传质分离过程ASPEN模拟全过程
Aspenplus模拟环丁砜萃取精馏苯乙烯工艺过程_陈会

A spenplus模拟环丁砜萃取精馏苯乙烯工艺过程陈会1,2梅智明2(11石油化工科学研究院,北京,100083;21中国石化扬子石化有限公司芳烃厂,江苏南京,210048)摘要使用A s penp l u s模拟软件对裂解汽油C8馏分萃取精馏苯乙烯工艺进行模拟计算,得出萃取精馏塔的塔板数、进料位置,同时给出主要操作参数及工况条件。
为该工艺流程的开发建立基础。
关键词模拟苯乙烯萃取精馏裂解汽油中图分类号:TQ241.2文献标识码:B文章编号:1009-9859(2009)03-0182-041前言我国苯乙烯的供应量将在很长一段时间内处于相对紧缺的状态,需要大量进口,2009年我国的苯乙烯需求将达到319M t[1]。
随着苯乙烯后续产品需求量的增加,苯乙烯的生产成为重要的制约因素。
以石脑油、柴油为原料的乙烯厂的裂解汽油中苯乙烯的质量分数约为4%~6%,传统的加工方法是将裂解汽油C6~C8馏分进行两段加氢,其中苯乙烯被饱和成为乙苯后,随二甲苯一同作为汽油调合组分,或作为C8异构化的原料。
如果从裂解汽油C8馏分中直接回收苯乙烯,不但可以廉价地获得部分苯乙烯产品,而且可以大幅度地减轻装置的加氢负荷,降低氢耗量,同时C8芳烃因不含乙苯,作为异构化原料的使用价值也相应地提高了。
从裂解C8馏分中回收苯乙烯包括原料的预处理脱苯乙炔、萃取精馏以及粗苯乙烯的精制等环节,但萃取精馏是技术关键,该工艺开发与应用前景十分广阔。
在萃取精馏苯乙烯的溶剂研究方面已经取得了一些进展。
李福民[2]等人选用环丁砜作为溶剂取得了非常好的效果,针对该工艺的应用进行的基础性研究比较多,但是工艺计算部分却非常少。
由于Aspenplus大型模拟软件具有完备的物性模型、数据库和多种精馏模型,可结合工艺自身特点,使得最终的计算结果精确可靠。
其中包括裂解汽油C8馏分中所有主要组分的模型参数,提供了该工艺模拟计算的基础,本文使用Aspenp l u s 软件模拟开发该工艺。
资格考试aspenplus模拟苯制备过程

用Aspen Plus 模拟苯制备过程一、流程图见附页:二、详细流程:室温,1atm条件下,甲苯与循环物流氢在模块1中混合后,经压缩机压缩至35atm,然后经加热器加热至550℃,再将混合物流输入到反应器,然后冷凝出口物流。
将物流输送至简单分离器B5,在-10℃,1atm状态下分离,轻组分为H2,CH4,重组分为C6H6,C7H8,C8H10,C9H12,将以上分离的轻组分输送至简单分离器B6在-227℃,900atm条件下进行分离,轻组分为H2,重组分为CH4,其中氢气又被循环回到加料中。
将B5所得重组分输送至精馏塔B7(塔板级数为39,回流比为10)进行分离,所得轻组分为C6H6,重组分为C7H8,C8H10,C9H12。
将B7分离得的重组分输送至精馏塔B8(塔板级数为39,回流比为18),分离所得轻组分为C7H8,重组分为C8H10,C9H12,其中轻组分甲苯经循环后又回到加料中。
B8所得重组分被输送到精馏塔B9(塔板级数为80,回流比为27)中,分离所得轻组分为二甲苯,重组分为三甲苯。
以上各分离过程轻关键组分回收率为0.999,重关键组分回收率为0.001,而轻于轻关键组分得组分回收率为100%,重于重关键组分的组分回收率为0。
三.流程主要的反应:在反应器(模块B4)中进行:2C7H8→C6H6+C8H10单程转化率为58%2C8H10→C7H8+C9H12单程转化率为1%C7H8+H2→C6H6+C H4单程转化率为0.14%C8H10+2H2→C6H6+2C H4单程转化率为28%四.物料衡算:(取反应器,混合器为例)物料衡算:以进入反应器的物流F1为8 Kmol/hH2平衡:1﹣r3-2r4=F2x21 CH4平衡:R3﹢2r4=F2x22 C6H6平衡:r1﹢r3=F2x23 C7H8平衡:7﹣2r1﹢r2-r3=F2x24 C8H10平衡:r1﹣2r2-r4=F2x25 C9H12平衡:r2=F2x210 转化率约束关系: r1=7×x1/2 r2=r1×x2/2 r3=7×x3 r4=r1×x4 消耗氢的分数约为甲苯的10﹪:1.0724271423=-+x F r r能量衡算方程:基准:以25℃ 1atm 生成物反应物为基准550℃ 35atm H2焓 H1 C7H8焓 H2 0℃ 1atm H2焓 H3 C7H8焓 H4输入输出∑∑-+∆=∆H i niH i H ni AHrNAR ```μ =r1/2 ×△H1+r2/2 ×△H2+r3×△H3+r4×△H4+H3+H4-H1-H2物料衡算: 以进入反应器的物流F1为 8 Kmol/hH2平衡: F0×x01+F3=1CH4平衡:F0×x04+F4=7 约束关系:F3=F2×x21 F4= F2×x24 能量衡算方程:基准:以25℃ 1atm 生成物反应物为基准C7H8的气化焓 ν∆H输入输出∑∑-+∆=∆H i niH i H ni AHrNAR ```μ =H1+7H7 +F0×x02×ν∆H +F4×ν∆H五、流程中的物质与数据如下:表一 物流中的组分表二经Aspen Plus模拟后的到的结果:1 2 3 4 6 7 8 9 10 11 12 13 14 15 16 18Temperature25 29.1 -105.1 550 -10 204.8 136.1 142.3 136.1 110.7 -10 -220 -220 129.4 25 550CPressure1 35.464 35.464 35.464 1.013 7.093 1.013 1.013 1.013 1.013 1.013 1.013 1.013 7.093 35 35barVapor Frac 0 0 0.88 1 0 0 0 0 0 0 1 0 1 0 1 1Mole Flow295 295 4220.872 4220.872 464.944 304.14 102.579 0.813 101.766 201.561 3755.929 111.812 3644.116 160.804 80 4220.872 kmol/hrMass Flow27181.45 27181.45 53262.05 53262.05 42027 29468.82 10897.75 96.333 10801.42 18571.07 11235.05 3887.184 7347.868 12558.17 161.27 53262.05 kg/hrVolume Flow31.508 31.647 1513.539 8145.613 46.928 43.786 14.311 0.128 14.183 23.841 81101.95 5.071 15893.01 16.562 56.661 8253.542cum/hrEnthalpy0.857 0.902 -3.762 30.924 1.529 3.041 0.293 0.022 0.271 1.307 -1.786 -1.726 -5.972 2.51 0 30.368 MMkcal/hrMole Flowkmol/hrH20 0 3724.186 3724.186 0.034 0 0 0 0 0 3644.009 0.019 3643.991 0.034 80 3644.044CH40 0 0.126 0.126 0.048 0 0 0 0 0 80.22 80.094 0.126 0.048 0 80.268C6H60 0 0.161 0.161 160.68 0.161 0 0 0 0.161 23.625 23.625 0 160.519 0 184.305C7H8295 295 496.298 496.298 201.701 201.5 0.201 0 0.201 201.298 7.171 7.171 0 0.202 0 208.872C8H100 0 0.102 0.102 101.767 101.767 101.665 0.102 101.564 0.102 0.896 0.896 0 0 0 102.663C9H120 0 0 0 0.712 0.712 0.712 0.712 0.001 0 0.008 0.008 0 0 0 0.72。
AspenPlus应用基础-分离过程-1

Sep 组份分离器
Sep 模块可以接受多股输 入物流,输出多股物流,并把 输入混合物中的各个组份分别 按照指定的比例分配到每一股 输出物流中去。
Sep —— 连接
Sep 模块的连接图如下:
Sep — 模型参数
Sep 模块的模型参数有 3 组: 1、设定 (Specifications)
3、液沫夹带
( Liquid Entrainment in Vapor Stream)
分别设定两个液相被夹带入汽相中 的分率。
Flash3 — 应用示例(1)
流量为 1000 kg/hr、压力为 0.11 MPa 、含乙醇30 %w、正己烷30%、水40 %w 的饱和蒸汽在蒸汽冷凝器中部分冷凝,冷 凝物流的汽/液比(摩尔)=1/9。求离开冷 凝器的汽、液、液三相的温度、质量流量 和组成。
Flash2 —— 模型参数
Flash2 模块的模型参数有 3 组:
2、有效相态 ( Valid Phase) (1) 汽-液相(Vapor-Liquid) (2)汽-液-液相(Vapor-Liquid-Liquid) (3)汽-液-游离水相
(Vapor-Liquid-Free Water) 从以上 3个参数中选定 1 个。
Flash2 — 应用示例(2)
流量为 1000 kg/hr、压力为 0.5 MPa 温度为120 ℃ 、含乙醇70 %w、水30 %w的物料绝热闪蒸到0.15 MPa。求 离开闪蒸器的汽、液两相的温度、流 量和组成。
Flash2 — 应用Байду номын сангаас例(3)
流量为 1000 kg/hr、压力为 0.2 MPa 温度为20 ℃ 、含丙酮30 %w、水70 %w的物料进行部分蒸发回收丙酮, 求丙酮回收率为90%时的蒸发器温度 和热负荷以及汽、液两相的流量和组 成。
AspenPlus应用基础-分离过程-1

Sep — 应用示例(1)
把F=500 kg/hr、P= 0.15 MPa、T=20 ℃含乙醇30 %w、 正丙醇20%w、正丁醇10%w、水40 %w的物流分成四股 输出物流,各组份在输出物流中的分配比例为:
乙醇 0.96 : 0.02 : 0.01 : 0.01
Flash3 —— 连接
Flash3 模块的连接图如下:
Flash3 —— 模型参数
Flash3 模块的模型参数有 3 组:
1、闪蒸设定 ( Flash Specifications) (1) 温度(Temperature) (2) 压力 (Pressure) (3) 蒸汽分率(Vapor Fraction) (4) 热负荷(Heat Duty)
Sep2 — 应用示例(1)
从F=500 kg/hr、P= 0.15 MPa、T=20 ℃、 含乙醇60 %w、正丙醇25%w、正丁醇 15 %w的物流中回收乙醇,要求: 1. 乙醇浓度达到98%w、正丁醇含量不大
于1%w; 2. 乙醇回收率达到95%。 求输出物流的组成和流量。
Sep2 — 应用示例(2)
• 组份分离器 • 两出口组份
分离器
Flash2 两相闪蒸器
Flash2 模块执行给定热 力学条件下的汽-液平衡或汽液-液平衡计算,输出一股汽 相和一股液相产物。用于模 拟闪蒸器、蒸发器、气液分 离器等。
Flash2 —— 连接
Flash2 模块的连接图如下:
Flash2 —— 模型参数
Flash2 模块的模型参数有 3 组:
3、液沫夹带
( Liquid Entrainment in Vapor Stream)
aspen催化分馏塔流程模拟计算

催化分馏塔流程模拟计算一、工艺流程简述催化裂化是我国最重要的重质石油馏份轻质化的装置之一。
它由反再、主分馏及吸收稳定系统三部分所组成。
分馏系统的任务是把反再系统来的反应产物油汽混合物进行冷却,分成各种产品,并使产品的主要性质合乎规定的质量指标。
分馏系统主要由分馏塔、产品汽提塔、各中段回流热回收系统,并为吸收稳定系统提供足够的热量。
催化分馏系统分离其工流流程如图3-1所示,所涉及主要模块有进料混合罐(M1)、催化分馏塔(T2014)。
图3-1 催化分馏系统模拟计算流程图FEED进分馏塔油汽; SS塔底汽提蒸汽;GAS塔顶气;COIL轻柴油,SS1柴油汽提蒸汽;HOIL回炼油;YJ油浆;二、需要输入的主要参数1、装置进料数据2、单元操作参数3、设计规定及模拟技巧三、软件版本采用ASPEN PLUS 软件12.1版本永磁交流伺服电机位置反馈传感器检测相位与电机磁极相位的对齐方式2008-11-07 来源:internet 浏览:504主流的伺服电机位置反馈元件包括增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等。
为支持永磁交流伺服驱动的矢量控制,这些位置反馈元件就必须能够为伺服驱动器提供永磁交流伺服电机的永磁体磁极相位,或曰电机电角度信息,为此当位置反馈元件与电机完成定位安装时,就有必要调整好位置反馈元件的角度检测相位与电机电角度相位之间的相互关系,这种调整可以称作电角度相位初始化,也可以称作编码器零位调整或对齐。
下面列出了采用增量式编码器,绝对式编码器,正余弦编码器,旋转变压器等位置反馈元件的永磁交流伺服电机的传感器检测相位与电机电角度相位的对齐方式。
增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ 输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。
AspenPlus应用基础-分离过程-2

2. Distl
6. SCFrac
3. RadFrac 7. PetroFrac
4. Extract
2021/10/10
3
DSTWU 简捷精馏(设计)
DSTWU 模块用Winn-UnderwoodGilliland捷算法进行精馏塔的设计,根 据给定的加料条件和分离要求计算最 小回流比、最小理论板数、给定回流 比下的理论板数和加料板位置。
AspenPlus应用基础
Modelsfor
SeparationProcesses
分离过程模型(II)
2021/10/10
1
分离过程模型的分类
Aspen Plus 中的分离 过程模型包含两大类别:
• 简单分离单元模型 • 塔设备单元模型
2021/10/10
2
塔设备单元模型 — 分类
塔设备(Columns)单元共有9种模 块,其中 RateFrac 和 BatchFrac 需要单 独的许可证,其余7种可直接使用:
6、用户定义(Custom)
2021/10/10
23
RadFrac — 配置(操作设定)
操作设定从十个选项中选择:
1、回流比(Reflux Ratio) 2、回流速率(Reflux Rate) 3、馏出物速率(Distillate Rate) 4、塔底物速率(Bottoms Rate) 5、上升蒸汽速率(Boilup Rate)
2021/10/10
18
RadFrac —— 配置
1、塔板数(Number of Stages)
2、冷凝器(Condenser)
3、再沸器(Reboiler)
4、有效相态(Valid Phase)
第四章 aspen多组分平衡级分离过程计算(一)

第 10 页
Sep --- 组份分离器
Sep 模块可以接受多股输入物流,输出多 股物流,并把输入混合物中的各个组份分别按 照指定的比例分配到每一股输出物流中去。
第 11 页
第 12 页
4.1.2 闪蒸的理论模型
单级蒸馏过程,使进料混合物部分汽化或冷凝得到含易挥发 组分较多的蒸汽和含难挥发组分较多的液体。
简单分离单元模型:Separators
塔设备单元模型:Columns
第 6 页
简单分离单元模型包含五个模块:
两相闪蒸器: Flash2
三相闪蒸器:Flash3
倾析器:Decanter
组份分离器:Sep
两出口组份分离器:Sep2
第 7 页
Flash2 两相闪蒸器
Flash2 模块执行给定热力学条件下的汽-液平衡或汽-液液平衡计算,输出一股汽相和一股液相产物。用于模拟闪蒸 器、蒸发器、分液罐等。
固体
Crystallizer Crusher Screen FabFl Cyclone Vscrub ESP HyCyc CFuge Filter SWash CCD User User2
除去混合产品的结晶器 固体粉碎器 固体分离器 滤布过滤器 旋风分离器 文丘里洗涤器 电解质沉降器 水力旋风分离器 离心式过滤器 旋转真空过滤器 单级固体洗涤器 逆流倾析器 用户提供的单元操作模型 用户提供的单元操作模型
i 1 i 1
c
c
热量衡算式(Heat balance)
FH F Q LH L VHV
其他关联式 : 相平衡常数(Ki) 气相摩尔焓(HV) 液相摩尔焓(HL)
第 14 页
流股输入表单
第 15 页
aspen催化吸收稳定系统流程模拟计算

催化吸收稳定系统流程模拟计算一、工艺流程简述催化裂化是我国最重要的重质石油馏份轻质化的装置之一。
它由反再、主分馏及吸收稳定系统三部分所组成。
分馏系统的任务是把反再系统来的反应产物油汽混合物进行冷却,分成各种产品,并使产品的主要性质合乎规定的质量指标。
分馏系统主要由分馏塔、产品汽提塔、各中段回流热回收系统,并为吸收稳定系统提供足够的热量,不少催化装置分馏系统取热分配不合理,造成产品质量不稳定、吸收稳定系统热源不足。
吸收稳定系统对主分馏塔来的压缩富气和粗气油进行加工分离,得到干气、液化气及稳定汽油等产品。
一般包括四个塔第一塔为吸收塔,用初汽油和补充稳定汽油吸收富气中的液化气组份,吸收后的干气再进入到再吸收塔,用催化分馏塔来的柴油吸收其中的较轻组份,再吸收塔顶得到含基本不含C3组份的合格干气,再吸收塔底富柴油回到分馏系统。
吸收塔底富吸收液进到解吸塔,通过加热富吸收液中的比C2轻的组份基本脱除从解吸塔顶出来再回到平衡罐,再进到吸收塔内;解吸塔底脱除C2组份的液化气和汽油组份再进到稳定塔,通过分离稳定塔顶得到C5合格的液化气组份,塔底得到蒸汽压合格的汽油,合格汽油一部分作为补充吸收剂到吸收塔,一部分作为产品出装置。
吸收稳定系统分离其工流流程如图4-1所示,所涉及主要模块有吸收塔(C10301)、解吸塔(C10302)、再解吸塔(C10303)、稳定塔(C10304)。
解吸塔进料预热器(E302)、稳定塔进料换热器(E303),补充吸收剂冷却器(C39),平衡罐(D301)。
图4-1 催化吸收稳定系统模拟计算流程图GGGAS干气; LLPG液化气; GGOIL稳定汽油;PCOIL贫柴油;PGAS干气;FCOIL富柴油;二汽油;LPG液化气;WDGOIL5稳定汽油产品;D301平衡罐;C10301吸收塔,C10302解吸塔,C10303再吸收塔,C10304稳定塔二、需要输入的主要参数1、装置进料数据2、单元操作参数3、设计规定4、灵敏度分析的应用应用方案研究功能研究,考察贫汽油流量、贫柴油流量对贫气中C3含量、液化气中C2含量的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传质分离过程ASPEN模拟全过程
姓名:王超班级:化工1301 学号:201309010114
【题目2-8】组成为60%苯,25%甲苯和15%对二甲苯(均为摩尔分数)的液体混合物100kmol,在101.3kPa和100℃下闪蒸。
试计算液体和气体产物的数量和组成。
假设该物系为理想溶液。
用安托尼方程计算蒸汽压。
启动Aspen Plus选择模块General with Metric Units,文件保存为Example2.8。
建立如图所示的流程图,其中FLASH选用模块库中的Separators丨Flash丨V-DRUM1模块。
点击N→,出现FlowsheetComp;ete对话框,点击确定,进入Setup 丨Specifications丨Global页面,在名称(Title)框中输入2-8。
在左窗口选择Units-Sets,点击New,出现Create new ID对话框,选择默认的US-1,点击OK。
然后进行如图的单位设置。
在左窗口选择Report Options,进入Steam页面,勾选Fraction basis 栏目下的Mole。
点击N→,进入Components丨Specifications丨Selection页面,输入组分甲苯(C6H6)、甲苯(C7H8)、对二甲苯(C8H10-3)。
点击N→,进入Properties丨Specifications丨Global页面,选择物性方法PENG-ROB。
然后点击N→,在点击OK,如图所示
进入Streams丨FEED丨Input丨Specifications页面,输入进料(FEED)温度25℃,压力101.3kPa,流量100kmol,以及苯、甲苯、对二甲苯的摩尔分数分别为0.6、0.25、0.15。
点击N→,进入Blochs丨FLASH丨Input丨Specifications页面,输入FLASH模块参数。
温度100℃,压力101.3kPa。
点击N→,出现Required Input Complete对话框,点击确定,运行模拟。
模拟过程无警告无错误,运行正确,如图所示。
由左侧数据浏览窗口选择Results Summary丨Streams,在Material页面可以看到液体和气体产物的温度、压力、流量、数量和组成
最后点击Stream Table,然后在流程图窗口可以看到出现一个完整的物流表格,如图所示。