第七章:传质与分离过程概论分析
天津大学版 化工原理下册课后答案

第七章传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。
已知入塔混合气中氨含量为 5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比、。
解:先计算进、出塔气体中氨的摩尔分数和。
进、出塔气体中氨的摩尔比、为由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。
2. 试证明由组分A和B组成的双组分混合物系统,下列关系式成立:(1)(2)解:(1)由于故(2)故3. 在直径为0.012 m、长度为0.35 m的圆管中,CO气体通过N2进行稳态分子扩散。
管内N2的温度为373 K,总压为101.3 kPa,管两端CO的分压分别为70.0 kPa和7.0 kPa,试计算CO的扩散通量。
解:设 A-CO; B-N2查附录一得4. 在总压为101.3 kPa,温度为273 K下,组分A自气相主体通过厚度为0.015 m的气膜扩散到催化剂表面,发生瞬态化学反应。
生成的气体B离开催化剂表面通过气膜向气相主体扩散。
已知气膜的气相主体一侧组分A的分压为22.5 kPa,组分A在组分B中的扩散系数为1.85×10-5 m2/s。
试计算组分A和组分B的传质通量和。
解:由化学计量式可得代入式(7-25),得分离变量,并积分得5. 在温度为278 K的条件下,令某有机溶剂与氨水接触,该有机溶剂与水不互溶。
氨自水相向有机相扩散。
在两相界面处,水相中的氨维持平衡组成,其值为0.022(摩尔分数,下同),该处溶液的密度为998.2 kg/m3;在离界面5 mm的水相中,氨的组成为0.085,该处溶液的密度为997.0 kg/m3。
278 K时氨在水中的扩散系数为1.24×10–9 m2/s。
试计算稳态扩散下氨的传质通量。
解:设 A-NH3;B-H2O离界面5 mm处为点1、两相界面处为点2,则氨的摩尔分数为,点1、点2处溶液的平均摩尔质量为溶液的平均总物质的量浓度为故氨的摩尔通量为6. 试用式(7-41)估算在105.5 kPa、288 K条件下,氢气(A)在甲烷(B)中的扩散系数。
7 传质与分离过程概论

萃取:选择性系数β
7.1 概 述 (Introduction)
6. 分离方法的选择 分离的可行性 是否能分离
物料的物理化学性质 是否好分离 生产的处理规模 是否分离快
投资及运行的经济性 是否成本低 安全与环保 是否环保
发展趋势 1)传统分离技术改造: 如精馏筛板塔改造为效率更高的填料塔。
2)新型分离过程开发:
浓度梯度成正比。 扩散面
dC A J A D AB dZ
DAB─A的扩散系数,m2/s Z
7.2 分子扩散与对流扩散
二、双组分混合物中的一维稳定分子扩散 1. 等分子反向扩散
pA1
A B F
pA2
pB1 1
P
pB2 2
P
F’
7.2 分子扩散与对流扩散
对任一截面FF’来说,根据费克定律,A的扩散 通量为: dC A
速率分离
7.1 概 述 (Introduction)
(1)气(汽)-液接触传质过程 精馏:利用液体混合物中各组分饱和蒸汽压或沸点 或挥发性的差异而将各组分分离开来; 吸收:利用气体混合物中的各组分在某种溶剂中的 溶解度不同而将各组分分离开来; 增(减)湿:不饱和气相与温度比它高的热水接触 为增湿;含水蒸气的饱和湿气体与温度比它低的冷 水接触为减湿。
缺点:造价较高,易堵塞 难清洗。
7.1 概 述 (Introduction)
(二)板式塔
7.2 分子扩散与对流扩散
分子扩散 传质机理 对流传质
一、分子扩散与费克定律
1.分子扩散(molecular diffusion) 定义:单一相内、在有浓度差异存在的条件下, 分子的无规则运动造成的物质传递现象。
mC mA mB wA , wB , wC , m m m
化工原理下册课件第七章-传质与分离过程概论-------------课件

③ 在气膜、液膜以外的气、液两相主体中,由于流 体强烈湍动,各处浓度均匀一致,无传质阻力。
二、相际间对流传质模型
依据双膜模型,组分A通过气膜、液膜的扩散 通量方程分别为
Dp
NA
AB 总
RTzG pBM
( p Ab
pAi )
NA
D
AB
zL
c总 c
一、涡流扩散现象
2.涡流扩散通量方程 描述涡流扩散通量的方程为
J
e A
M
dcA dz
kmol/(m2·s )
—涡流扩散系数,m2/s M
涡流扩 散的类型
运动流体与固体表面之间,或两个有限互溶的
运动流体之间的质量传递过程—对流传质。
对流 传质
√
强制对流传质 自然对流传质
一、相际间的对流传质过程
相际间的传质
二、相际间对流传质模型
1.双膜模型
惠特曼(Whiteman)
于1923年提出,最早提出
的一种传质模型。
pb
停滞膜模型
(双阻力模型)
cb
播放动画32:双膜模型
双膜模型示意图
二、相际间对流传质模型
停滞膜模型的要点
① 当气液两相相互接触时,在气液两相间存在着稳 定的相界面,界面的两侧各有一个很薄的停滞 膜—气膜和液膜,溶质A经过两膜层的传质方式 为分子扩散。
训练才能有所收获,取得成效。 9、骄傲自大、不可一世者往往遭人轻视; 10、智者超然物外
强制层流传质
强制湍流传质√
二、对流传质
2.对流传质的机理
所谓对流传质 的机理是指在传质 过程中,流体以哪 种方式进行传质。 研究对流传质速率 需首先弄清对流传 质的机理。
第七章__传质与分离过程概论

对流传质速率方程为: NA=kL(cAi-cAo) 比较可得:
3、表面更新模型 表面更新模型的要点: ① 该模型同样认为溶质向液相内部的传质为非稳态 分子扩散过程; ②否定表面上的流体单元有相同的暴露时间,而认为 液体表面是由具有不同暴露时间(或称“年龄”)的液面 单元所构成。 为此,丹克沃茨提出了年龄分布的概念,即界面上各 种不同年龄的液面单元都存在,只是年龄越大者,占据的 比例越小; ③不论界面上液面单元暴露时间多长,被置换的概率 是均等的。单位时间内表面被置换的分率称为表面更新率, 用符号S表示。
②随着接触时间的延长,溶质A通过不稳态扩散方式 不断地向流体单元渗透。 ③流体单元在界面处暴露的时间是有限的,经过时间 后θc,旧的流体单元即被新的流体单元所置换而回到液 相主体中去。在流体单元深处,仍保持原来的主体浓度不 变。 ④流体单元不断进行交换,每批流体单元在界面暴露 的时间都是一样的。
按照溶质渗透模型,溶质 A在流体单元内进行的是一 维不稳态扩散过程,可导出组分A的传质通量为:
JA-组分A的扩散质量通量(即单位时间内,组分A通 过与扩散方向相垂直的单位面积的质量),kg/(m2·s); DAB-组分A在组分B中的扩散系数,m2/s; dcA-组分A扩散方向的质量浓度梯度,(kg/m3)/m。
该式表示在总质量浓度不变的情况下,由于组分A (B)的质量浓度梯度所引起的分子传质通量,负号表明 扩散方向与梯度方向相反,即分子扩散朝着浓度降低的方 向进行。 费克第一定律仅适用于描述由于分子传质所引起的传 质通量,但一般在进行分子传质的同时,各组分的分子微 团常处于运动状态,故存在组分的运动速度。为了更全面 地描述分子扩散,必须考虑各组分之间的相对运动速度以 及该情况下的扩散通量等问题。
上述扩散过程将一直进行到整个容器中A、B两种物质 的浓度完全均匀为止,此时,通过任一截面物质A、B的净 的扩散通量为零,但扩散仍在进行,只是左、右两方向物 质的扩散通量相等,系统处于扩散的动态平衡中。 J=JA+JB=0 (7-18)
化工原理 第七章 传质与分离过程概论

渗 析
点渗析
三、传质分离方法
(2)场分离 场分离是指在外场(电场、磁场等)作用下, 利用各组分扩散速度的差异,而实现混合物分离 的单元操作过程。
电 泳
场分离
热扩散 高梯度磁场分离
三、传质分离方法
钕铁硼永磁场
磁化精馏实验装置
三、传质分离方法
3.分离方法的选择 分离方法选择的考虑因素
被分离物系的相态 被分离物系的特性 产品的质量要求 经济程度
第七章 传质与分离过程概论
7.1 概述 7.1.1 传质分离过程 7.1.2 相组成的表示方法
一、质量浓度与物质的量浓度
1.质量浓度 质量浓度定义式
A
mA
V
N
kg /m3
密度
混合物的总质量浓度
总
i 1
i
一、质量浓度与物质的量浓度
二、相际传质过程与分离
均相物系的分离方法 均相物系 某种过程 两相物系
根据不同 组分在各 相中物性 的差异, 使某组分 从一相向 另一相转 移:相际 传质过程
实现均相物系的分离 相际传质过程
均相物系分离
二、相际传质过程与分离
示例:空气和氨分离 空气
水
吸 收 塔
空气+氨 氨水
三、传质分离方法
1.平衡分离过程 (1)气液传质过程 气液传质过程是指物 质在气、液两相间的转移, 它主要包括气体的吸收 (或脱吸)、气体的增湿 (或减湿)等单元操作过 程。
ij Ki / K j
通常将 K 值大的当作分子,故一般大于 1 。当 偏离 1 时,便可采用平衡分离过程使均相混合物得 以分离,越大越容易分离。
三、传质分离方法
食品工程原理第七章 传质原理

对于两组分系统,有:
j=jA+jB
3.以主体流动速度表示的传质通量
主体流动速度与浓度的乘积称为以主体流动速度表示的 传质通量: 质量通量:rAu=rA(rAuA+rBuB)/r=wA(nA+nB)
rBu=wB(nA+nB)
摩尔通量:cAum=cA(cAuA+cBuB)/c=xA(NA+NB) cBum=xB(NA+NB)
第七章 传质原理
第一节 传质基础
一、食品工业中的传质过程
1.气体吸收和脱吸 饮料冲气(CO2)、通气发酵、挥发性香精回收、油脂氢 化、糖汁饱充、天然油料脱臭等。 2.空气调节 空气的增湿与减湿。
3.吸附
动、植物油脱色、自来水净化等。
4.结晶 蔗糖、葡萄糖、蜂蜜中糖分、冰淇淋中乳糖等。 5.固——液萃取 从油料种子中提取油脂、从甘蔗(甜菜)中提糖等。
rB=cBMB=0.05×28=1.4kg/m3 r=rA+rB=0.88+1.4=2.28kg/m3
c=cA+cB=0.02+0.05=0.07kmol/m3 u=(rAuA+rBuB)/r
=(0.88×0.002+1.4×0.003)/2.28
=2.614×10-3m/s
um=(cAuA+cBuB)/c
6.干燥
果蔬干制、奶粉制造、面包和饼干的焙烤、淀粉制造、以 及酒糟、酵母、麦芽、砂糖的干燥等。
7.蒸馏
在酿酒工业中是应用最早的单元操作。
二、混合物组成的表示方法
1. 质量浓度——单位体积混合物中某组分的质量。
rA=mA/V
2. 物质的量浓度——单位体积混合物中某组分的物质的量。 cA=nA/V 质量浓度与物质的量浓度间的关系: cA=rA/MA 3. 质量分数——某组分的质量mA与混合物总质量m之比。 wA=mA/m 归一方程: SwAi=1
第7章传质与分离过程概论

则
令
pBm
pB 2 pB1 p ln B 2 pB1
D p NA ( )( p A1 p A2 ) RT pBm
p Bm
─扩散初、终截面处组分B分压的对数平均值,kPa; ─漂流因子,无因次。
p p Bm
例题
如图所示,氨气(A)与氮气(B)在长0.1m的直
径均匀的联接管中相互扩散。总压p=101.3kPa,温 度T=298K,点1处pA1=10.13kPa、点2处
如图7-2所示的分子扩散现象,在任一截面,处于动 态平衡中的物质A、B的净扩散通量为零,即:
J JA JB 0
3.费克定律(Fick’s law)
7-18
在恒温恒压下,A在混合物中沿Z方向作稳定分 子扩散时,其扩散通量与扩散系数及在扩散方向的 浓度梯度成正比。
dc A J A D AB dz
物质以扩散方式从一处转移到另一处的过程,称为质
量传递过程,简称传质。在一相中发生的物质传递是单
相传质,通过相界面的物质传递为相际传质。 质量传递的起因是系统内存在化学势的差异,这种 化学势的差异可以由浓度、温度、压力或外加电磁场等 引起。 传质过程广泛运用于混合物的分离操作;它常与化 学反应共存,影响着化学反应过程,甚至成为化学反 应的控制因素。掌握传质过程的规律,了解传质分离
的工业实施方法,具有十分重要的意义。
7.1 概述
7.2 质量传递的方式与描述
7.3传质设备简介
7.1概述
7.1.1传质分离方法
我们依据分离原理的不同,可以将传质分离过程 分为平衡分离和速率分离两大类: 一、平衡分离过程 平衡分离指借助分离媒介(如热能、溶剂、吸附 剂等)使均相混合物变为两相体系,再以混合物中 各组分处于平衡的两相中分配关系的差异为依据而 实现分离的过程。 不难看出,平衡分离属于相际传质过程。相际传 质是我们后面重点学习讨论的内容。
传质与分离过程概论

第七章 传质与分离过程概论1.在吸收塔中用水吸收混于空气中的氨。
已知入塔混合气中氨含量为 5.5%(质量分数,下同),吸收后出塔气体中氨含量为0.2%,试计算进、出塔气体中氨的摩尔比 Y 1 、Y 2。
解:先计算进、出塔气体中氨的摩尔分数y 1 和 y 2 。
y 1 0.055 /170.09030.055 /17 0.945 / 29y 20.002 /170.00340.002 /17 0.998 / 29进、出塔气体中氨的摩尔比Y 1、 Y 2 为Y 10.09030.09931 0.0903 Y 20.00340.003410.0034由计算可知,当混合物中某组分的摩尔分数很小时,摩尔比近似等于摩尔分数。
2. 试证明由组分 A 和 B 组成的双组分混合物系统,下列关系式成立:(1)dwA M A MB dx A2( x A M A x B M B )( 2)dxAdw Aw Aw B 2M A M B ()M AM B解:( 1) wAM AxAM A xAx A M A x B M Bx A M A(1 x A ) M BdwM A ( x A M A x B M B ) x A M A ( M AM B )M A M B ( x A x B )A dx( x A M Ax B M 2( x A M A x B M 2AB)B)由于 x A故dw A( 2) x Ax B 1M A M B dx A(x A M A x B M 2B)w AM Aw A w B M AM B1w Aw B)w A1 1(w A w B ) 1dx(()M MM A M AM BM A M A M BAA B dw A (wAw B )2(wAw B )2M AM B M A M B 1wA wB ) 2M A M B (M A M B 故dx Adw Aw Aw B2M A M B ()M A M B3. 在直径为 0.012 m 、长度为 0.35 m 的圆管中, CO 气体通过 N 2 进行稳态分子扩散。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
c—混合物在液相中的总摩尔浓度,kmol/m3; —混合物液相的密度,kg/m3。
4.气体总压与理想气体中组分的分压
总压与某组分的分压之间的关系: pA pyA
摩尔比与分压之间的关系:
YA
p
pA pA
摩尔浓度与分压之间的关系:
cA
nA V
pA RT
7.2. 质量传递的方式与描述
p p
pA2 pA1
NA
Dp RTz
ln
pB2 pB1
——积分式
p pA1 pB1 pA2 pB2
NA
Dp ln RTz
pB2 pB1
pB2 pB2
pB1 pB1
Dp RTz
pA1 pA2 pB2 pB1
ln ( pB2 pB1)
pBm
pB2 ln
pB1 pB2
pB1
NA
Dp RTzp Bm
(3)萃取与浸取 对于液-液混合物或液固混合物进行类似气体吸收的分离方 法,利用溶剂中不同组分溶解度的差 异,对组分进行分离。
(4)固体干燥 对含一定湿分的固体提供 一定的热量,使溶剂汽化,利用湿分 压差,使湿分从固体表面或内部转移 到气相,从而将含湿分的固体物料得 以净化。
7.1.2.相组成表示法
wA /M A
wA /M A wB /M B wN /M N
2.质量比与摩尔比 质量比:混合物中某组分A的质量与惰性
组分B(不参加传质的组分)的 质量之比。
a A mA mB
摩尔比:混合物中某组分的摩尔数与惰 性组分摩尔数之比。
气相:YA
nA nB
液相:X A
nA nB
质量分率与质量比的关系:
1.平衡分离过程:借助分离媒介(热能、溶 剂、吸附剂等)使均相混合物系统变为两相 体系。
2.速率分离过程:借助某种推动力(如压力 差、温度差、电位差等)的作用,利用不同 组分扩散速率不同,实现分离。
(1)气体吸收 选择一定的溶剂(外界 引入第二相)造成两相,处理气体 混合物。
(2)液体蒸馏 对于液体混合物加热, 使混合物内部造成两相,利用不同 组分挥发性的差异,使得液体混合 物得以分离。
( pA1
pA2 )
——积分式
液相:
Dc NA zcSm (cA1 cA2 )
cSm
cS2 cS1 ln cS2
cS1
——积分式
3.扩散系数
扩散系数的意义:单位浓度梯度下的扩散通量,反映 某组分在一定介质中的扩散能力,是物质特性常 数之一;D,m2/s。
第七章:传质与分离过程概论
主讲人:穆韡
7.1. 概述
7.1.1.传质与分离方法 7.1.2.相组成的表示方法
7.1.1.传质与分离方法
1.传质分离过程:依靠物质从一相到另一 相传递过程,叫传质分离过程。
2.传质分离过程的依据:依据混合物中各 组分在两相间平衡分配不同。
7.1.1.传质与分离方法
总压一定
JA
DAB RT
dpA dz
J
B
D BA
RT
dp B dz
p pA pB
dpA = dpB
dz
dz
JA=-JB
DAB=DBA=D
(2)等分子反向扩散传质速率方程
传质速率定义:任一固定的空间位置上, 单位时间 内通过单位面积的物质量,记作N, kmol/(m2·s) 。
气相:
NA= J A
wA
aA 1 aA
a A wA 1- wA
摩尔分率与摩尔比的关系:
x X 1 X
X x 1-x
y Y 1Y
Y y 1-y
3.质量浓度与摩尔浓度
质量浓度:单位体积混合物中某组分的质量。
GA
mA V
摩尔浓度:单位体积混合物中某组分的摩尔数。
cA
nA V
质量浓度与质量分率的关系:
GA wA
摩尔浓度与摩尔分率的关系:
D RT
dpA dz
液相:
D NA RTz ( pA1 pA2 )
NA=
JA
DAB
dcA dz
NA
D z
(cA1
cA2
)
2.单向扩散及速率方程
(1)总体流动:因溶质A扩散
JA
到界面溶解于溶剂中,造
NMcA/c
NA
成界面与主体的微小压差, 总体流
使得混合物向界面处的流
动NM NMcB/c
动。
菲克定律:温度、总压一定,组分A在扩散方向上任一 点处的扩散通量与该处A的浓度梯度成正比。
JA
DAB
dcA dz
JA—组分A扩散速率(扩散通量), kmol/(m2·s);
dcA —组分A在扩散方向z上的浓度梯度(kmol/m3)/m;
dz
DAB——组分A在B组分中的扩散系数,m2/s。
负号:表示扩散方向与浓度梯度方向相反,扩散沿 着浓度降低的方向进行
1.质量分率与摩尔分率
质量分率:在混合物中某组分的质量占
混合物总质量的分率。
wA
mA m
摩尔分率:在混合物中某组分的摩尔数
占混合物总摩尔数的分率。
气相: 液相:
yA
nA n
xA
nA n
yA yB yN 1
xA xB xN 1
质量分率与摩尔分率的关系:
xA
nA n
mwA / M A
mwA / M A mwB / M B mwN / M N
理想气体:
cA
pA RT
dcA dz
1
= RT
dpA dz
JA
DAB RT
dpA dz
分子扩散两种形式:等分子反向扩散,单向扩散。 1.等分子反向扩散及速率方程 (1)等分子反向扩散
TP
TP
pA1
JA
pA2
pB1 1
2 pB2
JB
等分子反向扩散:任一截面处两个组分的扩散速率 大小相等,方向相反。
7.2.1.分子传质(扩散) 7.2.2.对流传质 7.2.3.相际间的传质
7.2.1. 分子扩散
分子扩散现象:
分子扩散:在静止或滞流流体内部,若某一组分存 在浓度差,则因分子无规则的热运动使 该组分由浓度较高处传递至浓度较低处, 这种现象称为分子扩散。
扩散通量:单位时间内通过垂直于扩散方向的单位截 面积扩散的物质量,J表示, kmol/(m2·s)。
JB
(2)总体流动的特点:
1
2
1)因分子本身扩散引起的宏观流动。 2)A、B在总体流动中方向相同,流动速度正比于摩尔
分率。
N MA
NM
cA c
N MB
NM
cB c
(3)单向扩散传质速率方程
NA
JA
NM
cA c
NB
JB
NM
cB c
0
JB
NM
cB c
JB
NM
cB c
JA
NM
cB c
NA NM
cB c
NM
cA c
NM
cA
cB c
NM
NA NM
NA
D dcA dz
NA
cA c
NA
Dc
c cA
dcA dz
——微分式
在气相扩散
cA
pA RT
p c
RT
NA
Dp RT ( p
pA )
dpA dz
z
0 NAdz
pA2 Dp dpA pA1 RT ( p - pA )
NA
Dp RTz
ln