酶催化谷氨酸,转化为谷氨酰胺。
1、氨甲酰磷酸的合成
几种氨基酸的关系
α-酮戊二酸
谷氨酰胺
谷AA
脯AA 羟脯AA
鸟AA 瓜AA 精AA
(二)天冬氨酸族氨基酸的合成
包括:天冬AA(Asp)、天冬酰胺(Asn)、赖(Lys)、苏 (Thr)、甲硫(Met)、异亮(Ile)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七、氨基酸生物合成的调节
1、通过终端产物对氨基酸生物合成的抑制
(—)
(—)
L-组氨醛
L-组氨酸
七、氨基酸生物合成的调节
1、通过终端产物对氨基酸生物合成的抑制

如在苏氨酸合成异亮氨酸中,后 者是苏氨酸脱氨酶的反馈抑制物。
反馈抑制
ABCDE
(—)
(— )
E
如在谷氨酸形成谷氨酰胺中, 谷氨酰胺合酶受8种产物的反 馈抑制。
协同抑制
ABCD
(— )
FGH
(—)
终端产物E和H既抑制在合成过程中共经途径的第一个 酶,也抑制在分道后第一个产物的合成酶。
N1-(5‘-磷酸核糖)-AMP
嘌呤类合成
5‘-磷酸核糖-4-羧酰 胺-5-氨基咪唑核苷酸
N1-5‘-磷酸核酮糖亚氨甲基-5-氨基 咪唑基羧酰核苷酸
N1-5‘-磷酸核酮糖亚氨甲基-5-氨基 咪唑基-4-羧酰核苷酸
六、芳香族氨基酸生物合成
2、组氨酸的生物合成
咪唑甘油磷酸
咪唑丙酮醇磷酸
L-组氨醇磷酸
L-组氨醇
OH
4-羟基苯丙酮酸
六、芳香族氨基酸生物合成
1、苯丙氨酸、酪氨酸和色氨酸的生物合成
COOCH2 || O--C--COOHO H H
COO
氨基苯甲酸合酶
COO NH2 氨基苯甲酸磷酸
核糖转移酶
-2 O3 P O H2 C NH
Gln 分支酸
Glu
邻氨基苯甲酸
O
5‘-磷酸核糖-1’-焦磷酸(PRPP)
HO OH
N-(5‘-磷酸核糖)-氨基苯甲酸
OH OH
色氨酸合酶
N H
吲哚 丝氨酸
甘油醛-3-磷酸
NH 吲哚-3-甘油磷酸
NH3+ CH COO-
C CH C H CH
CH2-OPO2 3
异构酶
吲哚-3-甘油磷酸合酶
OH OH COO HO C CH C H CH NH CH2-OPO2 3
色氨酸合酶 H2O
谷氨酸族:包括Glu、Gln、Pro、Arg;
天冬氨酸族:包括Asp、Asn、Met、Thr、Lys; 丝氨酸族:包括Ser、Cys、Cys-Cys; 丙酮酸族:包括Ala、Val、Leu; 芳香族:包括Phe、Tyr、Trp;
组氨酸族:包括His;
一、氨基酸生物合成概述
Review
苯丙酮酸 CH2COCOO氨基转移酶 谷氨酸
NH3+ H2C CH COO-
分支酸
苯丙氨酸 -酮戌二酸
变位酶
CH2 || O--C--COO-
脱水酶
H2O+CO2
-OOC
脱氢酶
HO
NH 3+
CH 2COCOO-
NAD+ NADH+CO
2
氨基转移酶 谷氨酸
H 2C
CH COO-
预苯酸
酪氨酸
OH
-酮戌二酸
第31章 氨基酸的生物合成
第31章 氨基酸的生物合成
氨基酸生物合成概述 个别氨基酸的生物合成 氨基酸生物合成的调节
一、氨基酸生物合成概述
Review
各种氨基酸的生物合成途径各异,但其碳骨架的形 成却具有共性,主要来源于几条代谢的中间产物, 如柠檬酸循环、糖酵解、戌糖磷酸途径等。根据它 们合成途径的相似性把它们归为六大族:
H2 C
N H
色氨酸
烯醇式L-(O-羧基苯氨基)-L-脱氧核酮糖-5-磷酸
六、芳香族氨基酸生物合成
1、苯丙氨酸、酪氨酸和色氨酸的生物合成
PEP
H2 C NH3+ CH COO-
Ser
N H
PRPP (5‘-磷酸核糖-1’-焦磷酸)
赤藓糖-4-磷酸
六、芳香族氨基酸生物合成
2、组氨酸的生物合成
N1-(5‘-磷酸核糖)-ATP
生物体利用3种反应把氨转化为有机物,有利于氨基 酸的生物合成。 1、形成氨甲酰磷酸; 2、形成谷氨酸;
3、形成谷氨酰胺;
1
2
3
氨甲酰磷酸参与尿素循环的精氨酸合成及嘧啶生物合成。
一、氨基酸生物合成概述
Review
生物体利用3种反应把氨转化为有机物,有利于氨基 酸的生物合成。
谷氨酸脱氢酶既可利用NADH作为其辅酶,也可利 用NADPH作为其辅酶。
天冬酰Asn + Glu
四、丙酮酸族氨基酸生物合成
这类主要有丙氨酸、缬氨酸、亮氨酸。 1、丙氨酸生物合成:由丙酮酸和谷氨酸在谷丙转氨 酶的作用下形成。 2、缬氨酸和异亮氨酸的生物合成
3、亮氨酸的生物合成
五、丝氨酸族氨基酸生物合成
这类主要有丝氨酸、甘氨酸、半胱氨酸。 1、丝氨酸的生物合成
谷氨酸激酶
谷氨酸脱氢酶
二氢吡咯-5-羧酸还原酶
自动环化
谷氨酰--半醛
二、谷氨酸族氨基酸生物合成
3、由-酮戌二酸合成精氨酸
+氨甲酰磷酸Cit
三、天冬氨酸族氨基酸生物合成
这类主要有Asp、Asn、Met、Thr、Lys、Ile。 1、天冬氨酸生物合成
三、天冬氨酸族氨基酸生物合成
2、天冬酰胺生物合成
一、氨基酸生物合成概述
Review
生物体利用3种反应把氨转化为有机物,有利于氨基 酸的生物合成。
ATP
NH4+
ADP
Pi + H+
谷氨酸 谷氨酰胺
E:谷氨酰胺合成酶
谷氨酰-5-磷酸
二、谷氨酸族氨基酸生物合成
这一族氨基酸有Glu、Gln、Pro、Arg。 1、由-酮戌二酸合成谷氨酸
游离氨
二、谷氨酸族氨基酸生物合成
这一族氨基酸有Glu、Gln、Pro、Arg。 2、由-酮戌二酸合成谷氨酰胺
二、谷氨酸族氨基酸生物合成
2、由-酮戌二酸合成谷氨酰胺 -酮戌二酸也可在谷氨酸合酶作用下接受谷氨酰胺 的酰氨基形成谷氨酸。
二、谷氨酸族氨基酸生物合成
这一族氨基酸有Glu、Gln、Pro、Arg。 3、由-酮戌二酸合成脯氨酸
六、芳香族氨基酸生物合成
1、苯丙氨酸、酪氨酸和色氨酸的生物合成
赤藓糖-4-磷酸
PEP
3-脱氧-阿拉伯庚酮糖-7-磷酸
3-脱氢奎尼酸
3-脱氢莽草酸
莽草酸
分支酸
5-烯醇丙酮酰莽草酸-3-磷酸
莽草酸-3-磷酸
六、芳香族氨基酸生物合成
1、苯丙氨酸、酪氨酸和色氨酸的生物合成
COOCH2 || O--C--COOHO H H
磷酸丝氨酸转氨酶
磷酸甘油脱氢酶 磷酸丝氨酸磷酸酶
五、丝氨酸族氨基酸生物合成
2、甘氨酸的生物合成
五、丝氨酸族氨基酸生物合成
3、半胱氨酸的生物合成
六、芳香族氨基酸生物合成
1、苯丙氨酸、酪氨酸和色氨酸的生物合成
Phe\Tyr\Trp只能由植物和微生物合成,这3种氨基酸的 合成途径有7步是共有的,合成的起始物是赤藓糖-4-磷酸 和磷酸烯醇式丙酮酸。最后形成分支酸,再由分支酸形 成二条途径,一条形成苯丙氨酸和酪氨酸,另一条形成 组氨酸。
相关文档
最新文档