南京市高考数学一模试卷(理科)(I)卷(模拟)

合集下载

【数学】江苏省南京市、盐城市2020届高三第一次模拟考试(1月) 数学(理)

【数学】江苏省南京市、盐城市2020届高三第一次模拟考试(1月) 数学(理)

南京市、盐城市2020届高三年级第一次模拟考试数 学 理 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,锥体体积公式:13V Sh =,其中S 为底面积,h 为高.样本数据12,,,n x x x ⋅⋅⋅的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合(0,)A =+∞,全集U R =,则 U A= ▲ . 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= ▲ .3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 ▲ .4.命题“R θ∀∈,cos sin 1θθ+>”的否定是 ▲ 命题.(填“真”或“假”) 5.运行如图所示的伪代码,则输出的I 的值为 ▲ .6.已知样本y x ,,9,8,7的平均数是9,且110=xy ,则此样本的方差是 ▲ .7.在平面直角坐标系xOy 中,若抛物线24y x =上的点P 到其焦点的距离为3,则点P 到点O 的距离为 ▲ .8.若数列{}n a 是公差不为0的等差数列,1ln a 、2ln a 、5ln a 成等差数列,则21a a 的值为 ▲ . 9.在三棱柱111ABC A B C -中,点P 是棱1CC 上一点,记三棱柱111ABC A B C -与四棱锥11P ABB A -00 101 S I While S S S I I I End For Print I←←≤←+←+(第5题图)的体积分别为1V 与2V ,则21V V = ▲ . 10.设函数()sin()f x x ωϕ=+(0,02πωϕ><<)的图象与y 轴交点的纵坐标为32, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 ▲ . 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),1142AH AB AC =+u u u r u u u r u u u r,则cos BAC ∠的值为 ▲ .12.若无穷数列{}cos()n ω()R ω∈是等差数列,则其前10项的和为 ▲ . 13.已知集合{(,)16}P x y x x y y =+=,集合12{(,)}Q x y kx b y kx b =+≤≤+,若P Q ⊆,则1221b b k -+的最小值为 ▲ .14.若对任意实数]1,(-∞∈x ,都有1122≤+-ax x e x成立,则实数a 的值为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分) 已知ABC ∆满足sin()2cos 6B B π+=.(1)若6cos C =,3AC =,求AB ; (2)若0,3A π⎛⎫∈ ⎪⎝⎭,且()4cos 5B A -=,求sin A .16.(本小题满分14分)如图,长方体1111D C B A ABCD -中,已知底面ABCD 是正方形,点P是侧棱1CC 上的一点. (1)若1AC //平面PBD ,求PCPC 1的值; (2)求证:P A BD 1⊥.(第16题图)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从Oe 中裁剪出两块全等的圆形铁皮P e 与Q e ,做圆柱的底面,裁剪出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A 、B 在O e 上,点P 、Q 在O e 的一条直径上,P e 、Q e 分别与直线BC 、AD 相切,都与O e 内切.(1)求圆形铁皮P e 半径的取值范围;(2)请确定圆形铁皮P e 与Q e 半径的值,使得油桶的体积最大.(不取近似值)(第17题图)18.(本小题满分16分)设椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,离心率是e ,动点00(,)P x y 在椭圆C 上运动,当2PF x ⊥轴时,01x =,0y e =.(1)求椭圆C 的方程;(2)延长12,PF PF 分别交椭圆C 于点,A B (,A B 不重合),设11AF F P λ=u u u r u u u r ,22BF F P μ=u u u u r u u u u r,求λμ+的最小 (第18题图)19.(本小题满分16分)定义若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“()M q 数列”.设数列{}n b 中11b =,37b =.(1)若24b =,且数列{}n b 是“()M q 数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为 “()M q 数列”,并说明理由;(3)若数列{}n b 是“()2M 数列”,是否存在正整数,m n 使得4039404020192019m n b b <<?若存在,请求出所有满足条件的正整数,m n ;若不存在,请说明理由.y若函数()x xf x e ae mx -=--()m R ∈为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值;(2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围.南京市、盐城市2020届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 三个小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-2:矩阵与变换)已知圆C 经矩阵332a M ⎡⎤=⎢⎥-⎣⎦变换后得到圆22:13C x y '+=,求实数a 的值. B .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.C .(选修4-5:不等式选讲)已知正实数,,a b c 满足1231a b c++=,求23a b c ++的最小值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,1AA 、1BB 是圆柱的两条母线, 11A B 、AB 分别经过上下底面圆的圆心1O 、O ,CD 是下底面与AB 垂直的直径,2CD =.(1)若13AA =,求异面直线1A C 与1B D 所成角的余弦值; (2)若二面角11A CD B --的大小为3π,求母线1AA 的长.23.(本小题满分10分)设22201221(12)nin n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n n n n n n n n T S C S C S C S C =-+-++-L ,求证:3||6n T n ≥恒成立.南京市、盐城市2020届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.(,0]-∞ 2.5 3.234.真 5.6 6.2 7.23 8.3 9.23 10.7 11.3 12.10 13.4 14.12-二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解:(1)由sin()2cos 6B B π+=可知B B B cos 2cos 21sin 23=+, 移项可得3tan =B ,又),0(π∈B ,故3π=B , ………………………………………2分又由6cos 3C =,),0(π∈C 可知33cos 1sin 2=-=C C , ………………………4分故在ABC ∆中,由正弦定理C c B b sin sin =可得 C ABAC sin 3sin =π,所以2=AB . …………7分 (2)由(1)知3π=B ,所以0,3A π⎛⎫∈ ⎪⎝⎭时,)3,0(3ππ∈-A ,由()4cos 5B A -=即54)3cos(=-A π可得53)3(cos 1)3sin(2=--=-A A ππ , (10)分∴1033453215423)3sin(3cos )3cos(3sin))3(3sin(sin -=⋅-⋅=---=--=A A A A ππππππ.…14分16.(1)证明:连结AC 交BD 于点O ,连结OP , 又因为1//AC 平面PBD ,⊂1AC 平面1ACC平面1ACC I 平面OP BDP =,所以1//AC OP ……………3分 因为四边形ABCD 是正方形,对角线AC 交BD 于点O , 所以点O 是AC 的中点,所以AO OC =,所以在1ACC ∆中,11PC AOPC OC==. ……………6分 (2)证明:连结11A C .因为1111ABCD A B C D -为直四棱柱,所以侧棱1C C 垂直于底面ABCD ,又BD ⊂平面ABCD ,所以1CC BD ⊥.…………………………………………………………8分因为底面ABCD 是正方形,所以AC BD ⊥. ……………………………………………10分 又1AC CC C =I ,AC ⊂面11ACC A , 1CC ⊂面11ACC A ,所以BD ⊥面11ACC A . ……………………………………………………………………………12分 又因为1111,P CC CC ACC A ∈⊂面,所以11P ACC A ∈面,又因为111A ACC A ∈面,所以A 1P ⊂面ACC 1A 1,所以1BD A P ⊥. ………………………………………14分17.解:(1)设P e 半径为,则)2(4r AB -=, 所以P e 的周长2)2(41622r BC r --≤=π, ………………………………………4分解得 4162+≤πr ,故P e 半径的取值范围为]416,0(2+π. …………………………………6分 (2)在(1)的条件下,油桶的体积)2(422r r AB r V -=⋅=ππ, ……………………………8分设函数),2()(2x x x f -=]416,0(2+∈πx , 所以234)(x x x f -=',由于 344162<+π, 所以()0f x '>在定义域上恒成立, 故()f x 在定义域上单调递增,即当4162+=πr 时,体积取到最大值. ………………………………………13分答:P e 半径的取值范围为]416,0(2+π,当4162+=πr 时,体积取到最大值. ………………14分18.解:(1)由当2PF x ⊥轴时01x =,可知1c =, …………………………………………2分将01x =,0y e =代入椭圆方程得22211e a b+=(※),而1c e a a==,22221b a c a =-=-,代入(※)式得222111(1)a a a +=-, 解得22a =,故21b =,∴椭圆C 的方程为2212x y +=.…………………………………………4分 (2)方法一:设11(,)A x y ,由11AF F P λ=u u u r u u u r 得10101(1)x x y y λλ--=+⎧⎨-=⎩,故10101x x y y λλλ=---⎧⎨=-⎩, 代入椭圆的方程得2200(1)()12x y λλλ---+-=(#), ………………………………………8分又由220012x y +=得220012x y =-,代入(#)式得222001(1)2(1)22x x λλλ+++-=, 化简得203212(1)0x λλλλ+-++=,即0(1)(312)0x λλλ+-+=,显然10λ+≠,∴03120x λλ-+=,故0132x λ=+.……………………………………………………………12分同理可得0132u x =-,故200011623232943x x x λμ+=+=≥+--, 当且仅当00x =时取等号,故λμ+的最小值为23. ………………………………………16分方法二:由点A ,B 不重合可知直线PA 与x 轴不重合,故可设直线PA 的方程为1x my =-,联立22121x y x my ⎧+=⎪⎨⎪=-⎩,消去x 得22(2)210m y my +--=(☆),设11(,)A x y ,则1y 与0y 为方程(☆)的两个实根,由求根公式可得0,1y =01212y y m -=+,则1201(2)y m y -=+,……………8分将点00(,)P x y 代入椭圆的方程得220012x y +=, 代入直线PA 的方程得001x my =-,∴001x m y +=,由11AF F P λ=u u u r u u u r 得10y y λ-=,故10y y λ=-2222000111(2)[()2]x m y y y ==+++ 2222000001111(1)232(1)2(1)2x y x x x ===+++++-.…………………………………………12分同理可得0132u x =-,故200011623232943x x x λμ+=+=≥+--, 当且仅当00x =时取等号,故λμ+的最小值为23. ………………………………………16分注:(1)也可设,sin )P θθ得λ=,其余同理.(2)也可由116λμ+=运用基本不等式求解λμ+的最小值.19.解:(1)∵24b =,且数列{}n b 是“()M q 数列”, ∴322174141b b q b b --===--,∴111n n n n b bb b +--=-,∴11n n n n b b b b +--=-,………………………2分故数列{}n b 是等差数列,公差为213b b -=,故通项公式为1(1)3n b n =+-⨯,即32n b n =-. ………………………………………4分 (2)由1122n n b S n λ+=-+得232b λ=+,3437b λ=+=,故1λ=.方法一:由11212n n b S n +=-+得2112(1)12n n b S n ++=-++, 两式作差得211122n n n b b b +++-=-,即21132n n b b ++=-,又252b =,∴21132b b =-,∴1132n n b b +=-对n N *∈恒成立,……………………6分则1113()44n n b b +-=-,而113044b -=≠,∴104n b -≠,∴114314n n b b +-=-, ∴1{}4n b -是等比数列, ………………………………………………………………………………8分∴1111(1)33444n n n b --=-⨯=⨯,∴11344n n b =⨯+,∴2121111111(3)(3)444431111(3)(3)4444n n n n n n n nb b b b ++++++⨯+-⨯+-==-⨯+-⨯+, ∴{}1n n b b +-是公比为3的等比数列,故数列{}n b 是“()M q 数列”.………………………………10分方法二:同方法一得1132n n b b +=-对n N *∈恒成立, 则21132n n b b ++=-,两式作差得2113()n n n n b b b b +++-=-,而21302b b -=≠, ∴10n n b b +-≠,∴2113n n n nb b b b +++-=-,以下同方法一. ……………………………10分 (3)由数列{}n b 是“()2M 数列”得1121()2n n n b b b b -+-=-⨯,又32212b b b b -=-,∴22721b b -=-,∴23b =,∴212b b -=,∴12n n n b b +-=,∴当2n ≥时,112211()()()n n n n n b b b b b b b b ---=-+-++-+L12222121n n n --=++++=-L ,当1n =时上式也成立,故21nn b =-, ……………………………12分假设存在正整数,m n 使得4039404020192019m n b b <<,则40392140402019212019m n -<<-, 由2140391212019m n->>-可知2121m n ->-,∴m n >,又,m n 为正整数,∴1m n -≥,又212(21)2121404022121212019m m n n m n m n m nn n n ------+--==+<---,∴4040232019m n-<<,∴1m n -=,∴21122121m n n -=+--,∴40391404022019212019n <+<-, ∴2020222021<<n ,∴10n =,∴11m =,故存在满足条件的正整数,m n ,11m =,10n =. …………………………16分20.解:(1)由函数)(x f 为奇函数,得0)()(=-+x f x f 在定义域上恒成立,所以 0=+-+----mx ae e mx ae e x x x x ,化简可得 0)()1(=+⋅--x x e e a ,所以1=a . ……………………………………3分 (2)法一:由(1)可得mx e e x f x x --=-)(,所以xx x xxe me e m e e xf 1)(2+-=-+='-,其中当2≤m 时,由于012≥+-x x me e 恒成立,即0)(≥'x f 恒成立,故不存在极小值. ………………………………………5分 当2>m 时,方程012=+-mt t 有两个不等的正根)(,2121t t t t <, 故可知函数mx e e x f x x --=-)(在),(ln ),ln ,(21+∞-∞t t 上单调递增, 在)ln ,(ln 21t t 上单调递减,即在2ln t 处取到极小值,所以,m 的取值范围是),2(+∞. ………………………………………9分 法二:由(1)可得mx e e x f x x --=-)(,令m e e x f x g xx -+='=-)()(,则xx xxee e e x g 1)(2-=-='-, 故当0≥x 时,0)(≥'x g ;当0<x 时,0)(<'x g , …………………………………5分 故)(x g 在)0,(-∞上递减,在),0(+∞上递增, ∴m g x g -==2)0()(min ,若02≥-m ,则0)(≥x g 恒成立,)(x f 单调递增,无极值点;所以02)0(<-=m g ,解得2>m ,取m t ln =,则01)(>=mt g , 又函数)(x g 的图象在区间],0[t 上连续不间断,故由函数零点存在性定理知在区间),0(t 上,存在0x 为函数)(x g 的零点,)(0x f 为)(x f 极小值.所以,m 的取值范围是),2(+∞. ………………………………………9分 (3)由0x 满足m e e x x =+-00,代入mx e e x f x x --=-)(, 消去m 可得00)1()1()(000x x e x ex x f -+--=, ……………………………11分构造函数x x e x e x x h -+--=)1()1()(, 所以)()(xxe ex x h -='-,当0≥x 时,012≤-=--xxxxee e e,所以当0≥x 时,0)(≤'x h 恒成立,故h ()在[0,+)上为单调减函数,其中eh 2)1(-=, 13分 则02()f x e≥-可转化为0()(1)h x h ≥, 故10≤x ,由m e e x x =+-00,设x x e e y -+=, 可得当0≥x 时,0≥-='-x x e e y ,x x e e y -+=在]1,0(上递增,故ee m 1+≤, 综上,m 的取值范围是]1,2(ee + . ………………………………………16分 附加题答案21.(A )解:设圆C 上一点(,)x y ,经矩阵M 变换后得到圆C '上一点(,)x y '',所以332a x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦,所以332ax y x x y y'+=⎧⎨'-=⎩,………………………………………………5分 又圆22:13C x y '+=,所以圆C 的方程为22(3)(32)13ax y x y ++-=,化简得222(9)(612)1313a x a xy y ++-+=,所以29136120a a ⎧+=⎨-=⎩,解得2a =. ………………………………………………10分21.(B )解:以极点为原点,极轴为轴的正半轴(单位长度相同)建立平面直角坐标系, 由直线cos 2sin m ρθρθ+=,可得直角坐标方程为20x y m +-=,又曲线4sin ρθ=,所以24sin ρρθ=,其直角坐标方程为22(2)4x y +-=, ………………5分所以曲线4sin ρθ=是以(0,2)为圆心,2为半径的圆,为使直线被曲线(圆)截得的弦AB 最长,所以直线过圆心(0,2),于是0220m +⋅-=,解得4m =. ……………………………………………………10分21.(C )解:因1231a b c ++=,所以149123a b c++=, 由柯西不等式得214923(23)()(123)23a b c a b c a b c++=++++≥++, 即2336a b c ++≥, …………………………………………………………………………………5分 当且仅当1492323a b c a b c ==,即a b c ==时取等号,解得6a b c ===,所以当且仅当6a b c ===时,23a b c ++取最小值36. ……………………………………10分22.解:(1)以CD ,AB ,1OO 所在直线建立如图所示空间直角坐标系O xyz -,由2CD =,13AA =,所以(0,1,0)A -,(0,1,0)B ,(1,0,0)C -,(1,0,0)D ,1(0,1,3)A -,1(0,1,3)B ,从而1(1,1,3)AC =--u u u u r ,1(1,1,3)B D =--u u u u r , 所以112222227cos ,11(1)1(3)1(1)(3)A C B D <>==-++-⋅+-+-u u u u r u u u u r , 所以异面直线1A C 与1B D 所成角的余弦值为711. …………………………………4分 (2)设10AA m =>,则1(0,1,)A m -,1(0,1,)B m ,所以1(1,1,)A C m =--u u u u r ,1(1,1,)B D m =--u u u u r ,(2,0,0)CD =u u u r, 设平面1A CD 的一个法向量1111(,,)n x y z =u u r ,所以1111111200n CD x n ACx y mz ⎧⋅==⎪⎨⋅=-+-=⎪⎩u u r u u u r u u r u u u u r , 所以10x =,令11z =,则1y m =,所以平面1A CD 的一个法向量1(0,,1)n m =u u r ,同理可得平面1B CD 的一个法向量2(0,,1)n m =-u u r ,因为二面角11A CD B --的大小为3π,所以122222()111cos ,21()1m m n n m m ⋅-+⋅<>==+⋅-+u u r u u r , 解得3m =或3m =, 由图形可知当二面角11A CD B --的大小为3π时, 3m =. …………………………10分 注:用传统方法也可,请参照评分. 23.解:(1)令1=x 得01220n a a a a ++++=L ,令1-=x 得12201232123333(91)2n n n n a a a a a a --+-+-+=+++=-L L ,两式相加得024232()(91)2n n a a a a ++++=-L ,∴3(91)4n n S =-.…………………………3分 (2)123123(1)n n n n n n n n T S C S C S C S C =-+-++-L{}1122331233[999(1)9][(1)]4n n n n n n n n n n n n n C C C C C C C C =-+-++---+-++-L L {}0011223301233[9999(1)9][(1)]4n n n n n n n n n n n n n n n C C C C C C C C C C =-+-++---+-++-L L 001122333[9999(1)9]4n n n n n n n n C C C C C =-+-++-L 0011223[(9)(9)(9)(9)]4n n n n n n C C C C =-+-+-++-L 33[1(9)](8)44n n =+-=⨯-…………………………………………………………………………7分 要证3||6n T n ≥,即证384n ⨯36n ≥,只需证明138n n -≥,即证12n n -≥, 当1,2n =时,12n n -≥显然成立; 当3n ≥时,1011011111121(1)n n n n n n n C C C C C n n -------=+++≥+=+-=L ,即12n n -≥, ∴12n n -≥对*n N ∈恒成立.综上,3||6n T n ≥恒成立.……………………………………………………………………………10分注:用数学归纳法或数列的单调性也可证明12n n -≥恒成立,请参照评分.。

南京市、盐城市2022届高三年级第一次模拟考试数学试卷及答案

南京市、盐城市2022届高三年级第一次模拟考试数学试卷及答案

2022届高三年级第一次模拟考试(一)数学(满分150分,考试时间120分钟)一、 选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M ={y|y =sin x ,x ∈R },N ={y|y =2x ,x ∈R },则M ∩N 等于( )A. [-1,+∞)B. [-1,0)C. [0,1]D. (0,1]2. 在等比数列{a n }中,公比为q.已知a 1=1,则0<q<1是数列{a n }单调递减的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分又不必要条件3. 某中学高三(1)班有50名学生,在一次高三模拟考试中,经统计,得数学成绩X ~N(110,100),则该班数学得分大于120分的学生人数约为( )(参考数据:P(|X -μ|<σ)≈0.68,P(|X -μ|<2σ)≈0.95) A. 16 B. 10 C. 8 D. 24. 若f(α)=cos α+isin α(i 为虚数单位),则[f(α)]2等于( ) A. f(α) B. f(2α) C. 2f(α) D. f(α2)5. 已知直线2x +y +a =0与圆C :x 2+(y -1)2=4相交于A ,B 两点,且△ABC 为等边三角形,则实数a 的值为( )A. -4或2B. -2或4C. -1±3D. -1±66. 在平面直角坐标系xOy 中,设点A(1,0),B(3,4),向量OC →=xOA →+yOB →,x +y =6,则|AC→|的最小值为( ) A. 1 B. 2 C. 5 D. 2 57. 已知α+β=π4(α>0,β>0),则tan α+tan β的最小值为( ) A. 22 B. 1 C. -2-2 2 D. -2+2 28. 已知f(x)=⎩⎨⎧e x -4,x ≤4,(x -16)2-143,x>4,则当x ≥0时,f(2x )与f(x 2)的大小关系是( )A. f(2x )≤f(x 2)B. f(2x )≥f(x 2)C. f(2x )=f(x 2)D. 不确定二、 选择题:本题共4小题,每小题5分,共20分。

2020年江苏省南京师大附中高考数学一模试卷(理科)

2020年江苏省南京师大附中高考数学一模试卷(理科)

2020年江苏省南京师大附中高考数学一模试卷一、填空题:本大题共14小题,每小题5分,共70分.1.集合A={0,e x},B={﹣1,0,1},若A∪B=B,则x=___________.【点睛】根据A∪B=B,得A⊆B,是解题的关键.【答案】0【解析】因为A∪B=B,所以A⊆B,由题意,集合A={0,e x},B={﹣1,0,1},所以e x=1,所以x=0.故答案为:0.【点评】本题考查集合的运算,考查运算求解能力,是基础题.2.已知复数z12ii+=(i是虚数单位),则z的虚部是___________.【点睛】先进行复数的乘除运算,化简后即可得到答案.【答案】﹣1【解析】由题意得z()212i i i22ii1+-===--,所以z的虚部是﹣1.故答案为:﹣1.【点评】本题考查复数的基本概念与乘除运算,是基础题.3.log24+log42=___________.【点睛】熟记对数运算的性质.【答案】5 2【解析】原式=22242loglog+=21522+=.故答案为:52.【点评】本题考查对数运算的性质,考查计算能力,是基础题.4.执行如图所示的程序框图,输出的s值为___________.【点睛】该流程图的功能:利用循环结构来输出变量s 的值;看懂程序框图即可解决问题. 【答案】56【解析】由程序框图得:第一次运行:k =1时,()1111111122s =+-⨯=-=+; 第二次运行:k =2时,111151212236s =+⨯=+=+; 第三次运行:此时k =3满足条件k ≥3,结束循环,输出的s 值为56,故答案为:56. 【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.5.在△ABC 中,a =4,b =5,c =6,则sin2sin AC=___________. 【点睛】利用正余弦定理、二倍角公式即可得出结论. 【答案】1【解析】△ABC 中,a =4,b =5,c =6,由余弦定理得cos A 25361632564+-==⨯⨯;由正弦定理、二倍角公式得sin2sin A C =2sin cos sin A A C =2cos ca A=32446⨯⨯=1.故答案为:1.【点评】本题考查二倍角公式、正余弦定理,考查学生的计算能力,基础题.6.已知函数()()()sin f x x x ϕϕ=++,0≤φ≤π.若f (x )是奇函数,则π6f ⎛⎫⎪⎝⎭的值为___________. 【点睛】先利用辅助角公式化简,再由f (x )的奇偶性求出φ,可得π6f ⎛⎫⎪⎝⎭的值. 【答案】﹣1【解析】由辅助角公式化简得()()()12sin 2f x x x ϕϕ⎡⎤=⨯++=⎢⎥⎣⎦2sin (x +φπ3+);因为0≤φ≤π, f (x )是奇函数,则φ2π3=;∴f (x )=2sin (x +π)=﹣2sin x ;所以π6f ⎛⎫=- ⎪⎝⎭2sin π6=-1.故答案为:﹣1.【点评】本题主要考查两角和的正弦公式,三角函数的奇偶性,属于基础题.7.已知f (x )=|log 3x |,若a ,b 满足f (a ﹣1)=f (2b ﹣1),且a ≠2b ,则a +b 的最小值为___________.【点睛】先推出(a ﹣1)(2b ﹣1)=1,整理得a +b 2222a aa -=-;再利用导数求函数的最值.【答案】32+【解析】由f (x )=|log 3x |, f (a ﹣1)=f (2b ﹣1),且a ≠2b ,得(a ﹣1)(2b ﹣1)=1,则b 22a a =-且a ﹣1>0,即a >1;所以a +b =a 222222a a a a a -+=--;构造函数g (x )2222x x x -=-,则g ′(x )22482(22)x x x -+=-,令g ′(x )=0,则x =1±2;当x ∈(1,12+)时,g ′(x )<0,当x ∈(12+,+∞)时,g ′(x )>0;故当x =12+g (x )取最小值32+a +b 的最小值为32+故答案为:32+ 【点评】本题考查的知识点是函数的最值及其几何意义,导数法求函数的最值,难度中档.8.将黑白2个小球随机放入编号为1,2,3的三个盒子中,则黑白两球均不在1号盒子的概率为___________. 【点睛】先算基本事件总数N =3×3=9,再算所求基本事件个数n =2×2=4,即可求得概率.【答案】49【解析】由题意得基本事件总数N =3×3=9;黑白两球均不在1号盒子包含的基本事件个数n =2×2=4,所以黑白两球均不在1号盒子的概率为P 49n N ==.故答案为:49. 【点评】本题考查古典概型,考查学生的运算求解能力,是基础题.9.若抛物线x 2=4y 的焦点到双曲线C :22221x y a b -=(a >0,b >0)的渐近线距离等于13,则双曲线C 的离心率为___________.【点睛】先求出抛物线的焦点与双曲线的渐近线,再由点到线的距离公式即可求出双曲线的离心率. 【答案】3【解析】由题意得x 2=4y 的焦点为(0,1),双曲线C 的一条渐近线方程为y ba=x ,由点到线的距离公式得13a c==,所以e c a ==3.故答案为:3. 【点评】本题考查圆锥曲线的性质,考查学生的计算能力,是基础题.10.设m ,n 为空间两条不同的直线,α,β为空间两个不同的平面,给出下列命题: ①若m ∥α,m ∥β,则α∥β; ②若m ⊥α,m ∥β,则α⊥β; ③若m ∥α,m ∥n ,则n ∥α; ④若m ⊥α,α∥β,则m ⊥β. 其中的正确命题序号是___________.【点睛】①α与β平行或相交;②由面面垂直的判断定理得α⊥β;③n ⊂α或n ∥α;④由线面垂直的判定定理得m ⊥β. 【答案】②④ 【解析】由题意得①若m ∥α,m ∥β,则α与β平行或相交,所以①错误;②若m ⊥α,m ∥β,则由面面垂直的判断定理得α⊥β,所以②正确; ③若m ∥α,m ∥n ,则n ⊂α或n ∥α,所以③错误;④若m ⊥α,α∥β,则由线面垂直的判定定理得m ⊥β,所以④正确. 其中的正确命题序号是②④. 故答案为:②④.【点评】本题考查空间中线线、线面、面面间的位置关系,考查空间想象能力,是中档题.11.设x >0,y >0,向量a =r (1﹣x ,4),b =r (x ,﹣y ),若a r ∥b r,则x +y 的最小值为___________.【点睛】由向量平行得14x y+=1,再由基本不等式即可求出最值. 【答案】9【解析】因为a r ∥b r,所以4x +(1﹣x )y =0,整理得14x y+=1;又x >0,y >0,所以x +y =(14x y +)(x +y )=54y xx y++≥9.当且仅当x =3,y =6时,等号成立,即x +y 的最小值为9.故答案为:9. 【点评】本题考查向量平行与基本不等式,属于基础题.12.在△ABC 中,点P 是边AB 的中点,已知|CP u u u r |=|CA u u r |=4,∠ACB 2π3=,则CP u u u r •CA =u u r _____.【点睛】先用CACBu u r u u u r ,表示CP u u u r ,再计算CP u u u r •CA u u r的值. 【答案】6【解析】∵点P 是边AB 的中点,∴1122CP CA CB =+u u u r u u r u u u r,两边同时平方得222111424CP CA CA CB CB =+⋅+u u u r u u r u u r u u u r u u u r ,代入数据得3=412π14cos 234CB +⨯⨯⨯+⨯u u u r |CB u u u r |2,解得|CB u u u r |=2;∴CA CB ⋅=u u r u u u r 4×2×cos 2π3=-4,∴CP u u u r •CA =u u r (1122CA CB +u u r u u ur )21122CA CA CB CA ⋅=+⋅=u u r u u r u u u r u u r 6.故答案为:6.【点评】本题考查平面向量的线性运算与数量积运算,是中档题. 13.已知正数a ,b ,c 满足b 2+2(a +c )b ﹣ac =0,则ba c+的最大值为___________. 【点睛】由已知条件得(b +a +c )2=ac +(a +c )22()4a c +≤+(a +c )254=(a +c )2是解决本题的关键.【答案】22【解析】由b 2+2(a +c )b ﹣ac =0得(b +a +c )2=ac +(a +c )22()4a c +≤+(a +c )254=(a +c )2,两边同时开方得b +a +c ≤a +c ),所以b ≤a +c ),即b a c ≤+,当且仅当a =c 时取等号.所以ba c+..【点评】本题考查基本不等式及其应用,属中档题.14.若2101m x mx -<+(m ≠0)对一切x ≥4恒成立,则实数m 的取值范围是___________. 【点睛】先将分式不等式转化为一元二次不等式,再对m 分﹣1<m <0,及m =﹣1两类讨论即可求解. 【答案】(﹣∞,12-) 【解析】2101m x mx -<+等价于(m 2x ﹣1)(mx +1)<0,因为m ≠0,所以x 121m =,x 21m=-;因为2101m x mx -<+(m ≠0)对一切x ≥4恒成立,所以m <0;当﹣1≤m <0时,211m m ≥-,则21m <4,解得﹣1≤m 12<-;当m <﹣1时,211m m <-,则1m-<4,解得m <﹣1;所以实数m 的取值范围是(﹣∞,12-).故答案为:(﹣∞,12-). 【点评】本题考查不等式恒成立问题,考查分类讨论思想,较难.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.如图,四棱锥P ﹣ABCD 的底面为矩形,AB =BC =1,E ,F 分别是AB ,PC 的中点,DE ⊥P A .(1)求证:EF ∥平面P AD ; (2)求证:平面P AC ⊥平面PDE .【点睛】(1)连EC ,并延长与DA 的延长线交于N ,则E 是AC 的中点,得EF ∥PA ,得EF ∥平面PAD ; (2)先证DE ⊥平面PAC ,即得平面PAC ⊥平面PDE .【解析】(1)如图,连接EC 并延长,与DA 的延长线交于N ,则E 是AB 的中点. 又因为F 是PC 的中点,所以EF ∥PN ; 又EF ⊄平面PAD ,PN ⊂平面PAD , 所以EF ∥平面PAD .(2)设AC ∩DE =G ,由△AEG ∽△CDG 及E 为AB 中点得12AG AE CG CD ==;又因为AB =BC =1,所以AC =AG 13=AC =.所以AG AB AE AC ==, 又∠BAC 为公共角,所以△GAE ∽△BAC . 所以∠AGE =∠ABC =90°,即DE ⊥AC . 又DE ⊥PA ,PA ∩AC =A ,所以DE ⊥平面PAC . 又DE ⊂平面PDE ,所以平面PAC ⊥面PDE . 【点评】本题考查线面平行与垂直,属于中档题.16.在三角形ABC 中,已知1tan 2B =,cos 10C =-.(1)求角A 的值; (2)若△ABC 的面积为310,求边BC 的长. 【点睛】(1)先求得tan C ,再由由诱导公式得tan A ,即可求出A ; (2)由正弦定理求出AB ,由三角形的面积公式求得a =1,即BC =1. 【解析】(1)在△ABC 中,tan B 12=,cosC 0=<,所以C ∈(π2,π), 所以sinC =,故tan C =﹣3, 所以()()()()13tan tan 2tan tan 111tan tan 132B C A B C B C ⎛⎫- ⎪+⎝⎭=-+=-=-=-⋅⎡⎤-⨯-⎢⎥⎣⎦,∵0<A <π,所以A π4=; (2)由(1)知A =45°,设BC =a ,因为sin sin AB BCC A= ,所以AB a ==,又sin 1tan cos 2B B B ==,联立22sin cos 1B B +=得sinB =,所以△ABC 的面积S 21133sin 221010AB BC B a a =⋅=⨯==,解得a =1; 所以BC =1.【点评】本题考查正弦定理、三角形的面积公式、同角三角函数间的基本关系等,是中档题. 17.建造一个容积为8m 3、深为2m 的无盖长方体形的水池,已知池底和池壁的造价分别为120元/m 2和80元/m 2.(1)求总造价y (单位:元)关于底边一边长x (单位:m )的函数解析式,并指出函数的定义域;(2)如果要求总造价不超过2080元,求x 的取值范围; (3)求总造价y 的最小值. 【点睛】(1)先表示出另一边长为842x x =,由题意可知y =320(x 4x+)+480 (x >0); (2)令y ≤2080即可求出x 的取值范围;(3)利用基本不等式求y 的最小值,注意等号成立条件. 【解析】(1)由题意得另一边长为842x x=, ∴总造价y =2(x 4x +)82801202⨯⨯+⨯=320(x 4x+)+480,∴总造价y 关于底边一边长x 的函数解析式为:y =320(x 4x+)+480 (x >0); (2)由(1)可知:y =320(x 4x+)+480, ∴令y ≤2080得,320(x 4x+)+480≤2080,解得:1≤x ≤4, ∴当x ∈[1,4]时,总造价不超过2080元;(3)∵x >0,∴x 44x +≥=,当且仅当x =2时,等号成立, ∴y =320(x 4x+)+480≥320×4+480=1760, ∴当x =2时,总造价y 取得最小值1760元. 【点评】本题考查函数模型及其应用,是中档题.18.在直角坐标系xOy 中,已知椭圆2263x y +=1,若圆O :x 2+y 2=R 2(R >O )的一条切线与椭圆C 有两个交点A ,B ,且OA u u u r •OB =u u u r0.(1)求圆O 的方程;(2)已知椭圆C 的上顶点为M ,点N 在圆O 上,直线MN 与椭圆C 相交于另一点Q ,且MN =u u u u r2NQ uuu r ,求直线MN 的方程.【点睛】(1)设出圆的切线,与椭圆联立,由根与系数的关系及数量积为零得圆的半径,即求出圆的方程;(2)设Q ,N 的坐标,在曲线上,写出坐标之间的关系,写出向量的坐标,利用它们的关系求出坐标,进而求出直线方程.【解析】(1)①当圆的切线的斜率不存在时,不妨设切线方程为 x R =,与椭圆的方程联立,解得x R y =⎧⎪⎨=⎪⎩或x Ry =⎧⎪⎨=⎪⎩, 因为OA OB ⋅=u u u r u u u r 0,所以22602R R --=,解得22R =, 此时圆O 的方程为x 2+y 2=2;②当圆的切线的斜率存在时,设切线的方程y =kx +b ,与椭圆的方程联立,整理,得(1+2k 2)x 2+4kbx +2b 2﹣6=0,设A (x ,y ),B (x ',y ').x +x '2412kb k-=+,xx '222612b k -=+, ∴yy '=k 2xx '+kb (x +x ')+b 2222222222222222642612121212k b k k b b k b b k k k k k -+-=-+=++++,因为OA OB ⋅=u u u r u u u r0,所以xx '+yy '=0,可得2b 2﹣6+b 2﹣6k 2=0,∴b 2=2+2k 2;①=R ,∴b 2=R 2(1+k 2)②,由①②得,2+2k 2=2k 2R 2+R 2,∴R 2=2, 所以圆的方程x 2+y 2=2;(2)由题意得M (0),设Q (m ,n ),N (a ,b ),MN =u u u u r(a ,b ,NQ =u u u r (m ﹣a ,n ﹣b ),由题意得:()()22a m a b n b ⎧=-⎪⎨-=-⎪⎩,∴a 23m =,b =联立2222262m n a b ⎧+=⎨+=⎩,解得4n 2﹣-9=0,∴n 2=(舍),n 2=-,m =±2, ∴a =,b =0,即N,0), 所以直线MN+=1, 即直线MN+-=0-=0.【点评】本题考查直线与椭圆的位置关系,联立方程套用根与系数的关系,设而不求,属于中档题. 19.已知函数()()()222ln 12a f x ax x x x a =+++∈R . (1)若曲线y =f (x )在x =1处的切线的斜率为2,求函数f (x )的单调区间; (2)若函数f (x )在区间(1,e )上有零点,求实数a 的取值范围. 【点睛】(1)由导数的几何意义求得a =0,再求导可得到单调区间; (2)对参数分类讨论,利用零点的存在性定理建立不等式即可求解. 【解析】(1)由题意,易知函数f (x )的定义域为(0,+∞), 由()()222ln 12a f x ax x x x =+++, 得()()()()()21'22ln 221ln 1f x ax x ax x ax ax x x=+++⋅+=++, 则f ′(1)=2(a +1)=2,解得a =0,∴f (x )=2x ln x +1(x >0),f ′(x )=2(ln x +1), 令f ′(x )>0,解得1e x >;令f ′(x )<0,解得10ex <<; ∴函数f (x )的单调递减区间为10e ⎛⎫⎪⎝⎭,,单调递增区间为1e⎛⎫+∞ ⎪⎝⎭,; (2)函数()()()222ln 12a f x ax x x x a =+++∈R 在区间(1,e )上是一条不间断的曲线, 由(1)知,f ′(x )=2(ax +1)(ln x +1),①当a ≥0时,对任意x ∈(1,e ),ax +1>0,ln x +1>0, 则f ′(x )>0,故函数f (x )在(1,e )上单调递增, 此时对任意的x ∈(1,e ),都有()()1102af x f >=+>成立, 从而函数f (x )在区间(1,e )上无零点; ②当a <0时,令f ′(x )=0,解得1e x =或1x a =-,其中11e<, (i )若11a-≤,即a ≤﹣1,则对任意x ∈(1,e ),f ′(x )<0,故函数f (x )在区间(1,e )上单调递减,由题意可得()()22110e e 2e e 1022a af f a =+>=+++<,, 解得()222e 123e a +-<<-,其中()()22222e 13e 4e 2103e 3e+-----=>, 即()222e 113e +->-,故a 的取值范围为﹣2<a ≤﹣1;②若1e a -≥,即10ea -≤<,则对任意x ∈(1,e ),f ′(x )>0,所以函数f (x )在区间(1,e )上单调递增,此时对任意x ∈(1,e ),都有()()1102af x f >=+>成立, 从而函数f (x )在区间(1,e )上无零点; ③若11e a <-<,即11ea -<<-, 则对任意()11'0x f x a ⎛⎫∈-> ⎪⎝⎭,,,所以函数在区间11a ⎛⎫- ⎪⎝⎭,上单调递增, 对任意()1e '0x f x a⎛⎫∈-< ⎪⎝⎭,,,函数f (x )在区间1e a⎛⎫- ⎪⎝⎭,上单调递减,由题意可得()22e e 2e e 102a f a =+++<,解得()222e 13e a +<-,其中()22222e 113e 4e 2e 203e e 3e 3e +----⎛⎫---==< ⎪⎝⎭, 即()222e 113e e +⎛⎫-<-- ⎪⎝⎭,所以a 的取值范围为()222e 113e a +-<<-, 综上所述,实数a 的取值范围为()222e 123e +⎛⎫-- ⎪⎝⎭,. 【点评】本题考查导数的几何意义、导数在研究函数中的应用,考查分类讨论思想、逻辑推理能力与运算求解能力,属于中档题目.20.已知数列{a n }、{b n }、{c n },对于给定的正整数k ,记b n =a n ﹣a n +k ,c n =a n +a n +k (n ∈N *).若对任意的正整数n 满足:b n ≤b n +1,且{c n }是等差数列,则称数列{a n }为“H (k )”数列. (1)若数列{a n }的前n 项和为S n =n 2,证明:{a n }为H (k )数列;(2)若数列{a n }为H (1)数列,且a 1=1,b 1=﹣1,c 2=5,求数列{a n }的通项公式; (3)若数列{a n }为H (2)数列,证明:{a n }是等差数列. 【点睛】(1)用定义法证明数列为H (k )数列.(2)用赋值法和定义法进行证明,求出数列的通项公式. (3)用代换法和定义法证明数列为等差数列.【解析】(1)因为S n =n 2,所以当n ≥2时,221(1)n n n a S S n n -=-=--=2n ﹣1. 当n =1时,a 1=S 1=1,也符合上式, 所以a n =2n ﹣1所以b n =a n ﹣a n +k =﹣2k ,c n =a n +a n +k =4n ﹣2k ﹣2. 所以b n ≤b n +1,c n +1﹣c n =4.对任意的正整数n 满足b n ≤b n +1,且数列{c n },是公差为4的等差数列, 所以数列{a n }为H (k )数列;(2)因为数列{a n }为H (1)数列,所以数列{c n }是等差数列, 因为a 1=1, b 1=a 1﹣a 2=﹣1,c 1= a 1+a 2,所以a 2=2,c 1=3,又c 2=5,所以c n =2n +1,即a n +a n +1=2n +1, 所以a n +1﹣(n +1)=a n ﹣n ,则{a n ﹣n }是常数列, 而a 1﹣1=0,所以a n ﹣n =0,则a n =n . 验证,得b n =a n ﹣a n ﹣1=﹣1,所以b n ≤b n +1对任意正整数n 都成立, 所以a n =n .(3)由数列{a n }为H (2)数列可知:{c n }是等差数列,记公差为dc n +2﹣c n =(a n +2+a n +4)﹣(a n +a n +2)=﹣b n ﹣b n +2=2d ,所以﹣b n +1﹣b n +3=2d .则(b n ﹣b n +1)+(b n +2﹣b n +3)=2d ﹣2d =0 又b n ≤b n +1,所以b n =b n +1, 所以数列{b n }为常数列, 则b n =a n ﹣a n +2=b 1 所以c n =a n +a n +2=2a n ﹣b 1. 由c n +1﹣c n =2(a n +1﹣a n )=d , 所以12n n d a a +-=. 所以{a n }是等差数列.【点评】本题考查数列定义的应用,赋值法的应用,考查学生的运算能力和转换能力,属于基础题型. 【选做题】本题包括A 、B 、C 三小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.[选修4–2:矩阵与变换]21.(10分)已知矩阵A 1002⎡⎤=⎢⎥⎣⎦,B 201a ⎡⎤=⎢⎥⎣⎦,且AB =BA .(1)求实数a ;(2)求矩阵B 的特征值.【点睛】(1)AB 202a ⎡⎤=⎢⎥⎣⎦,BA 2202a ⎡⎤=⎢⎥⎣⎦,进而求解;(2)矩阵B 的特征多项式为f (λ)=(λ﹣2)(λ﹣1),令f (λ)=0,进而求解. 【解析】(1)由题意,AB 1002⎡⎤=⎢⎥⎣⎦ 220102a a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,BA 201a ⎡⎤=⎢⎥⎣⎦ 10220202a ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 因为AB =BA ,所以a =2a ,所以a =0. (2)因为B 201a ⎡⎤=⎢⎥⎣⎦,矩阵B 的特征多项式为f (λ)2001λλ-==-(λ﹣2)(λ﹣1), 令f (λ)=0,解得λ=2,λ=1.【点评】本题考查矩阵的性质,矩阵的特征值,属于基础题. [选修4–4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy 中,已知直线35(45x t l t y t ⎧=⎪⎪⎨⎪=⎪⎩:为参数).现以坐标原点O 为极点,以x 轴非负半轴为极轴建立极坐标系,设圆C 的极坐标方程为ρ=2cos θ,直线l 与圆C 交于A ,B 两点,求弦AB 的长.【点睛】将直线l 与圆C 化为直角坐标方程,求出圆C 的圆心到直线l 的距离,即可求弦AB 的长. 【答案】65AB =【解析】消去参数t ,直线l 化为普通方程为4x ﹣3y =0, 圆C 的极坐标方程ρ=2cos θ,即ρ2=2ρcos θ, 化为直角坐标方程为222x y x +=,即(x ﹣1)2+y 2=1, 则圆C 的圆心到直线l 的距离为45d ==, 所以65AB ==. 【点评】本题考查参数方程、直角坐标方程、极坐标方程之间的转化,点到直线的距离公式,是基础题. [选修4–5:不等式选讲]23.已知x 1,x 2,x 3∈(0,+∞),且满足x 1+x 2+x 3=3x 1x 2x 3,证明:x 1x 2+x 2x 3+x 3x 1≥3. 【点睛】先变形得2313121113x x x x x x ++=,再将x 1x 2+x 2x 3+x 3x 1变形为()122331133x x x x x x ⨯⨯++,替换3,最后由柯西不等式即可证得. 【解析】∵x 1+x 2+x 3=3x 1x 2x 3, 两边同时除以x 1x 2x 3,得2313121113x x x x x x ++=, ∴()212233112233112233111111(111)333x x x x x x x x x x x x x x x x x x ⎛⎫++=++++≥++= ⎪⎝⎭, 当且仅当“x 1=x 2=x 3=1”时取等号,故x 1x 2+x 2x 3+x 3x 1≥3,即得证.【点评】本题考查柯西不等式的应用,属于基础题.【必做题】第22题、第23题,每题10分,共计20分.请在答卷卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.24.(10分)如图,在四棱锥P ﹣ABCD 中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC =u u u rλAB uuu r ,且向量PC uuu r 与BD u u u r 夹角的余弦值为15.(1)求实数λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.【点睛】(1)建立恰当的空间直角坐标系,求出P ,A ,B ,C ,D 点的坐标,利用向量PC uuu r 与BD u u ur 夹角的余弦值为求出λ的值.(2)求出平面PCD 的法向量,利用向量夹角的余弦公式求解直线PB 与平面PCD 所成角的正弦值. 【解析】(1)如图,以点A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴,建立空间直角坐标系.则A (0,0,0),B (1,0,0),D (0,2,0),P (0,0,2),所以AB =u u u r (1,0,0),因为DC =u u u rλAB uuu r =(λ,0,0),所以得C (λ,2,0).(1)PC =u u u r (λ,2,﹣2),BD =u u u r (﹣1,2,0),向量PC uuu r 与BD u u u r .可得15=,解得λ=10(舍去)或λ=2. 实数λ的值为2.;(2)PC =u u u r (2,2,﹣2),PD =u u u r (0,2,﹣2),平面PCD 的法向量n =r(x ,y ,z ).则0n PC ⋅=u u u r r 且0n PD ⋅=u u ur r ,即:x +y ﹣z =0,y ﹣z =0,∴x =0,不妨去y =z =1,平面PCD 的法向量n =r(0,1,1).又PB =u u u r (1,0,2).故cos n PB n PB n PB⋅==u u u r r u u u r r u u u r r ,直线PB 与平面PCD . 【点评】本题考查空间向量向量、空间角,建立恰当的空间直角坐标系是关键,中等题 25.已知(1+x )2n +1=a 0+a 1x +a 2x 2+…+a 2n +1x2n +1,n ∈N *.记T n 0ni ==∑(2k +1)a n ﹣k.(1)求T 2的值;(2)化简T n 的表达式,并证明:对任意的n ∈N *,T n 都能被4n +2整除. 【点睛】(1)由二项式定理得a i 21C in +=,利用公式计算T 2的值; (2)由组合数公式化简T n ,把T n 化为(4n +2)的整数倍即可. 【解析】(1)由二项式定理可得a i 21C i n +=(i =0,1,2,…,2n +1); 所以T 2=a 2+3a 1+5a 025C =+315C +505C 10355=+⨯+=30; (2)因为(n +1+k )121C n k n +++=(n +1+k )•()()()()()()()21!212!1!!!!n n n n k n k n k n k ++⋅=++-+⋅- =(2n +1)2C n k n+, 所以T n 0nk ==∑(2k +1)a n ﹣k0 nk ==∑(2k +1)21C n kn -+0 nk ==∑(2k +1)121C n k n +++0 nk ==∑[2(n +1+k )﹣(2n +1)]121C n k n +++=2nk =∑(n +1+k )121C n kn +++-(2n +1)1210C nn kn k +++=∑=2(2n +1)20C nn knk +=-∑(2n +1)1210C nn kn k +++=∑=2(2n +1)•12•(22n 2C nn +)﹣(2n +1)•12•22n +1 =(2n +1)2C nn ;T n =(2n +1)2C n n =(2n +1)(12121C C n n n n ---+)=2(2n +1)21C nn -;因为21C nn -∈N *,所以T n 能被4n +2整除.【点评】本题考查二项式定理与组合数公式的应用问题,是难题.。

【数学】江苏省南京市、盐城市2020届高三第一次模拟考试(1月) 数学(理)

【数学】江苏省南京市、盐城市2020届高三第一次模拟考试(1月) 数学(理)

南京市、盐城市2020届高三年级第一次模拟考试数 学 理 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,锥体体积公式:13V Sh =,其中S 为底面积,h 为高.样本数据12,,,n x x x ⋅⋅⋅的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合(0,)A =+∞,全集U R =,则 U A= ▲ . 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= ▲ .3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 ▲ .4.命题“R θ∀∈,cos sin 1θθ+>”的否定是 ▲ 命题.(填“真”或“假”) 5.运行如图所示的伪代码,则输出的I 的值为 ▲ .6.已知样本y x ,,9,8,7的平均数是9,且110=xy ,则此样本的方差是 ▲ .7.在平面直角坐标系xOy 中,若抛物线24y x =上的点P 到其焦点的距离为3,则点P 到点O 的距离为 ▲ .8.若数列{}n a 是公差不为0的等差数列,1ln a 、2ln a 、5ln a 成等差数列,则21a a 的值为 ▲ . 9.在三棱柱111ABC A B C -中,点P 是棱1CC 上一点,记三棱柱111ABC A B C -与四棱锥11P ABB A -00 101 S I While S S S I I I End For Print I←←≤←+←+(第5题图)的体积分别为1V 与2V ,则21V V = ▲ . 10.设函数()sin()f x x ωϕ=+(0,02πωϕ><<)的图象与y 轴交点的纵坐标为32, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 ▲ . 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),1142AH AB AC =+u u u r u u u r u u u r,则cos BAC ∠的值为 ▲ .12.若无穷数列{}cos()n ω()R ω∈是等差数列,则其前10项的和为 ▲ . 13.已知集合{(,)16}P x y x x y y =+=,集合12{(,)}Q x y kx b y kx b =+≤≤+,若P Q ⊆,则1221b b k -+的最小值为 ▲ .14.若对任意实数]1,(-∞∈x ,都有1122≤+-ax x e x成立,则实数a 的值为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分) 已知ABC ∆满足sin()2cos 6B B π+=.(1)若6cos C =,3AC =,求AB ; (2)若0,3A π⎛⎫∈ ⎪⎝⎭,且()4cos 5B A -=,求sin A .16.(本小题满分14分)如图,长方体1111D C B A ABCD -中,已知底面ABCD 是正方形,点P是侧棱1CC 上的一点. (1)若1AC //平面PBD ,求PCPC 1的值; (2)求证:P A BD 1⊥.(第16题图)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从Oe 中裁剪出两块全等的圆形铁皮P e 与Q e ,做圆柱的底面,裁剪出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A 、B 在O e 上,点P 、Q 在O e 的一条直径上,P e 、Q e 分别与直线BC 、AD 相切,都与O e 内切.(1)求圆形铁皮P e 半径的取值范围;(2)请确定圆形铁皮P e 与Q e 半径的值,使得油桶的体积最大.(不取近似值)(第17题图)18.(本小题满分16分)设椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,离心率是e ,动点00(,)P x y 在椭圆C 上运动,当2PF x ⊥轴时,01x =,0y e =.(1)求椭圆C 的方程;(2)延长12,PF PF 分别交椭圆C 于点,A B (,A B 不重合),设11AF F P λ=u u u r u u u r ,22BF F P μ=u u u u r u u u u r,求λμ+的最小 (第18题图)19.(本小题满分16分)定义若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“()M q 数列”.设数列{}n b 中11b =,37b =.(1)若24b =,且数列{}n b 是“()M q 数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为 “()M q 数列”,并说明理由;(3)若数列{}n b 是“()2M 数列”,是否存在正整数,m n 使得4039404020192019m n b b <<?若存在,请求出所有满足条件的正整数,m n ;若不存在,请说明理由.y若函数()x xf x e ae mx -=--()m R ∈为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值;(2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围.南京市、盐城市2020届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 三个小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内)A .(选修4-2:矩阵与变换)已知圆C 经矩阵332a M ⎡⎤=⎢⎥-⎣⎦变换后得到圆22:13C x y '+=,求实数a 的值. B .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.C .(选修4-5:不等式选讲)已知正实数,,a b c 满足1231a b c++=,求23a b c ++的最小值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,1AA 、1BB 是圆柱的两条母线, 11A B 、AB 分别经过上下底面圆的圆心1O 、O ,CD 是下底面与AB 垂直的直径,2CD =.(1)若13AA =,求异面直线1A C 与1B D 所成角的余弦值; (2)若二面角11A CD B --的大小为3π,求母线1AA 的长.23.(本小题满分10分)设22201221(12)nin n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n n n n n n n n T S C S C S C S C =-+-++-L ,求证:3||6n T n ≥恒成立.南京市、盐城市2020届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1.(,0]-∞ 2.5 3.234.真 5.6 6.2 7.23 8.3 9.23 10.7 11.3 12.10 13.4 14.12-二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解:(1)由sin()2cos 6B B π+=可知B B B cos 2cos 21sin 23=+, 移项可得3tan =B ,又),0(π∈B ,故3π=B , ………………………………………2分又由6cos 3C =,),0(π∈C 可知33cos 1sin 2=-=C C , ………………………4分故在ABC ∆中,由正弦定理C c B b sin sin =可得 C ABAC sin 3sin =π,所以2=AB . …………7分 (2)由(1)知3π=B ,所以0,3A π⎛⎫∈ ⎪⎝⎭时,)3,0(3ππ∈-A ,由()4cos 5B A -=即54)3cos(=-A π可得53)3(cos 1)3sin(2=--=-A A ππ , (10)分∴1033453215423)3sin(3cos )3cos(3sin))3(3sin(sin -=⋅-⋅=---=--=A A A A ππππππ.…14分16.(1)证明:连结AC 交BD 于点O ,连结OP , 又因为1//AC 平面PBD ,⊂1AC 平面1ACC平面1ACC I 平面OP BDP =,所以1//AC OP ……………3分 因为四边形ABCD 是正方形,对角线AC 交BD 于点O , 所以点O 是AC 的中点,所以AO OC =,所以在1ACC ∆中,11PC AOPC OC==. ……………6分 (2)证明:连结11A C .因为1111ABCD A B C D -为直四棱柱,所以侧棱1C C 垂直于底面ABCD ,又BD ⊂平面ABCD ,所以1CC BD ⊥.…………………………………………………………8分因为底面ABCD 是正方形,所以AC BD ⊥. ……………………………………………10分 又1AC CC C =I ,AC ⊂面11ACC A , 1CC ⊂面11ACC A ,所以BD ⊥面11ACC A . ……………………………………………………………………………12分 又因为1111,P CC CC ACC A ∈⊂面,所以11P ACC A ∈面,又因为111A ACC A ∈面,所以A 1P ⊂面ACC 1A 1,所以1BD A P ⊥. ………………………………………14分17.解:(1)设P e 半径为,则)2(4r AB -=, 所以P e 的周长2)2(41622r BC r --≤=π, ………………………………………4分解得 4162+≤πr ,故P e 半径的取值范围为]416,0(2+π. …………………………………6分 (2)在(1)的条件下,油桶的体积)2(422r r AB r V -=⋅=ππ, ……………………………8分设函数),2()(2x x x f -=]416,0(2+∈πx , 所以234)(x x x f -=',由于 344162<+π, 所以()0f x '>在定义域上恒成立, 故()f x 在定义域上单调递增,即当4162+=πr 时,体积取到最大值. ………………………………………13分答:P e 半径的取值范围为]416,0(2+π,当4162+=πr 时,体积取到最大值. ………………14分18.解:(1)由当2PF x ⊥轴时01x =,可知1c =, …………………………………………2分将01x =,0y e =代入椭圆方程得22211e a b+=(※),而1c e a a==,22221b a c a =-=-,代入(※)式得222111(1)a a a +=-, 解得22a =,故21b =,∴椭圆C 的方程为2212x y +=.…………………………………………4分 (2)方法一:设11(,)A x y ,由11AF F P λ=u u u r u u u r 得10101(1)x x y y λλ--=+⎧⎨-=⎩,故10101x x y y λλλ=---⎧⎨=-⎩, 代入椭圆的方程得2200(1)()12x y λλλ---+-=(#), ………………………………………8分又由220012x y +=得220012x y =-,代入(#)式得222001(1)2(1)22x x λλλ+++-=, 化简得203212(1)0x λλλλ+-++=,即0(1)(312)0x λλλ+-+=,显然10λ+≠,∴03120x λλ-+=,故0132x λ=+.……………………………………………………………12分同理可得0132u x =-,故200011623232943x x x λμ+=+=≥+--, 当且仅当00x =时取等号,故λμ+的最小值为23. ………………………………………16分方法二:由点A ,B 不重合可知直线PA 与x 轴不重合,故可设直线PA 的方程为1x my =-,联立22121x y x my ⎧+=⎪⎨⎪=-⎩,消去x 得22(2)210m y my +--=(☆),设11(,)A x y ,则1y 与0y 为方程(☆)的两个实根,由求根公式可得0,1y =01212y y m -=+,则1201(2)y m y -=+,……………8分将点00(,)P x y 代入椭圆的方程得220012x y +=, 代入直线PA 的方程得001x my =-,∴001x m y +=,由11AF F P λ=u u u r u u u r 得10y y λ-=,故10y y λ=-2222000111(2)[()2]x m y y y ==+++ 2222000001111(1)232(1)2(1)2x y x x x ===+++++-.…………………………………………12分同理可得0132u x =-,故200011623232943x x x λμ+=+=≥+--, 当且仅当00x =时取等号,故λμ+的最小值为23. ………………………………………16分注:(1)也可设,sin )P θθ得λ=,其余同理.(2)也可由116λμ+=运用基本不等式求解λμ+的最小值.19.解:(1)∵24b =,且数列{}n b 是“()M q 数列”, ∴322174141b b q b b --===--,∴111n n n n b bb b +--=-,∴11n n n n b b b b +--=-,………………………2分故数列{}n b 是等差数列,公差为213b b -=,故通项公式为1(1)3n b n =+-⨯,即32n b n =-. ………………………………………4分 (2)由1122n n b S n λ+=-+得232b λ=+,3437b λ=+=,故1λ=.方法一:由11212n n b S n +=-+得2112(1)12n n b S n ++=-++, 两式作差得211122n n n b b b +++-=-,即21132n n b b ++=-,又252b =,∴21132b b =-,∴1132n n b b +=-对n N *∈恒成立,……………………6分则1113()44n n b b +-=-,而113044b -=≠,∴104n b -≠,∴114314n n b b +-=-, ∴1{}4n b -是等比数列, ………………………………………………………………………………8分∴1111(1)33444n n n b --=-⨯=⨯,∴11344n n b =⨯+,∴2121111111(3)(3)444431111(3)(3)4444n n n n n n n nb b b b ++++++⨯+-⨯+-==-⨯+-⨯+, ∴{}1n n b b +-是公比为3的等比数列,故数列{}n b 是“()M q 数列”.………………………………10分方法二:同方法一得1132n n b b +=-对n N *∈恒成立, 则21132n n b b ++=-,两式作差得2113()n n n n b b b b +++-=-,而21302b b -=≠, ∴10n n b b +-≠,∴2113n n n nb b b b +++-=-,以下同方法一. ……………………………10分 (3)由数列{}n b 是“()2M 数列”得1121()2n n n b b b b -+-=-⨯,又32212b b b b -=-,∴22721b b -=-,∴23b =,∴212b b -=,∴12n n n b b +-=,∴当2n ≥时,112211()()()n n n n n b b b b b b b b ---=-+-++-+L12222121n n n --=++++=-L ,当1n =时上式也成立,故21nn b =-, ……………………………12分假设存在正整数,m n 使得4039404020192019m n b b <<,则40392140402019212019m n -<<-, 由2140391212019m n->>-可知2121m n ->-,∴m n >,又,m n 为正整数,∴1m n -≥,又212(21)2121404022121212019m m n n m n m n m nn n n ------+--==+<---,∴4040232019m n-<<,∴1m n -=,∴21122121m n n -=+--,∴40391404022019212019n <+<-, ∴2020222021<<n ,∴10n =,∴11m =,故存在满足条件的正整数,m n ,11m =,10n =. …………………………16分20.解:(1)由函数)(x f 为奇函数,得0)()(=-+x f x f 在定义域上恒成立,所以 0=+-+----mx ae e mx ae e x x x x ,化简可得 0)()1(=+⋅--x x e e a ,所以1=a . ……………………………………3分 (2)法一:由(1)可得mx e e x f x x --=-)(,所以xx x xxe me e m e e xf 1)(2+-=-+='-,其中当2≤m 时,由于012≥+-x x me e 恒成立,即0)(≥'x f 恒成立,故不存在极小值. ………………………………………5分 当2>m 时,方程012=+-mt t 有两个不等的正根)(,2121t t t t <, 故可知函数mx e e x f x x --=-)(在),(ln ),ln ,(21+∞-∞t t 上单调递增, 在)ln ,(ln 21t t 上单调递减,即在2ln t 处取到极小值,所以,m 的取值范围是),2(+∞. ………………………………………9分 法二:由(1)可得mx e e x f x x --=-)(,令m e e x f x g xx -+='=-)()(,则xx xxee e e x g 1)(2-=-='-, 故当0≥x 时,0)(≥'x g ;当0<x 时,0)(<'x g , …………………………………5分 故)(x g 在)0,(-∞上递减,在),0(+∞上递增, ∴m g x g -==2)0()(min ,若02≥-m ,则0)(≥x g 恒成立,)(x f 单调递增,无极值点;所以02)0(<-=m g ,解得2>m ,取m t ln =,则01)(>=mt g , 又函数)(x g 的图象在区间],0[t 上连续不间断,故由函数零点存在性定理知在区间),0(t 上,存在0x 为函数)(x g 的零点,)(0x f 为)(x f 极小值.所以,m 的取值范围是),2(+∞. ………………………………………9分 (3)由0x 满足m e e x x =+-00,代入mx e e x f x x --=-)(, 消去m 可得00)1()1()(000x x e x ex x f -+--=, ……………………………11分构造函数x x e x e x x h -+--=)1()1()(, 所以)()(xxe ex x h -='-,当0≥x 时,012≤-=--xxxxee e e,所以当0≥x 时,0)(≤'x h 恒成立,故h ()在[0,+)上为单调减函数,其中eh 2)1(-=, 13分 则02()f x e≥-可转化为0()(1)h x h ≥, 故10≤x ,由m e e x x =+-00,设x x e e y -+=, 可得当0≥x 时,0≥-='-x x e e y ,x x e e y -+=在]1,0(上递增,故ee m 1+≤, 综上,m 的取值范围是]1,2(ee + . ………………………………………16分 附加题答案21.(A )解:设圆C 上一点(,)x y ,经矩阵M 变换后得到圆C '上一点(,)x y '',所以332a x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦,所以332ax y x x y y'+=⎧⎨'-=⎩,………………………………………………5分 又圆22:13C x y '+=,所以圆C 的方程为22(3)(32)13ax y x y ++-=,化简得222(9)(612)1313a x a xy y ++-+=,所以29136120a a ⎧+=⎨-=⎩,解得2a =. ………………………………………………10分21.(B )解:以极点为原点,极轴为轴的正半轴(单位长度相同)建立平面直角坐标系, 由直线cos 2sin m ρθρθ+=,可得直角坐标方程为20x y m +-=,又曲线4sin ρθ=,所以24sin ρρθ=,其直角坐标方程为22(2)4x y +-=, ………………5分所以曲线4sin ρθ=是以(0,2)为圆心,2为半径的圆,为使直线被曲线(圆)截得的弦AB 最长,所以直线过圆心(0,2),于是0220m +⋅-=,解得4m =. ……………………………………………………10分21.(C )解:因1231a b c ++=,所以149123a b c++=, 由柯西不等式得214923(23)()(123)23a b c a b c a b c++=++++≥++, 即2336a b c ++≥, …………………………………………………………………………………5分 当且仅当1492323a b c a b c ==,即a b c ==时取等号,解得6a b c ===,所以当且仅当6a b c ===时,23a b c ++取最小值36. ……………………………………10分22.解:(1)以CD ,AB ,1OO 所在直线建立如图所示空间直角坐标系O xyz -,由2CD =,13AA =,所以(0,1,0)A -,(0,1,0)B ,(1,0,0)C -,(1,0,0)D ,1(0,1,3)A -,1(0,1,3)B ,从而1(1,1,3)AC =--u u u u r ,1(1,1,3)B D =--u u u u r , 所以112222227cos ,11(1)1(3)1(1)(3)A C B D <>==-++-⋅+-+-u u u u r u u u u r , 所以异面直线1A C 与1B D 所成角的余弦值为711. …………………………………4分 (2)设10AA m =>,则1(0,1,)A m -,1(0,1,)B m ,所以1(1,1,)A C m =--u u u u r ,1(1,1,)B D m =--u u u u r ,(2,0,0)CD =u u u r, 设平面1A CD 的一个法向量1111(,,)n x y z =u u r ,所以1111111200n CD x n ACx y mz ⎧⋅==⎪⎨⋅=-+-=⎪⎩u u r u u u r u u r u u u u r , 所以10x =,令11z =,则1y m =,所以平面1A CD 的一个法向量1(0,,1)n m =u u r ,同理可得平面1B CD 的一个法向量2(0,,1)n m =-u u r ,因为二面角11A CD B --的大小为3π,所以122222()111cos ,21()1m m n n m m ⋅-+⋅<>==+⋅-+u u r u u r , 解得3m =或3m =, 由图形可知当二面角11A CD B --的大小为3π时, 3m =. …………………………10分 注:用传统方法也可,请参照评分. 23.解:(1)令1=x 得01220n a a a a ++++=L ,令1-=x 得12201232123333(91)2n n n n a a a a a a --+-+-+=+++=-L L ,两式相加得024232()(91)2n n a a a a ++++=-L ,∴3(91)4n n S =-.…………………………3分 (2)123123(1)n n n n n n n n T S C S C S C S C =-+-++-L{}1122331233[999(1)9][(1)]4n n n n n n n n n n n n n C C C C C C C C =-+-++---+-++-L L {}0011223301233[9999(1)9][(1)]4n n n n n n n n n n n n n n n C C C C C C C C C C =-+-++---+-++-L L 001122333[9999(1)9]4n n n n n n n n C C C C C =-+-++-L 0011223[(9)(9)(9)(9)]4n n n n n n C C C C =-+-+-++-L 33[1(9)](8)44n n =+-=⨯-…………………………………………………………………………7分 要证3||6n T n ≥,即证384n ⨯36n ≥,只需证明138n n -≥,即证12n n -≥, 当1,2n =时,12n n -≥显然成立; 当3n ≥时,1011011111121(1)n n n n n n n C C C C C n n -------=+++≥+=+-=L ,即12n n -≥, ∴12n n -≥对*n N ∈恒成立.综上,3||6n T n ≥恒成立.……………………………………………………………………………10分注:用数学归纳法或数列的单调性也可证明12n n -≥恒成立,请参照评分.。

南京市高考数学模拟试卷(理科)(I)卷(考试)

南京市高考数学模拟试卷(理科)(I)卷(考试)

南京市高考数学模拟试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题: (共12题;共24分)1. (2分) (2017高一上·新丰月考) 设全集是实数集,,则()A .B .C .D .2. (2分) (2018高三上·河南期中) 若在复平面内,复数所对应的点落在直线上,则A .B .C .D .3. (2分) (2015高二上·福建期末) “点P的轨迹方程为y=|x|”是“点P到两条坐标轴距离相等”的()A . 充分不必要条件B . 必要不充分条件C . 充要条件D . 不充分不必要条件4. (2分)已知命题,则()A .B .C .D .5. (2分)(2017·泉州模拟) 执行如图所示的程序框图,若输入的k,b,r的值分别为2,2,4,则输出i 的值是()A . 4B . 3C . 6D . 76. (2分) (2016高三上·赣州期中) 下列说法不正确的是()A . 若“p且q”为假,则p、q至少有一个是假命题B . 命题“∃x0∈R,x02﹣x0﹣1<0”的否定是“∀x∈R,x2﹣x﹣1≥0”C . “φ= ”是“y=sin(2x+φ)为偶函数”的充要条件D . a<0时,幂函数y=xa在(0,+∞)上单调递减7. (2分) (2016高三上·武邑期中) 如图是一个空间几何体的三视图,则该空间几何体的表面积是()A .B .C .D .8. (2分)(2017·贵阳模拟) 在平面直角坐标系中,角α的顶点与原点O重合,始边与x轴的非负半轴重合,点P(﹣2t,t)(t≠0)是角α终边上的一点,则的值为()A .B . 3C .D .9. (2分) (2018高二下·抚顺期末) 展开式中项的系数为()A .B .C .D .10. (2分)点A(1,1)到直线xcosθ+ysinθ﹣2=0的距离的最大值是()A . 1+B . 2+C . 1+D . 2+11. (2分)如图长方体中,,,则二面角的大小为()A .B .C .D .12. (2分) (2016高二下·钦州期末) 已知函数f(x)的导函数f′(x)是二次函数,如图是f′(x)的大致图象,若f(x)的极大值与极小值的和等于,则f(0)的值为()A . 0B .C .D .二、填空题: (共4题;共4分)13. (1分)(2017·山西模拟) 在正六边形ABCDEF中,若AB=1,则 =________.14. (1分) (2016高二下·赣榆期中) 在直角坐标系xoy中,已知△ABC的顶点A(﹣1,0)和C(1,0),顶点B在椭圆上,则的值是________.15. (1分) (2016高二上·茂名期中) 已知不等式组所表示的平面区域为D,若直线y=kx﹣3与平面区域D有公共点,则k的取值范围为________16. (1分) (2016高二上·包头期中) 若命题p:曲线 =1为双曲线,命题q:函数f(x)=(4﹣a)x在R上是增函数,且p∨q为真命题,p∧q为假命题,则实数a的取值范围是________.三、解答题: (共7题;共65分)17. (10分)(2018·临川模拟) 各项均为正数的数列的前项和为,满足(1)求数列的通项公式;(2)令,若数列的前项和为,求的最小值.18. (10分)(2017·龙岩模拟) 如图,在梯形ABCD中,AB∥CD,AD=DC=CB=2,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是菱形,∠CAF=60°.(1)求证:BC⊥平面ACEF;(2)求平面ABF与平面ADF所成锐二面角的余弦值.19. (10分) (2015高三上·承德期末) 某技术公司新开发了A,B两种新产品,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品,现随机抽取这两种产品各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]产品A81240328产品B71840296(1)试分别估计产品A,产品B为正品的概率;(2)生产一件产品A,若是正品可盈利80元,次品则亏损10元;生产一件产品B,若是正品可盈利100元,次品则亏损20元;在(1)的前提下.记X为生产一件产品A和一件产品B所得的总利润,求随机变量X的分布列和数学期望.20. (10分)(2018·辽宁模拟) 椭圆 :的左、右焦点分别为、,若椭圆过点 .(1)求椭圆的方程;(2)若为椭圆的左、右顶点,()为椭圆上一动点,设直线分别交直线:于点,判断线段为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.21. (5分)(2017·黑龙江模拟) 已知函数f(x)= (e为自然对数的底数),曲线y=f(x)在(1,f(1))处的切线与直线4x+3ey+1=0互相垂直.(Ⅰ)求实数a的值;(Ⅱ)若对任意x∈(,+∞),(x+1)f(x)≥m(2x﹣1)恒成立,求实数m的取值范围;(Ⅲ)设g(x)= ,Tn=1+2[g()+g()+g()+…+g()](n=2,3…).问:是否存在正常数M,对任意给定的正整数n(n≥2),都有 + + +…+ <M成立?若存在,求M的最小值;若不存在,请说明理由.22. (10分) (2018高二下·磁县期末) 已知直线l的参数方程为为参数,曲线C的极坐标方程为,直线l与曲线C交于A,B两点,点,(1)求直线l的普通方程与曲线C的直角坐标方程;(2)求的值.23. (10分)(2019·河北模拟) 设函数 .(1)当时,求不等式的解集;(2),都有恒成立,求的取值范围.参考答案一、选择题: (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题: (共4题;共4分)13-1、14-1、15-1、16-1、三、解答题: (共7题;共65分) 17-1、17-2、18-1、18-2、19-1、19-2、20-1、20-2、22-1、22-2、23-1、23-2、。

2020届江苏省南京市、盐城市高三第一次模拟考试(1月) 数学(理)

2020届江苏省南京市、盐城市高三第一次模拟考试(1月) 数学(理)

南京市、盐城市2020届高三年级第一次模拟考试数 学 理 试 题(总分160分,考试时间120分钟)注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 参考公式:柱体体积公式:V Sh =,锥体体积公式:13V Sh =,其中S 为底面积,h 为高.样本数据12,,,n x x x ⋅⋅⋅的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上) 1.已知集合(0,)A =+∞,全集U R =,则 U A= ▲ . 2.设复数2z i =+,其中i 为虚数单位,则z z ⋅= ▲ .3.学校准备从甲、乙、丙三位学生中随机选两位学生参加问卷调查,则甲被选中的概率为 ▲ .4.命题“R θ∀∈,cos sin 1θθ+>”的否定是 ▲ 命题.(填“真”或“假”)5.运行如图所示的伪代码,则输出的I 的值为 ▲ .6.已知样本y x ,,9,8,7的平均数是9,且110=xy ,则此样本的方差是 ▲ .7.在平面直角坐标系xOy 中,若抛物线24y x =上的点P 到其焦点的距离为3,则点P 到点O 的距离为 ▲ .00 101 S I While S S S I I I End For Print I←←≤←+←+(第5题图)8.若数列{}n a 是公差不为0的等差数列,1ln a 、2ln a 、5ln a 成等差数列,则21a a 的值为 ▲ . 9.在三棱柱111ABC A B C -中,点P 是棱1CC 上一点,记三棱柱111ABC A B C -与四棱锥11P ABB A -的体积分别为1V 与2V ,则21V V = ▲ . 10.设函数()sin()f x x ωϕ=+(0,02πωϕ><<)的图象与y轴交点的纵坐标为2, y 轴右侧第一个最低点的横坐标为6π,则ω的值为 ▲ . 11.已知H 是△ABC 的垂心(三角形三条高所在直线的交点),1142AH AB AC =+u u u r u u u r u u u r,则cos BAC ∠的值为 ▲ .12.若无穷数列{}cos()n ω()R ω∈是等差数列,则其前10项的和为 ▲ . 13.已知集合{(,)16}P x y x x y y =+=,集合12{(,)}Q x y kx b y kx b =+≤≤+,若P Q ⊆的最小值为 ▲ .14.若对任意实数]1,(-∞∈x ,都有1122≤+-ax x e x成立,则实数a 的值为 ▲ .二、解答题(本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内) 15.(本小题满分14分) 已知ABC ∆满足sin()2cos 6B B π+=.(1)若cos C =3AC =,求AB ; (2)若0,3A π⎛⎫∈ ⎪⎝⎭,且()4cos 5B A -=,求sin A .如图,长方体1111D C B A ABCD -中,已知底面ABCD 是正方形,点P 是侧棱1CC 上的一点.(1)若1AC //平面PBD ,求PCPC 1的值; (2)求证:P A BD 1⊥.(第16题图)17.(本小题满分14分)如图,是一块半径为4米的圆形铁皮,现打算利用这块铁皮做一个圆柱形油桶.具体做法是从O e 中裁剪出两块全等的圆形铁皮P e 与Q e ,做圆柱的底面,裁剪出一个矩形ABCD 做圆柱的侧面(接缝忽略不计),AB 为圆柱的一条母线,点A 、B 在O e 上,点P 、Q 在O e 的一条直径上,P e 、Q e 分别与直线BC 、AD 相切,都与O e 内切. (1)求圆形铁皮P e 半径的取值范围;(2)请确定圆形铁皮P e 与Q e 半径的值,使得油桶的体积最大.(不取近似值)(第17题图)设椭圆2222:1(0)x y C a b a b+=>>的左右焦点分别为12,F F ,离心率是e ,动点00(,)P x y 在椭圆C 上运动,当2PF x ⊥轴时,01x =,0y e =. (1)求椭圆C 的方程;(2)延长12,PF PF 分别交椭圆C 于点,A B (,A B 不重合),设11AF F P λ=u u u r u u u r,22BF F P μ=u u u u r u u u u r,求λμ+的最小值.(第18题图)19.(本小题满分16分)定义:若无穷数列{}n a 满足{}1n n a a +-是公比为q 的等比数列,则称数列{}n a 为“()M q 数列”.设数列{}n b 中11b =,37b =.(1)若24b =,且数列{}n b 是“()M q 数列”,求数列{}n b 的通项公式; (2)设数列{}n b 的前n 项和为n S ,且1122n n b S n λ+=-+,请判断数列{}n b 是否为 “()M q 数列”,并说明理由;(3)若数列{}n b 是“()2M 数列”,是否存在正整数,m n 使得4039404020192019m n b b <<?若存在,请求出所有满足条件的正整数,m n ;若不存在,请说明理由.20.(本小题满分16分)若函数()xxf x e aemx -=--()m R ∈为奇函数,且0x x =时()f x 有极小值0()f x .(1)求实数a 的值;(2)求实数m 的取值范围; (3)若02()f x e≥-恒成立,求实数m 的取值范围.y南京市、盐城市2020届高三年级第一次模拟考试数学附加题部分(本部分满分40分,考试时间30分钟)21.[选做题](在A 、B 、C 三个小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内) A .(选修4-2:矩阵与变换)已知圆C 经矩阵332a M ⎡⎤=⎢⎥-⎣⎦变换后得到圆22:13C x y '+=,求实数a 的值. B .(选修4-4:坐标系与参数方程)在极坐标系中,直线cos 2sin m ρθρθ+=被曲线4sin ρθ=截得的弦为AB ,当AB 是最长弦时,求实数m 的值.C .(选修4-5:不等式选讲)已知正实数,,a b c 满足1231a b c++=,求23a b c ++的最小值.[必做题](第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内) 22.(本小题满分10分)如图,1AA 、1BB 是圆柱的两条母线, 11A B 、AB 分别经过上下底面圆的圆心1O 、O ,CD 是下底面与AB 垂直的直径,2CD =.(1)若13AA =,求异面直线1A C 与1B D 所成角的余弦值; (2)若二面角11A CD B --的大小为3π,求母线1AA 的长.23.(本小题满分10分)设22201221(12)nin n i x a a x a x a x =-=++++∑L (n N *∈),记0242n n S a a a a =++++L .(1)求n S ;(2)记123123(1)n n n n n n n n T S C S C S C S C =-+-++-L ,求证:3||6n T n ≥恒成立.南京市、盐城市2020届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分. 1.(,0]-∞ 2.5 3.234.真 5.6 6.2 7.238.3 9.2310.7 11.3 12.10 13.4 14.12- 二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内. 15.解:(1)由sin()2cos 6B B π+=可知B B B cos 2cos 21sin 23=+, 移项可得3tan =B ,又),0(π∈B ,故3π=B , ……………………………………………2分又由6cos 3C =,),0(π∈C 可知33cos 1sin 2=-=C C , ……………………………4分 故在ABC ∆中,由正弦定理C c B b sin sin =可得 C ABAC sin 3sin =π,所以2=AB . ………………7分(2)由(1)知3π=B ,所以0,3A π⎛⎫∈ ⎪⎝⎭时,)3,0(3ππ∈-A ,由()4cos 5B A -=即54)3cos(=-A π可得53)3(cos 1)3sin(2=--=-A A ππ , ……………10分∴1033453215423)3sin(3cos )3cos(3sin ))3(3sin(sin -=⋅-⋅=---=--=A A A A ππππππ.…14分16.(1)证明:连结AC 交BD 于点O ,连结OP , 又因为1//AC 平面PBD ,⊂1AC 平面1ACC平面1ACC I 平面OP BDP =,所以1//AC OP ……………3分 因为四边形ABCD 是正方形,对角线AC 交BD 于点O , 所以点O 是AC 的中点,所以AO OC =,所以在1ACC ∆中,11PC AOPC OC==. ……………6分 (2)证明:连结11A C .因为1111ABCD A B C D -为直四棱柱,所以侧棱1C C 垂直于底面ABCD , 又BD ⊂平面ABCD ,所以1CC BD ⊥.…………………………………………………………………8分因为底面ABCD是正方形,所以AC BD ⊥. ……………………………………………………10分又1AC CC C =I ,AC ⊂面11ACC A , 1CC ⊂面11ACC A , 所以BD ⊥面11ACC A . ……………………………………… …………………………………………12分又因为1111,P CC CC ACC A ∈⊂面,所以11P ACC A ∈面,又因为111A ACC A ∈面, 所以A 1P ⊂面ACC 1A 1,所以1BD A P ⊥. ………………………………………………14分17.解:(1)设P e 半径为r ,则)2(4r AB -=, 所以Pe 的周长2)2(41622r BC r --≤=π, ………………………………………………4分解得 4162+≤πr ,故P e 半径的取值范围为]416,0(2+π. ……………………………………………6分 (2)在(1)的条件下,油桶的体积)2(422r r AB r V -=⋅=ππ, ……………………………………8分设函数),2()(2x x x f -=]416,0(2+∈πx ,所以234)(x x x f -=',由于 344162<+π, 所以()0f x '>在定义域上恒成立, 故()f x 在定义域上单调递增,即当4162+=πr 时,体积取到最大值. ………………………………………………13分答:P e 半径的取值范围为]416,0(2+π,当4162+=πr 时,体积取到最大值. ………………………14分 18.解:(1)由当2PF x⊥轴时01x =,可知1c =, …………………………………………………2分 将01x =,0y e =代入椭圆方程得22211e a b+=(※),而1c e a a==,22221b a c a =-=-,代入(※)式得222111(1)a a a +=-, 解得22a =,故21b =,∴椭圆C 的方程为2212x y +=.…………………………………………………4分 (2)方法一:设11(,)A x y ,由11AF F P λ=u u u r u u u r 得10101(1)x x y y λλ--=+⎧⎨-=⎩,故10101x x y y λλλ=---⎧⎨=-⎩, 代入椭圆的方程得2200(1)()12x y λλλ---+-=(#), ………………………………………………8分又由220012x y +=得220012x y =-,代入(#)式得222001(1)2(1)22x x λλλ+++-=, 化简得203212(1)0x λλλλ+-++=,即0(1)(312)0x λλλ+-+=,显然10λ+≠,∴03120x λλ-+=,故132x λ=+.……………………………………………………………………12分同理可得0132u x =-,故200011623232943x x x λμ+=+=≥+--, 当且仅当00x =时取等号,故λμ+的最小值为23. ………………………………………………16分 方法二:由点A ,B 不重合可知直线PA 与x 轴不重合,故可设直线PA 的方程为1x my =-,联立22121x y x my ⎧+=⎪⎨⎪=-⎩,消去x 得22(2)210m y my +--=(☆),设11(,)A x y ,则1y 与0y 为方程(☆)的两个实根,由求根公式可得0,122m y m =+,故01212y y m -=+,则121(2)y m y -=+,……………………8分将点00(,)P x y 代入椭圆的方程得220012x y +=, 代入直线PA 的方程得001x my =-,∴001x m y +=,由11AF F P λ=u u u r u u u r 得10y y λ-=,故10y y λ=-2222000111(2)[()2]x m y y y ==+++ 2222000001111(1)232(1)2(1)2x y x x x ===+++++-.…………………………………………………12分同理可得0132u x =-,故200011623232943x x x λμ+=+=≥+--, 当且仅当00x =时取等号,故λμ+的最小值为23. ………………………………………………16分 注:(1)也可设,sin )P θθ得λ=,其余同理.(2)也可由116λμ+=运用基本不等式求解λμ+的最小值.19.解:(1)∵24b =,且数列{}n b 是“()M q 数列”,∴322174141b b q b b --===--,∴111n nn n b b b b +--=-,∴11n n n n b b b b +--=-,………………………………2分故数列{}n b 是等差数列,公差为213b b -=, 故通项公式为1(1)3n b n =+-⨯,即32n b n =-. ………………………………………………4分(2)由1122n n b S n λ+=-+得232b λ=+,3437b λ=+=,故1λ=.方法一:由11212n n b S n +=-+得2112(1)12n n b S n ++=-++,两式作差得211122n n n b b b +++-=-,即21132n n b b ++=-,又252b =,∴21132b b =-,∴1132n n b b +=-对n N *∈恒成立,……………………6分 则1113()44n n b b +-=-,而113044b -=≠,∴104n b -≠,∴114314n n b b +-=-, ∴1{}4n b -是等比数列, ………………………………………………………………………………8分∴1111(1)33444n n n b --=-⨯=⨯,∴11344n n b =⨯+,∴2121111111(3)(3)444431111(3)(3)4444n n n n n n n nb b b b ++++++⨯+-⨯+-==-⨯+-⨯+, ∴{}1n n b b +-是公比为3的等比数列,故数列{}n b 是“()M q 数列”.………………………………10分方法二:同方法一得1132n n b b +=-对n N *∈恒成立, 则21132n n b b ++=-,两式作差得2113()n n n n b b b b +++-=-,而21302b b -=≠, ∴10n n b b +-≠,∴2113n n n nb b b b +++-=-,以下同方法一. ……………………………………10分(3)由数列{}n b 是“()2M 数列”得1121()2n n n b b b b -+-=-⨯,又32212b b b b -=-,∴22721b b -=-,∴23b =,∴212b b -=,∴12n n n b b +-=,∴当2n ≥时,112211()()()n n n n n b b b b b b b b ---=-+-++-+L12222121n n n --=++++=-L , 当1n =时上式也成立,故21n n b =-, ……………………………………12分假设存在正整数,m n 使得4039404020192019m n b b <<,则40392140402019212019m n -<<-, 由2140391212019m n->>-可知2121m n ->-,∴m n >,又,m n 为正整数,∴1m n -≥,又212(21)2121404022121212019m m n n m n m n m nn nn ------+--==+<---, ∴4040232019m n-<<,∴1m n -=,∴21122121m n n -=+--,∴40391404022019212019n <+<-, ∴2020222021<<n ,∴10n =,∴11m =,故存在满足条件的正整数,m n ,11m =,10n =. ……………………………………16分20.解:(1)由函数)(x f 为奇函数,得0)()(=-+x f x f 在定义域上恒成立, 所以 0=+-+----mx ae e mx ae e x x x x ,化简可得 0)()1(=+⋅--x x e e a ,所以1=a . ………………………………………………3分(2)法一:由(1)可得mx e e x f x x --=-)(,所以xx x xxeme e m e e x f 1)(2+-=-+='-, 其中当2≤m 时,由于012≥+-x x me e 恒成立,即0)(≥'x f 恒成立,故不存在极小值. ………………………………………………5分 当2>m 时,方程012=+-mt t 有两个不等的正根)(,2121t t t t <, 故可知函数mx e e x f x x --=-)(在),(ln ),ln ,(21+∞-∞t t 上单调递增, 在)ln ,(ln 21t t 上单调递减,即在2ln t 处取到极小值, 所以,m 的取值范围是),2(+∞. ………………………………………………9分法二:由(1)可得mx e e x f x x --=-)(, 令m ee xf xg xx-+='=-)()(,则xx xxee e e x g 1)(2-=-='-, 故当0≥x 时,0)(≥'x g ;当0<x 时,0)(<'x g , …………………………………………5分 故)(x g 在)0,(-∞上递减,在),0(+∞上递增, ∴m g x g -==2)0()(min ,若02≥-m ,则0)(≥x g 恒成立,)(x f 单调递增,无极值点;所以02)0(<-=m g ,解得2>m ,取m t ln =,则01)(>=mt g , 又函数)(x g 的图象在区间],0[t 上连续不间断,故由函数零点存在性定理知在区间),0(t 上,存在0x 为函数)(x g 的零点,)(0x f 为)(x f 极小值. 所以,m 的取值范围是),2(+∞. ………………………………………………9分(3)由0x 满足m e e x x =+-00, 代入mx e e x f x x --=-)(, 消去m可得00)1()1()(000x x e x e x x f -+--=, ……………………………………11分构造函数x x e x e x x h -+--=)1()1()(, 所以)()(xxe ex x h -='-,当0≥x 时,012≤-=--xxxxee e e, 所以当0≥x 时,0)(≤'x h 恒成立,故h (x )在[0,+∞)上为单调减函数,其中eh 2)1(-=, ……13分则02()f x e≥-可转化为0()(1)h x h ≥, 故10≤x ,由m e e x x =+-00,设x x e e y -+=,可得当0≥x 时,0≥-='-x x e e y ,x x e e y -+=在]1,0(上递增,故ee m 1+≤, 综上,m的取值范围是]1,2(ee + . ………………………………………………16分附加题答案21.(A )解:设圆C 上一点(,)x y ,经矩阵M 变换后得到圆C '上一点(,)x y '', 所以332a x x y y '⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥'-⎣⎦⎣⎦⎣⎦,所以332ax y x x y y '+=⎧⎨'-=⎩,………………………………………………………5分 又圆22:13C x y '+=,所以圆C 的方程为22(3)(32)13ax y x y ++-=,化简得222(9)(612)1313a x a xy y ++-+=, 所以29136120a a ⎧+=⎨-=⎩,解得2a =. ………………………………………………………10分21.(B )解:以极点为原点,极轴为x 轴的正半轴(单位长度相同)建立平面直角坐标系, 由直线cos 2sin m ρθρθ+=,可得直角坐标方程为20x y m +-=, 又曲线4sin ρθ=,所以24sin ρρθ=,其直角坐标方程为22(2)4x y +-=, ………………5分所以曲线4sin ρθ=是以(0,2)为圆心,2为半径的圆,为使直线被曲线(圆)截得的弦AB 最长,所以直线过圆心(0,2), 于是0220m +⋅-=,解得4m =. ……………………………………………………10分 21.(C )解:因1231a b c ++=,所以149123a b c++=, 由柯西不等式得214923(23)()(123)23a b c a b c a b c++=++++≥++,即2336a b c ++≥, (5)分当且仅当1492323a b c a b c==,即a b c ==时取等号,解得6a b c ===,所以当且仅当6a b c ===时,23a b c ++取最小值36. ……………………………………10分22.解:(1)以CD ,AB ,1OO 所在直线建立如图所示空间直角坐标系O xyz -,由2CD =,13AA =,所以(0,1,0)A -,(0,1,0)B ,(1,0,0)C -,(1,0,0)D ,1(0,1,3)A -,1(0,1,3)B ,从而1(1,1,3)AC =--u u u u r ,1(1,1,3)B D =--u u u u r,所以112222227cos ,11(1)1(3)1(1)(3)A C B D <>==-++-⋅+-+-u u u u r u u u u r , 所以异面直线1A C与1B D所成角的余弦值为711. …………………………………………4分 (2)设10AA m =>,则1(0,1,)A m -,1(0,1,)B m ,所以1(1,1,)A C m =--u u u u r ,1(1,1,)B D m =--u u u u r ,(2,0,0)CD =u u u r,设平面1A CD 的一个法向量1111(,,)n x y z =u u r,所以1111111200n CD x n ACx y mz ⎧⋅==⎪⎨⋅=-+-=⎪⎩u u r u u u r u u r u u u u r, 所以10x =,令11z =,则1y m =,所以平面1A CD 的一个法向量1(0,,1)n m =u u r, 同理可得平面1B CD 的一个法向量2(0,,1)n m =-u u r,因为二面角11A CD B --的大小为3π,所以121cos ,2n n <>==u u r u u r ,解得m =m =, 由图形可知当二面角11A CDB --的大小为3π时,m = …………………………………10分注:用传统方法也可,请参照评分.23.解:(1)令1=x 得01220n a a a a ++++=L ,令1-=x 得12201232123333(91)2nn n n a a a a a a --+-+-+=+++=-L L , 两式相加得024232()(91)2n n a a a a ++++=-L ,∴3(91)4n n S =-.…………………………………3分(2)123123(1)n nn n n n n n T S C S C S C S C =-+-++-L{}1122331233[999(1)9][(1)]4n n n n nn n n n n n n n C C C C C C C C =-+-++---+-++-L L{}0011223301233[9999(1)9][(1)]4n n n n nn n n n n n n n n n C C C C C C C C C C =-+-++---+-++-L L 001122333[9999(1)9]4n n n n n n n n C C C C C =-+-++-L 0011223[(9)(9)(9)(9)]4n n n n n n C C C C =-+-+-++-L 33[1(9)](8)44n n =+-=⨯-…………………………………………………………………………………7分要证3||6n T n ≥,即证384n⨯36n ≥,只需证明138n n -≥,即证12n n -≥, 当1,2n =时,12n n -≥显然成立;当3n ≥时,1011011111121(1)n n n n n n n C C C C C n n -------=+++≥+=+-=L ,即12n n -≥, ∴12n n -≥对*n N ∈恒成立.综上,3||6n T n ≥恒成立.……………………………………………………………………………………10分 注:用数学归纳法或数列的单调性也可证明12n n -≥恒成立,请参照评分.。

江苏省南京市高考数学一模试卷(理科)

江苏省南京市高考数学一模试卷(理科)

江苏省南京市高考数学一模试卷(理科)姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019高三上·涪城月考) 设集合,,则()A .B . {1}C .D .2. (2分) (2017高三下·河北开学考) 复数z= 的共轭复数所对应的点位于复平面的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限3. (2分)(2018·大庆模拟) 执行如图所示的程序语句,则输出的的值为()A .B . 1C .D .4. (2分)(2018·黄山模拟) 在区间内的所有实数中随机取一个实数,则这个实数满足的概率是()A .B .C .D .5. (2分) (2019·上饶模拟) 函数的大致图像为()A .B .C .D .6. (2分) (2018高二上·会宁月考) 已知定义在上的函数是奇函数且满足,,数列满足(其中为的前项和),则()A .B .C .D .7. (2分) (2018高一上·佛山期末) 已知,,且,则()A . 2B . 1C . 0D . -18. (2分) (2020高一下·荆州期末) 函数的图象如图所示,为了得到的图象,则只要将的图象()A . 向左平移个单位长度B . 向右平移个单位长度C . 向左平移个单位长度D . 向右平移个单位长度9. (2分)奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式的解集为()A . (﹣1,0)∪(1,+∞)B . (﹣∞,﹣1)∪(0,1)C . (﹣∞,﹣1)∪(1,+∞)D . (﹣1,0)∪(0,1)10. (2分) (2016高二上·成都期中) 已知圆(x+2)2+y2=36的圆心为M,设A为圆上任一点,N(2,0),线段AN的垂直平分线交MA于点P,则动点P的轨迹是()A . 圆B . 椭圆C . 双曲线D . 抛物线11. (2分) (2017高二下·太和期中) 如图,F1、F2分别为双曲线C:(a>0,b>0)的左、右焦点,过F1的直线l交C于A、B两点,若C的离心率为,|AB|=|AF2|,则直线l的斜率为()A .B .C .D .12. (2分)已知命题所有指数函数都是单调函数,则为()A . 所有指数函数都不是单调函数B . 所有单调函数都不是指数函数C . 存在一个指数函数,它不是单调函数D . 存在一个单调函数,它不是指数函数二、填空题 (共4题;共4分)13. (1分)(2017·房山模拟) 已知x,y满足,则z=2x+y的最大值为________.14. (1分)已知二项式( x﹣1)3=a +a1x+a2x2+a3x3 ,则(a0+a2)2﹣(a1+a3)2=________.15. (1分) (2017高二上·芜湖期末) 如图,直三棱柱ABC﹣A1B1C1的六个顶点都在半径为1的半球面上,AB=AC,侧面BCC1B1是半球底面圆的内接正方形,则侧面ABB1A1的面积为________.16. (1分) (2019高一下·广东期中) 三棱锥的底面的顶点在球的面上,顶点为球心,,球心到的距离为,则球的体积为________.三、解答题 (共7题;共60分)17. (10分)(2020·兴平模拟) 在中,角,,的对边分别为,,,且.(1)求角的值;(2)若,且的面积为,求边上的中线的大小.18. (5分) (2017高二下·深圳月考) PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某一时间段车流量与PM2.5的数据如下表:时间周一周二周三周四周五车流量x(万辆)5051545758PM2.5的浓度(微克6070747879 /立方米)(Ⅰ)根据上表数据,请在所给的坐标系中画出散点图;(Ⅱ)根据上表数据,用最小二乘法求出关于的线性回归方程;(Ⅲ)若周六同一时间段的车流量是万辆,试根据(Ⅱ)求出的线性回归方程,预测此时的浓度为多少(保留整数)?参考公式:由最小二乘法所得回归直线的方程是:,其中.19. (10分) (2016高三上·大庆期中) 已知四棱锥P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC与BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E,F分别是AB,AP的中点.(1)求证:AC⊥EF;(2)求二面角F﹣OE﹣A的余弦值.20. (10分) (2020高二上·温州期末) 已知抛物线C:,过焦点F的直线l与抛物线C交于M,N 两点.(1)若直线l的倾斜角为,求的长;(2)设M在准线上的射影为A,求证:A,O,N三点共线(O为坐标原点).21. (5分)(2017·天津) 设a∈Z,已知定义在R上的函数f(x)=2x4+3x3﹣3x2﹣6x+a在区间(1,2)内有一个零点x0 , g(x)为f(x)的导函数.(Ⅰ)求g(x)的单调区间;(Ⅱ)设m∈[1,x0)∪(x0 , 2],函数h(x)=g(x)(m﹣x0)﹣f(m),求证:h(m)h(x0)<0;(Ⅲ)求证:存在大于0的常数A,使得对于任意的正整数p,q,且∈[1,x0)∪(x0 , 2],满足|﹣x0|≥ .22. (10分)在直角坐标系xOy中,设倾斜角为α的直线l的参数方程为(t为参数)与曲线C:(θ为参数)相交于不同的两点A,B.(1)若,求线段AB的中点的直角坐标;(2)若直线l的斜率为2,且过已知点P(3,0),求|PA|•|PB|的值.23. (10分)(2020·泉州模拟) 已知函数.(1)证明:;(2)当时,,求的取值范围.参考答案一、选择题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共4题;共4分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共7题;共60分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、。

南京市届高三第一次模拟考试数学卷-5页文档资料

南京市届高三第一次模拟考试数学卷-5页文档资料

南京市2019届高三第一次模拟考试数学2019.01 注意事项:1.本试卷共4页,包括填空题(第1题~第14题)、解答题(第15题~第20题)两部分.本试卷满分为l60分,考试时间为120分钟.2·答题前,请务必将自己的姓名、学校、班级、学号写在答题纸的密封线内-试题的答案写在答题纸上对应题目的答案空格内。

考试结束后,交回答题纸.参考公式,1.样本数据x1,x2,x3,…x n的方差其中是这组数据的平均数.2.柱体、锥体的体积公式:,其中s是柱(锥)体的底面面积,h 是高.一、填空题:本大题共l4小题,每小题5分,共70分.请把答案填写在答题纸相应的位置上.1.函数的定义域是 ___ ▲___.2.已知复数=满足(z--2)i=l+i(i为虚数单位),则z的模为___ ▲___ .3.已知实数x,y满足则Z=2x+y的最小值是___ ▲___4 如图所示的流程图,若输入x=-9.5,则输出的结果为___ ▲___5在集合A={2,3}中随机取一个元素m,在集合B={1,2,3}中随机取一个元素n,得到点P(m,n),则点P在圆x2+y2=9内部的概率为___ ▲___6.已知平面向量a,b满足|a|=1,|b|=2 n与b的夹角为.以a,b为邻边作平行四边形,则此平行四边形的两条对角线中较短的一条的长度为___ ▲___7.为了分析某篮球运动员在比赛中发挥的稳定程度,统计了该运动员在6场比赛中的得分,用茎叶图表示如右图,则该组数据的方差为 ___ ▲___.8.在△ABC中,角A,B,c所对的边分别为a,c,c 若,则角A的大小为__ ▲___.9.已知双曲线c: (a>0,b>o)的右顶点、右焦点分别为A,F,它的左准线与z轴的交点为B,若A是线段BF的中点,则双曲线C的离心率为__ ▲___·10.已知正数数列{a n)对任意.若a2=4,则a9=__ ▲___11.已知l,m是两条不同的直线,a,β是两个不同的平面.下列命题:[来源:Z#xx#k] 其中真命题是 _ ___▲___ (写出所有真命题的序号).12.已知.若实数m,n满足,则m十n的最小值是_ ___▲__·13.在△ABC中,已知BC=2,,则△ABC面积的最大值是___▲__14.若直角坐标平面内两点P,Q满足条件:①P、Q都在函数的图象上;②P、Q关于原点对称,则称点对(P,Q)是函数的一个“友好点对’(点对(P,Q)与点对(Q,P)看作同一个“友好点对).已知函数则的“友好点对”有___▲__个·二、解答题:本大翘共6小题,共计90分.请在答题纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分l4分)已知函数的最小正周期·16.(本题满分l4分)如图,在棱长均为4的三棱柱ABC—A1B1C1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南京市高考数学一模试卷(理科)(I)卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分) (2016高二下·湖南期中) 设集合U={1,2,3,4,5},A={1,3,5},B={2,5},则A∩(∁UB)等于()
A . {2}
B . {2,3}
C . {3}
D . {1,3}
2. (2分)(2018·东北三省模拟) 若复数为纯虚数,则实数的值为()
A . 1
B . 0
C .
D . -1
3. (2分)若sin(2x+ )=a(|a|≤1),则cos(﹣2x)的值是()
A . ﹣a
B . a
C . |a|
D . ±a
4. (2分)下列命题中是假命题的是()
A .
B . ,
C .
D . ,
5. (2分) (2016高二下·江门期中) 公差为1的等差数列{an}中,a1 , a3 , a6成等比数列,则{an}的前10项和为()
A . 65
B . 80
C . 85
D . 170
6. (2分)(2017·重庆模拟) 正数a、m、b构成公差为﹣的等差数列,a,b的等比中项是2 ,则双曲线﹣ =1的离心率为()
A .
B .
C .
D .
7. (2分) (2019高二下·深圳月考) 下列函数中,在(0,+∞)内为增函数的是().
A . f(x)=sin 2x
B . f(x)=xex
C . f(x)=x3-x
D . f(x)=-x+ln x
8. (2分)(2018·中原模拟) 已知网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()
A .
B .
C .
D .
9. (2分)已知数列{an}的各项均为正数,执行程序框图(如图),当k=4时,S=,则a2014=()
A . 2012
B . 2013
C . 2014
D . 215
10. (2分)现进行医药下乡活动,某医院的4名男医生和4名女医生及2名护士要去两个不同的山区进行义诊,若每个山区去男、女医生各2名,并带1名护士,则不同的分配方法有()
A . 144
B . 72
C . 36
D . 16
11. (2分) (2018高一下·大同期末) 实数满足,则的取值范围是()
A .
B .
C .
D .
12. (2分)方程10sinx=x的根的个数是()
A . 7
B . 8
C . 9
D . 10
二、填空题 (共4题;共4分)
13. (1分)(2017·大理模拟) 在△ABC中,角A,B,C对应的边分别为a,b,c,已知a=4,b=5,cos(B ﹣A)= ,则cosB=________.
14. (1分) (2017高三上·会宁期末) 在△ABC中,角A、B、C所对的边分别为a、b、c,若• = • =2,那么c=________.
15. (1分)(2017·山东模拟) 的展开式的常数项为________(用数字作答)
16. (1分) (2017高一下·乌兰察布期末) 求函数f(x)=sinx﹣ cosx的单调区间________.
三、解答题 (共7题;共60分)
17. (10分) (2016高一下·重庆期中) 已知递增的等差数列{an},首项a1=2,Sn为其前n项和,且2S1 ,2S2 , 3S3成等比数列.
(1)求{an}的通项公式;
(2)设bn= ,求数列{bn}的前n项和Tn.
18. (10分) (2016高二下·丹阳期中) 一位网民在网上光顾某网店,经过一番浏览后,对该店铺中的A,B,C三种商品有购买意向.已知该网民购买A种商品的概率为,购买B种商品的槪率为,购买C种商品的概率为.假设该网民是否购买这三种商品相互独立
(1)求该网民至少购买2种商品的概率;
(2)用随机变量η表示该网民购买商品的种数,求η的槪率分布和数学期望.
19. (10分)如图,已知平面ABC⊥平面BCDE,△DEF与△ABC分别是棱长为1与2的正三角形,AC∥DF,四边形BCDE为直角梯形,DE∥BC,BC⊥CD,CD=1,点G为△AB C的重心,N为AB中点,.
(1)当时,求证:GM∥平面DFN;
(2)若时,试求二面角M﹣BC﹣D的余弦值.
20. (5分)(2016·四川模拟) 已知圆锥曲线 E:.
(I)求曲线 E的离心率及标准方程;
(II)设 M(x0 , y0)是曲线 E上的任意一点,过原点作⊙M:(x﹣x0)2+(y﹣y0)2=8的两条切线,分别交曲线 E于点 P、Q.
①若直线OP,OQ的斜率存在分别为k1 , k2 ,求证:k1k2=﹣;
②试问OP2+OQ2是否为定值.若是求出这个定值,若不是请说明理由.
21. (10分)(2018·益阳模拟) 已知函数(,为自然对数的底数).
(1)讨论函数的单调区间;
(2)当时,恒成立,求实数的最小值.
22. (10分)椭圆C: + =1,直线l的极坐标方程2ρcos(θ+ )+9=0.
(1)写出椭圆C的参数方程及直线l的直角坐标方程;
(2)设A(1,0),若椭圆C上的点P满足到点A的距离与其到直线l的距离相等,求点P坐标.
23. (5分) (2017高三下·漳州开学考) 设函数f(x)=|2x+1|+|x﹣a|,a∈R.
(Ⅰ)当a=2时,求不等式f(x)<4的解集.
(Ⅱ)当a<时,对于∀x∈(﹣∞,﹣ ],都有f(x)+x≥3成立,求a的取值范围.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共60分) 17-1、
17-2、
18-1、
18-2、19-1、
19-2、
20-1、
21-1、
21-2、22-1、
22-2、23-1、。

相关文档
最新文档