专题复习空间几何体

合集下载

高中数学必修空间几何体知识点精选全文完整版

高中数学必修空间几何体知识点精选全文完整版

可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。

如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。

2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。

旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。

这条定直线叫做旋转体的轴。

多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。

两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。

用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。

棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。

(2)侧棱相等且相互平行。

(3) 侧面是平行四边形。

正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。

用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。

按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。

特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。

专题37 空间几何体(知识梳理)(新高考地区专用)(解析版)

专题37 空间几何体(知识梳理)(新高考地区专用)(解析版)

专题37 空间几何体(知识梳理)一、空间几何体1、空间几何体的基本定义如果只考虑一个物体占有空间部分的形状和大小,而不考虑其它因素,则这个空间部分就是一个几何体。

围成体的各个平面图形叫做体的面;相邻两个面的公共边叫做体的棱;棱和棱的公共点叫做体的顶点。

几何体不是实实在在的物体。

平面的特性:无限延展、处处平直、没有其他性质(如厚度、大小、面积、体积、重量等)。

例1-1.下列是几何体的是( )。

A 、方砖B 、足球C 、圆锥D 、魔方【答案】C【解析】几何体不是实实在在的物体,故选C 。

例1-2.判断下列说法是否正确:(1)平静的湖面是一个平面。

(×)(2)一个平面长3cm ,宽4cm 。

(×)(3)三个平面重叠在一起,比一个平面厚。

(×)(4)书桌面是平面。

(×)(5)通过改变直线的位置,可以把直线放在某个平面内。

(√)【解析】平面可以看成是直线平行移动形成的,所以直线通过改变其位置,可以放在某个平面内。

(6)平行四边形是一个平面。

(×)(7)长方体是由六个平面围成的几何体。

(×)(8)任何一个平面图形都是一个平面。

(×)(9)长方体一个面上任一点到对面的距离相等。

(√)(10)空间图形中先画的线是实线,后画的线是虚线。

(×)(11)平面是绝对平的,无厚度,可以无限延展的抽象的数学概念。

(√) 例1-3.下列说法正确的是 。

①长方体是由六个平面围成的几何体;②长方体可以看作一个矩形ABCD 上各点沿铅垂线向上移动相同距离到矩形D C B A ''''所围成的几何体;③长方体一个面上的任一点到对面的距离相等。

【答案】②③【解析】①错,因长方体由6个矩形(包括它的内部)围成,注意“平面”与“矩形”的本质区别;②正确;③正确。

[多选]例1-4.下列说法正确的是( )。

A 、任何一个几何体都必须有顶点、棱和面B 、一个几何体可以没有顶点C 、一个几何体可以没有棱D 、一个几何体可以没有面【答案】BC【解析】球只有一个曲面围成,故A 错、B 对、C 对,由于几何体是空间图形,故一定有面,D 错,故选BC 。

立体几何复习知识点

立体几何复习知识点

立体几何复习知识点在数学的学习中,立体几何是一个重要且富有挑战性的部分。

它要求我们具备空间想象能力、逻辑推理能力以及对各种几何概念和定理的熟练掌握。

接下来,让我们一起系统地复习一下立体几何的相关知识点。

一、空间几何体(一)棱柱棱柱是由两个互相平行且全等的多边形底面,以及侧面都是平行四边形的多面体。

棱柱根据侧棱与底面的关系可分为直棱柱和斜棱柱。

直棱柱的侧棱垂直于底面,斜棱柱的侧棱不垂直于底面。

(二)棱锥棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面所组成的多面体。

如果棱锥的底面是正多边形,且顶点在底面的射影是底面的中心,那么这样的棱锥叫做正棱锥。

(三)棱台棱台是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

(四)圆柱以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面叫做圆柱的底面,平行于轴的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。

(五)圆锥以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

旋转轴为圆锥的轴,垂直于轴的边旋转而成的圆面叫做圆锥的底面,斜边旋转而成的曲面叫做圆锥的侧面,无论旋转到什么位置,斜边都叫做圆锥侧面的母线。

(六)圆台用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分叫做圆台。

(七)球以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

半圆的圆心叫做球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径。

二、空间几何体的表面积和体积(一)棱柱、棱锥、棱台的表面积棱柱、棱锥、棱台的表面积就是各个面的面积之和。

(二)圆柱、圆锥、圆台的侧面积和表面积圆柱的侧面积公式为\(S_{侧}=2\pi rh\),表面积公式为\(S = 2\pi r(r + h)\);圆锥的侧面积公式为\(S_{侧}=\pi rl\),表面积公式为\(S =\pi r(r + l)\);圆台的侧面积公式为\(S_{侧}=\pi (r + R)l\),表面积公式为\(S =\pi (r^2 +R^2 + rl + Rl)\)。

新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面

新教材适用2024版高考数学二轮总复习第1篇专题4立体几何第1讲空间几何体核心考点2空间几何体的表面

核心考点2 空间几何体的表面积与体积核心知识·精归纳1.旋转体的侧面积和表面积(1)S 圆柱侧=2πrl ,S 圆柱表=2πr (r +l )(r 为底面半径,l 为母线长). (2)S 圆锥侧=πrl ,S 圆锥表=πr (r +l )(r 为底面半径,l 为母线长). (3)S 球表=4πR 2(R 为球的半径). 2.空间几何体的体积公式V 柱=Sh (S 为底面面积,h 为高); V 锥=13Sh (S 为底面面积,h 为高); V 球=43πR 3(R 为球的半径).多维题组·明技法角度1:空间几何体的表面积和侧面积1. (2023·大观区校级三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径AB =12 cm ,圆柱体部分的高BC =6 cm ,圆锥体部分的高CD =4 cm ,则这个陀螺的表面积(单位:cm 2)是( C )A .(144+1213)πB .(144+2413)πC .(108+1213)πD .(108+2413)π【解析】 由题意可得圆锥体的母线长为l =62+42=213,所以圆锥体的侧面积为12·12π·213=1213π,圆柱体的侧面积为12π×6=72π,圆柱的底面面积为π×62=36π,所以此陀螺的表面积为1213π+72π+36π=(108+1213)π(cm 2).故选C.2. (2023·黄浦区校级三模)已知正方形ABCD 的边长是1,将△ABC 沿对角线AC 折到△AB ′C 的位置,使(折叠后)A 、B ′、C 、D 四点为顶点的三棱锥的体积最大,则此三棱锥的表面积为 1+32. 【解析】 根据题意,正方形ABCD 中,设AC 与BD 交于点O ,在翻转过程中,当B ′O ⊥面ACD 时,四棱锥B ′-ACD 的高最大,此时四棱锥B ′-ACD 的体积最大,若B ′O ⊥面ACD ,由于OA =OB ′=OC ,则B ′D =B ′A =B ′C =1,则△DB ′C △DB ′A 都是边长为1的等边三角形,S △DB ′A =S △DB ′C =12×1×1×32=34,△ADC 中,AD =DC =1且AD ⊥DC ,则S △ADC =12×1×1=12,同理:S △AB ′C =S △ABC =S △ADC =12,此时,三棱锥的表面积S =S △DB ′A +S △DB ′C +S △ADC +S △AB ′C =1+32. 角度2:空间几何体的体积3. (2023·福州模拟)已知菱形ABCD 的边长为2,∠BAD =60°,则将菱形ABCD 以其中一条边所在的直线为轴,旋转一周所形成的几何体的体积为( B )A .2πB .6πC .43πD .8π【解析】 根据题意,旋转一周所形成的几何体如图,该几何体上部分为圆锥,下部分为在圆柱内挖去一个与上部分相同的圆锥,其体积等于中间圆柱的体积,且中间圆柱的高h =DC =2,底面圆的半径r =BC sin 60°=2×32=3,故要求几何体的体积V =πr 2h =6π.故选B.4.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,E ,F 分别为AB ,BC 的中点,则多面体A 1C 1-AEFC 的体积为 53.【解析】 多面体A 1C 1-AEFC 的体积等于三棱柱ABC -A 1B 1C 1的体积与三棱台EBF -A 1B 1C 1的体积之差,其中三棱柱ABC -A 1B 1C 1的体积为12×2×2×2=4,三棱台EBF -A 1B 1C 1的体积为⎝ ⎛⎭⎪⎫12×1×1+12×2×2+12×1×1×12×2×2×2×13=73,所以多面体A 1C 1-AEFC 的体积为4-73=53. 方法技巧·精提炼1.求几何体的表面积的方法(1)求表面积问题的思路是将立体几何问题转化为平面图形问题,即空间图形平面化,这是解决立体几何的主要出发点;(2)求不规则几何体的表面积时,通常将所给几何体分割成柱、锥、台体,先求这些柱、锥、台体的表面积,再通过求和或作差求得所给几何体的表面积.2.求空间几何体体积的常用方法(1)公式法:直接根据常见柱、锥、台体等规则几何体的体积公式计算;(2)等积法:根据体积计算公式,通过转换空间几何体的底面和高使得体积计算更容易,或是求出一些体积必等;(3)割补法:把不能直接计算体积的空间几何体进行适当分割或补形,转化为可计算体积的几何体.加固训练·促提高1. (2023·平罗县校级模拟)已知圆锥的底面半径为1,侧面展开图的圆心角为23π,则该圆锥的侧面积为( C )A .πB .2πC .3πD .4π【解析】 底面圆周长为2π,母线长为2π2π3=3,所以侧面积为12×2π×3=3π.故选C.2. (2023·普陀区校级模拟)如图,在正四棱锥P -ABCD 中,AP =AB =4,则正四棱锥的体积为 3223.【解析】 连接AC 与BD 交于O ,则O 是正方形ABCD 的中心,∴PO ⊥平面ABCD ,∵AB=4,∴AO =22,∵PA =4,∴PO =16-8=22,∴正四棱锥的体积为V =13S 正方形ABCD ·PO=13×16×22=3223.故答案为3223.3. (2023·琼山区四模)三棱锥A -BCD 中,AC ⊥平面BCD ,BD ⊥CD ,若AB =3,BD =1,则该三棱锥体积的最大值为 23.【解析】 如图所示,因为AC ⊥平面BCD ,即AC 为三棱锥A -BCD 的高,设为x ,又因为BC ⊂平面BCD ,所以AC ⊥BC ,在直角△ABC 中,由AB =3,AC =x ,可得BC =9-x 2,因为BD ⊥CD ,且BD =1,可得CD =BC 2-BD 2=8-x 2,所以三棱锥A -BCD 的体积为V =13S △BCD ·AC =13×128-x 2×1×x =168-x2·x 2≤16×8-x 2+x 22=23,当且仅当8-x 2=x 2时,即x =2时,三棱锥A -BCD 的体积取得最大值,最大值为23.。

空间几何体专题复习

空间几何体专题复习

空间几何体专题第1讲 空间几何体(文/理)热点一 三视图与直观图例1 (1)(·课标全国甲)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2)将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的侧视图为( )答案 (1)C (2)D解析 (1)由三视图可知,组合体的底面圆的面积和周长均为4π,圆锥的母线长l =(23)2+22=4,所以圆锥的侧面积为S锥侧=12×4π×4=8π,圆柱的侧面积S 柱侧=4π×4=16π,所以组合体的表面积S =8π+16π+4π=28π,故选C.(2)所得几何体的轮廓线中,除长方体原有的棱外,有两条是原长方体的面对角线,它们在侧视图中落在矩形的两条边上,另一条是原长方体的体对角线,在侧视图中体现为矩形的自左下至右上的一条对角线,因不可见,故用虚线表示,由以上分析可知,应选D.思维升华 空间几何体的三视图是从空间几何体的正面、左面、上面用平行投影的方法得到的三个平面投影图,因此在分析空间几何体的三视图问题时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱、面的位置,再确定几何体的形状,即可得到结果.跟踪演练1(1)一个几何体的三视图如图所示,则该几何体的直观图可以是()(2)一几何体的直观图如图,下列给出的四个俯视图中正确的是()答案(1)D(2)B解析(1)由俯视图,易知答案为D.(2)由直观图可知,该几何体由一个长方体和一个截角三棱柱组合.从上往下看,外层轮廓线是一个矩形,矩形内部有一条线段连接的两个三角形.热点二几何体的表面积与体积空间几何体的表面积和体积计算是高考中常见的一个考点,解决这类问题,首先要熟练掌握各类空间几何体的表面积和体积计算公式,其次要掌握一定的技巧,如把不规则几何体分割成几个规则几何体的技巧,把一个空间几何体纳入一个更大的几何体中的补形技巧. 例2 (1)(·北京)某三棱锥的三视图如图所示,则该三棱锥的体积为( )A.16B.13C.12D .1 (2)如图,在棱长为6的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在C 1D 1与C 1B 1上,且C 1E =4,C 1F =3,连接EF ,FB ,DE ,BD ,则几何体EFC 1-DBC 的体积为( )A .66B .68C .70D .72答案 (1)A (2)A解析 (1)由三视图知,三棱锥如图所示:由侧视图得高h =1, 又底面积S =12×1×1=12.所以体积V =13Sh =16.(2)如图,连接DF ,DC 1,那么几何体EFC 1-DBC 被分割成三棱锥D -EFC 1及四棱锥D -CBFC 1,那么几何体EFC 1-DBC 的体积为V =13×12×3×4×6+13×12×(3+6)×6×6=12+54=66.故所求几何体EFC1-DBC的体积为66.思维升华(1)求多面体的表面积的基本方法就是逐个计算各个面的面积,然后求和.(2)求体积时可以把空间几何体进行分解,把复杂的空间几何体的体积分解为一些简单几何体体积的和或差.求解时注意不要多算也不要少算.跟踪演练2某几何体的三视图如图所示,则这个几何体的体积为________.答案45 2解析由三视图可知,该几何体为如图所示的多面体ABCDEF(置于长方体ABCD—MNFG中去观察),且点E为DG的中点,可得AB=BC=GE=DE=3,连接AG,所以多面体ABCDEF的体积为V多面体ABCDEF=V三棱柱ADG—BCF-V三棱锥A—GEF=12×(3+3)×3×3-13×(12×3×3)×3=452.热点三多面体与球与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图.如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径.球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.球与旋转体的组合,通常作它们的轴截面解题,球与多面体的组合,通过多面体的一条侧棱和球心(或“切点”“接点”)作出截面图.例3(1)已知三棱锥S-ABC的所有顶点都在球O的球面上,SA⊥平面ABC,SA=23,AB =1,AC=2,∠BAC=60°,则球O的表面积为()A.4π B.12πC.16π D.64π(2)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( )A.500π3 cm 3B.866π3 cm 3C.1 372π3 cm 3D.2 048π3cm 3答案 (1)C (2)A 解析 (1)在△ABC 中,BC 2=AB 2+AC 2-2AB ·AC cos 60°=3, ∴AC 2=AB 2+BC 2, 即AB ⊥BC , 又SA ⊥平面ABC ,∴三棱锥S -ABC 可补成分别以AB =1,BC =3,SA =23为长、宽、高的长方体, ∴球O 的直径=12+(3)2+(23)2=4, 故球O 的表面积为4π×22=16π. (2)过球心与正方体中点的截面如图,设球心为点O ,球半径为R cm ,正方体上底面中心为点A ,上底面一边的中点为点B , 在Rt △OAB 中,OA =(R -2)cm ,AB =4 cm , OB =R cm ,由R 2=(R -2)2+42,得R =5, ∴V 球=43πR 3=5003π(cm 3).故选A.思维升华 三棱锥P -ABC 可通过补形为长方体求解外接球问题的两种情形: (1)点P 可作为长方体上底面的一个顶点,点A 、B 、C 可作为下底面的三个顶点; (2)P -ABC 为正四面体,则正四面体的棱都可作为一个正方体的面对角线.跟踪演练3 在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ABD 的面积分别为22,32,62,则三棱锥A -BCD 的外接球体积为________. 答案6π解析 如图,以AB ,AC ,AD 为棱把该三棱锥扩充成长方体,则该长方体的外接球恰为三棱锥的外接球,∴三棱锥的外接球的直径是长方体的体对角线长. 据题意⎩⎨⎧AB ·AC =2,AC ·AD =3,AB ·AD =6,解得⎩⎨⎧AB =2,AC =1,AD =3,∴长方体的体对角线长为AB 2+AC 2+AD 2=6, ∴三棱锥外接球的半径为62. ∴三棱锥外接球的体积为V =43π·(62)3=6π.1.(山东)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23πB.13+23πC.13+26π D .1+26π 答案 C解析 由三视图知,半球的半径R =22,四棱锥是底面边长为1,高为1的正四棱锥,∴V =13×1×1×1+12×43π×⎝⎛⎭⎫223=13+26π,故选C. 2.(课标全国丙)在封闭的直三棱柱ABC —A 1B 1C 1内有一个体积为V 的球,若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π3答案 B解析 由题意知,底面三角形的内切圆直径为4.三棱柱的高为3,所以球的最大直径为3,V 的最大值为9π2.3.(·山东)在梯形ABCD 中,∠ABC =π2,AD ∥BC ,BC =2AD =2AB =2.将梯形ABCD 绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( ) A.2π3 B.4π3 C.5π3 D .2π 答案 C解析 过点C 作CE 垂直AD 所在直线于点E ,梯形ABCD 绕AD 所在直线旋转一周而形成的旋转体是由以线段AB 的长为底面圆半径,线段BC 为母线的圆柱挖去以线段CE 的长为底面圆半径,ED 为高的圆锥,如图所示,该几何体的体积为V =V 圆柱-V圆锥=π·AB 2·BC -13·π·CE 2·DE =π×12×2-13π×12×1=5π3,故选C.4.(·浙江)如图,已知平面四边形ABCD ,AB =BC =3,CD =1,AD =5,∠ADC =90°,沿直线AC 将△ACD 翻折成△ACD ′,直线AC 与BD ′所成角的余弦的最大值是________.答案66解析 设直线AC 与BD ′所成角为θ,平面ACD 翻折的角度为α,设点O 是AC 的中点,由已知得AC =6,如图,以OB 为x 轴,OA 为y 轴,过点O 与平面ABC 垂直的直线为z 轴,建立空间直角坐标系, 由A ⎝⎛⎭⎫0,62,0,B ⎝⎛⎭⎫302,0,0,C ⎝⎛⎭⎫0,-62,0,作DH ⊥AC 于点H ,翻折过程中,D ′H 始终与AC 垂直,CH =CD 2CA =16=66,则OH =63,DH =1×56=306,因此可设D ′⎝⎛⎭⎫-306cos α,-63,306sin α, 则BD ′——→=⎝⎛⎭⎫-306cos α-302,-63,306sin α,与CA →平行的单位向量为n =(0,1,0),所以cos θ=|cos 〈BD ′——→,n 〉|=⎪⎪⎪⎪⎪⎪⎪⎪BD ′——→·n |BD ′——→|·|n |=639+5cos α,所以cos α=-1时,cos θ取最大值6 6.1.以三视图为载体,考查空间几何体面积、体积的计算.2.考查空间几何体的侧面展开图及简单的组合体问题.1.一个几何体的三视图及其尺寸如图所示,则该几何体的表面积为()A.16 B.82+8C.22+26+8 D.42+46+8押题依据求空间几何体的表面积或体积是立体几何的重要内容之一,也是高考命题的热点.此类题常以三视图为载体,给出几何体的特征,求几何体的表面积或体积.答案 D解析由三视图知,该几何体是底面边长为22+22=22的正方形,高PD=2的四棱锥P-ABCD,因为PD⊥平面ABCD,且四边形ABCD是正方形,易得BC⊥PC,BA⊥P A,又PC=PD2+CD2=22+(22)2=23,所以S△PCD=S△P AD=12×2×22=22,S△P AB=S△PBC=12×22×23=2 6.所以几何体的表面积为46+42+8.2.在正三棱锥S-ABC中,点M是SC的中点,且AM⊥SB,底面边长AB=22,则正三棱锥S -ABC 的外接球的表面积为( ) A .6π B .12π C .32πD .36π押题依据 多面体的外接球一般借助补形为长方体的外接球解决,解法灵活,是高考的热点. 答案 B解析 因为三棱锥S -ABC 为正三棱锥,所以SB ⊥AC ,又AM ⊥SB ,AC ∩AM =A ,所以SB ⊥平面SAC ,所以SB ⊥SA ,SB ⊥SC ,同理,SA ⊥SC ,即SA ,SB ,SC 三线两两垂直,且AB =22,所以SA =SB =SC =2,所以(2R )2=3×22=12,所以球的表面积S =4πR 2=12π,故选B.3.已知半径为1的球O 中内接一个圆柱,当圆柱的侧面积最大时,球的体积与圆柱的体积的比值为________.押题依据 求空间几何体的体积是立体几何的重要内容之一,也是高考的热点问题之一,主要是求柱体、锥体、球体或简单组合体的体积.本题通过球的内接圆柱,来考查球与圆柱的体积计算,设问角度新颖,值得关注. 答案423解析 如图所示,设圆柱的底面半径为r ,则圆柱的侧面积为S =2πr ×21-r 2=4πr1-r 2≤4π×r 2+(1-r 2)2=2π(当且仅当r 2=1-r 2,即r =22时取等号). 所以当r =22时, V 球V 圆柱=4π3×13π(22)2×2=423.A 组 专题通关1.如图所示,将图(1)中的正方体截去两个三棱锥,得到图(2)中的几何体,则该几何体的侧视图为( )答案 B解析 由所截几何体可知,FC 1被平面AD 1E 遮挡,可得B 图.2.下图是棱长为2的正方体的表面展开图,则多面体ABCDE 的体积为( )A .2 B.23 C.43 D.83答案 D解析 多面体ABCDE 为四棱锥(如图),利用割补法可得其体积V =4-43=83,选D.3.某几何体的三视图如图所示,该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π4答案 B解析 由三视图可知,该几何体是由一个棱长为2的正方体切去两个四分之一圆柱而成,所以该几何体的体积为V =(22-2×14×π×12)×2=8-π.4.(·课标全国Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r 等于( )A .1B .2C .4D .8 答案 B 解析 如图,该几何体是一个半球与一个半圆柱的组合体,球的半径为r ,圆柱的底面半径为r ,高为2r ,则表面积S =12×4πr 2+πr 2+4r 2+πr ·2r =(5π+4)r 2.又S =16+20π,∴(5π+4)r 2=16+20π,∴r 2=4,r =2,故选B.5.如图所示,平面四边形ABCD 中,AB =AD =CD =1,BD =2,BD ⊥CD ,将其沿对角线BD 折成四面体A ′BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′BCD 的顶点在同一个球面上,则该球的体积为( )A.32π B .3π C.23π D .2π答案 A解析 如图所示,取BD 的中点E ,BC 的中点O ,连接A ′E ,EO ,A ′O ,OD .因为平面A ′BD ⊥平面BCD ,A ′E ⊥BD ,平面A ′BD ∩平面BCD =BD , A ′E ⊂平面A ′BD , 所以A ′E ⊥平面BCD .因为A ′B =A ′D =CD =1,BD =2, 所以A ′E =22,EO =12,所以OA ′=32. 在Rt △BCD 中,OB =OC =OD =12BC =32,所以四面体A ′BCD 的外接球的球心为O ,球的半径为32,所以V 球=43π(32)3=32π.故选A.6.有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示),∠ABC =45°,AB =AD =1,DC ⊥BC ,则这块菜地的面积为________.答案 2+22解析 如图,在直观图中,过点A 作AE ⊥BC ,垂足为点E ,则在Rt △ABE 中,AB =1,∠ABE =45°,∴BE =22. 而四边形AECD 为矩形,AD =1, ∴EC =AD =1,∴BC =BE +EC =22+1. 由此可还原原图形如图.在原图形中,A ′D ′=1,A ′B ′=2,B ′C ′=22+1, 且A ′D ′∥B ′C ′,A ′B ′⊥B ′C ′, ∴这块菜地的面积为S =12(A ′D ′+B ′C ′)·A ′B ′ =12×(1+1+22)×2=2+22. 7.(·浙江)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm 2,体积是________cm 3.答案 72 32解析 由三视图可知,该几何体为两个相同长方体的组合,长方体的长、宽、高分别为4 cm 、2 cm 、2 cm ,其直观图如下:其体积V =2×2×2×4=32(cm 3),由于两个长方体重叠部分为一个边长为2的正方形,所以表面积为S =2(2×2×2+2×4×4)-2×2×2=2×(8+32)-8=72(cm 2).8.如图所示,从棱长为6 cm 的正方体铁皮箱ABCD —A 1B 1C 1D 1中分离出来由三个正方形面板组成的几何图形.如果用图示中这样一个装置来盛水,那么最多能盛的水的体积为________ cm 3.答案 36解析 最多能盛多少水,实际上是求三棱锥C 1—CD 1B 1的体积. 又111111——C CD B C B C D V V 三棱锥三棱锥==13×(12×6×6)×6=36(cm 3), 所以用图示中这样一个装置来盛水,最多能盛36 cm 3体积的水.9.一块石材表示的几何体的三视图如图所示.将该石材切削、打磨,加工成球,则能得到的最大球的半径等于____________.答案 2解析 由三视图可知该几何体是一个直三棱柱,如图所示.由题意知,当打磨成的球的大圆恰好与三棱柱底面直角三角形的内切圆相同时,该球的半径最大,故其半径r =12×(6+8-10)=2.10.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8、高为4的等腰三角形,侧视图是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ; (2)求该几何体的侧面积S .解 由已知可得,该几何体是一个底面为矩形,高为4,顶点在底面的投影是矩形中心的四棱锥E -ABCD .(1)V =13×(8×6)×4=64.(2)四棱锥E -ABCD 的两个侧面EAD ,EBC 是全等的等腰三角形,且BC 边上的高h 1= 42+(82)2=42;另两个侧面EAB ,ECD 也是全等的等腰三角形,AB 边上的高h 2= 42+(62)2=5.因此S =2×(12×6×42+12×8×5)=40+24 2.B 组 能力提高11.(·湖南)某工件的三视图如图所示,现将该工件通过切削,加工成一个体积尽可能大的长方体新工件,并使新工件的一个面落在原工件的一个面内,则原工件材料的利用率为(材料利用率=新工件的体积原工件的体积)( )A.89πB.169πC.4(2-1)3πD.12(2-1)3π答案 A解析 设三视图对应的几何体为底面半径为1,高为2的圆锥.如图,设长方体的长、宽、高分别为a 、b 、c ,上、下底面中心分别为O 1,O 2,上方截得的小圆锥的高为h ,底面半径为r ,则a 2+b 2=4r 2.由三角形相似,得SO 1SO 2=O 1AO 2B,即h 2=r1,则h =2r .长方体的体积为V =abc =ab (2-2r )≤a 2+b 22×(2-2r )=2r 2(2-2r )=4r 2-4r 3(当且仅当a =b 时取等号,且0<r <1).设y =4r 2-4r 3(0<r <1),则y ′=8r -12r 2.由y ′=0,得r =0或r =23.由y ′>0,得0<r <23;由y ′<0,得23<r <1.故当r =23时,y max =4×⎝⎛⎭⎫232-4×⎝⎛⎭⎫233=1627,即V max =1627. ∴原工件材料的利用率为162713π×12×2=89π,故选A.12.已知在三棱锥P —ABC 中,P A ⊥平面ABC ,AB =AC =P A =2,且在△ABC 中,∠BAC =120°,则三棱锥P —ABC 的外接球的体积为________. 答案205π3解析 由余弦定理得:BC 2=AB 2+AC 2-2AB ·AC ·cos ∠BAC , ∴BC 2=22+22-2×2×2×(-12)=12,∴BC =2 3.设平面ABC 截球所得截面圆半径为r ,则2r =23sin 120°=4,所以r =2.由P A =2且P A ⊥平面ABC 知球心到平面ABC 的距离为1,所以球的半径为R =12+22=5,所以V球=43πR 3=205π3. 13.如图,侧棱长为23的正三棱锥V -ABC 中,∠AVB =∠BVC =∠CVA =40°,过点A 作截面△AEF ,则截面△AEF 的周长的最小值为____________.答案 6解析 沿着侧棱VA 把正三棱锥V -ABC 展开在一个平面内,如图,则AA ′即为截面△AEF 周长的最小值,且∠AVA ′=3×40°=120°. 在△VAA ′中,由余弦定理可得AA ′=6,故答案为6.14.如图,在Rt △ABC 中,AB =BC =4,点E 在线段AB 上.过点E 作EF ∥BC 交AC 于点F ,将△AEF 沿EF 折起到△PEF 的位置(点A 与点P 重合),使得∠PEB =30°.(1)求证:EF ⊥PB ;(2)试问:当点E 在何处时,四棱锥P —EFCB 的侧面PEB 的面积最大?并求此时四棱锥P —EFCB 的体积.(1)证明 ∵EF ∥BC 且BC ⊥AB , ∴EF ⊥AB ,即EF ⊥BE ,EF ⊥PE . 又BE ∩PE =E ,∴EF ⊥平面PBE , 又PB ⊂平面PBE ,∴EF ⊥PB .(2)解 设BE =x ,PE =y ,则x +y =4. ∴S △PEB =12BE ·PE ·sin ∠PEB=14xy ≤14⎝⎛⎭⎫x +y 22=1. 当且仅当x =y =2时,S △PEB 的面积最大. 此时,BE =PE =2.由(1)知EF ⊥平面PBE ,∴平面PBE ⊥平面EFCB , 在平面PBE 中,作PO ⊥BE 于点O , 又平面PBE ∩平面EFCB =BE , ∴PO ⊥平面EFCB .即PO 为四棱锥P —EFCB 的高. 又PO =PE ·sin 30°=2×12=1,S EFCB =12×(2+4)×2=6,∴V P —BCFE =13×6×1=2.。

高考数学(文)《立体几何》专题复习

高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

2023年高考数学一轮复习精讲精练(新高考专用)专题33:空间几何体(练习版)

专题33:空间几何体精讲温故知新一.空间几何体的结构1.多面体一般地,由若干个平面多边形围成的几何体叫做多面体。

围成多面体的各个多边形叫做多面体的面;两个面的公共边叫做多面体的棱;棱与棱的公共点叫做多面体的顶点。

2.旋转体一条平面曲线,包括直线,绕它所在平面内的一条定直线旋转所成的曲面叫做旋转面。

封闭的旋转面围成的几何体叫做旋转体。

这条定直线叫做旋转体的轴。

3.棱柱一般地,有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

在棱柱中,两个互相平行的面叫做棱柱的底面,它们是全等的多边形,其余各面叫做棱柱的侧面,它们都是平行四边形,相邻两边的公共边叫做棱柱的侧棱,侧面和底面的公共顶点叫做棱柱的顶点。

棱柱的底面可以是三角形、四边形、五边形,我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱。

一般地,我们把侧面垂直于底面的棱柱叫做直棱柱,侧面不垂直于底面的棱柱叫做斜棱柱,底面是正多边形的,直棱柱叫做正棱柱,底面是平行四边形的四棱柱,也叫做平行六面体。

4.棱锥一般地,有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

这个多边形面叫做棱锥的底面,有公共顶点的各个三角形面叫做棱锥的侧面,相邻两边的公共边叫做棱锥的侧棱,这侧面的公共顶点叫做棱锥的顶点。

棱锥,用表示顶点和各面各顶点的字母来表示,其中三棱锥又叫四面体,底面是正多边形并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥。

5.棱台用一个平行于圆锥底面的平面去截棱锥,我们把底面和截面之间那部分多面体叫做棱台。

在棱台中,原棱锥的底面和截面分别叫做棱台的下底面和上底面面,类似于棱柱、棱锥,棱台也有侧面、侧棱和顶点。

6.圆柱与矩形的一边所在直线为旋转轴,其余三边旋转一周形成的面所围成的旋转体叫做圆柱。

旋转轴叫做圆柱的轴,垂直于轴的边旋转而成的圆面,叫做圆柱的底面,平行的边旋转而成的曲面叫做圆柱的侧面,无论旋转到什么位置,平行于轴的边叫做圆柱侧面的母线。

必修2第一章空间几何体单元复习课件人教新课标

必修2第一章空间几何体单元复习课件人教新课标
3. 棱台、圆台可看作是棱锥、圆 锥由平面截去一部分所得,所以棱台、 圆台的问题常转化为棱锥、圆锥.
4. 画空间几何体的三视图时注意 长对正,高平齐,宽相等.
5. 画空间几何体的直观图时注意 x,y轴相交成45°,平行x轴的线段的长 度保持不变.平行y轴的线段的长度变为 本来的一半.
要点总结
1.1空间几何体的结构
1、画轴 2、画底面
3、画侧棱 4、成图
确定平行线段 确定线段长度
1.3空间几何体的表面积与体积
1.3.1柱体、椎体、台体、球体的 表面积与体积
r O
r ' O
l r’=r
l r’=0
l
O
r 上底扩大
O
r 上底缩小
O
S柱 2r(r l) S台 (r2 r 2 rl rl ) S锥 r(r l)
侧棱 D' A'
D
A
C' 上底面
B' 侧面 C
下底面
B
棱锥特点: 1.可看作用一个平行于棱锥 底面的平面去截棱锥.
O'

母线
侧面
O
底面
母线 S 轴
侧面
底面
O
圆柱特点: 1.以矩形的一边所在直线为 旋转轴,其余三边旋转形成 的面所围成的旋转体.
圆锥特点: 1.以直角三角形的一条直角 边所在直线为旋转轴,其余 两边旋转形成的面所围成的 旋转体.

母线 O'
侧面
O
底面
圆台特点: 1.用平行于圆锥底面的平面 去截圆锥,底面与截面之间 的部分.
球体特点:
半径 1.以半圆的直径所在直线为
O
球心 旋转轴,半圆面旋转一周形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档