第一章 有理数奥数题

合集下载

人教版七年级数学上册 第一章 有理数 专题练习试题(含答案)

人教版七年级数学上册 第一章 有理数 专题练习试题(含答案)

人教版七年级数学第一章 有理数 专题练习试题小专题(一) 有理数的加减运算有理数加减运算的简便方法归纳方法1 相反数结合法【例1】 计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.方法2 同号结合法——把正数和负数分别结合相加【例2】 计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)+(-10-2)=20-12=8.方法3 同分母结合法【例3】 (1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.方法4 凑整法——分数相加,把相加得整数的数结合相加【例4】 计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.方法5 分解法——将一个数拆分成两个数的和或差【例5】 计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =-1-56-5-23+24+34+3+12=(-1)+(-56)+(-5)+(-23)+24+34+3+12=[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034.方法6 裂项相消法【例6】 观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110;(2)计算12+16+112+120+…+19 900的值为99100. 易错点 分解带分数时弄错符号【例7】 计算:634+313-514-312+123. 解:原式=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.强化训练计算(能用简便方法计算的尽量用简便方法):(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(3)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7+(-7)=0.(4)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=112.(5)34-72+(-16)-(-23)-1; 解:原式=34-72-16+23-1 =-134.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =14-14+[112+(-512)+(-23)](7)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(8)-212+(+56)+(-0.5)+(+116); 解:原式=[-212+(-0.5)]+[(+56)+(+116)] =-3+2=-1.(9)-478-(-512)+(-412)-318; 解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.小专题(二) 有理数的乘除运算有理数混合运算的简便方法归纳方法1 运用乘法的交换律和结合律【例1】 计算:531×(-29)×(-3115)×(-92).解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.方法2 正用分配律【例2】 计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.方法3 逆用分配律【例3】 计算:4×(-277)-3×(-277)-6×277. 解:原式=-277×(4-3+6) =-27.方法4 除法变乘法,再利用分配律【例4】 计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =-75+125-285=-235.强化训练计算:(1)54×(-95)+38×(-95)-8×95;解:原式=(-95)×(54+38+8)= -9 500.(2)(-13)×(-134)×113×⎝⎛⎭⎫-167; 解:原式=-13×134×113×167=-⎝⎛⎭⎫13×113×⎝⎛⎭⎫134×167 =-1×2=-2.(3)⎝⎛⎭⎫29-14+118×(-36);解:原式=29×(-36)-14×(-36)+118×(-36)=-8+9+(-2)=1+(-2)=-1.(4)⎝⎛⎭⎫13+16-25÷⎝⎛⎭⎫-130;解:原式=13×(-30)+16×(-30)-25×(-30) =-10+(-5)-(-12)=-10-5+12=-3.(5)⎝⎛⎭⎫79-56+318×18+3.95×6-1.45×6.解:原式=79×18-56×18+318×18+(3.95-1.45)×6 =14-15+3+2.5×6=2+15=17.小专题(三) 有理数的混合运算计算:(1)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=2×9÷(-1)=-18.(2)-0.75×(-32)÷(-94); 解:原式=-34×(-32)×(-49) =-12.(3)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(4)(12-58-14)×(-24); 解:原式=12×(-24)-58×(-24)-14×(-24) =-12+15+6=9.(5)24÷(32-43)-62122×22; 解:原式=24÷(96-86)-(6+2122)×22 =24÷16-132-21 =24×6-132-21=144-132-21=-9.(6)(-5)÷(-97)×45×(-94)÷7; 解:原式=-5×79×45×94×17=-5×45×(79×94)×17=-4×(74×17) =-4×14=-1.(7)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(8)391314×(-14); 解:原式=(40-114)×(-14) =40×(-14)-114×(-14) =-560+1=-559.(9)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178. (10)(-5)-(-5)÷10×110×(-5); 解:原式=(-5)-(-5)×110×110×(-5) =-5-14=-514.(11)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(12)(-58)×(-4)2-0.25×(-5)×(-4)3; 解:原式=(-58)×16-0.25×(-5)×(-64) =-10-80=-90.(13)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(14)(-42)÷(83)2+112×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(15)(-2)3-16×(38-1)+2÷(12-14-16); 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.(16)(-48)×(-16-116+34)-1.85×6+3.85×6. 解:原式=(-48)×(-16)+(-48)×(-116)+(-48)×34+6×(-1.85+3.85) =8+3-36+12=-13.小专题(四) 数列规律探索观察下面三行数:-2,4,-8,16,-32,64,…;①0,6,-6,18,-30,66,…;②-1,2,-4,8,-16,32,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)取每行的第10个数,计算这三个数的和.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,….(2)第②行每个数是第①行每个数加2得到的;第③行每个数是第①行每个数除以2得到的.(3)(-2)10+(-2)10+2+(-2)10÷2=(1+1+12)×(-2)10+2 =52×210+2 =2 562.1.观察下面三行数:-3,9,-27,81,…;①1,-3,9,-27,…;②-2,10,-26,82,….③(1)第①行数按什么规律排列?(2)第②③行数与第①行数分别有什么关系?(3)分别写出第①②③行的第100个数,并求出它们的和.解:(1)第①行数是-3,(-3)2,(-3)3,(-3)4,….(2)第②行每个数是第①行每个数除以-3得到的;第③行每个数是第①行每个数加1得到的.(3)第①②③行的第100个数分别是(-3)100,(-3)100÷(-3),(-3)100+1.(-3)100+(-3)100÷(-3)+(-3)100+1=[1+(-13)+1]×(-3)100+1 =53×3100+1 =5×399+1.2.观察下面三行数:2,-4,8,-16,32,-64,…;①4,-2,10,-14,34,-62,…;②1,-2,4,-8,16,-32,….③(1)第①行第8个数为-256,第②行第8个数为 -254,第③行第8个数-128;(2)设第一行第n 个数为x ,则第二行第n 个数为x +2,第三行第n 个数为x 2;取每行的第n 个数,这三个数的和等于1 282,求这三个数.解:根据题意,得x +x +2+x 2=1 282,解得x =512.所以x +2=514,x 2=256. 答:这三个数是512,514,256.3.观察有规律的整数-1,2,-3,4,-5,6,…按照如图所示的方式排成的数阵.-12 -3 4-5 6 -7 8 -910 -11 12 -13 14 -15 16…(1)按照该数阵呈现的规律排下去,那么第10行共有19个数,其中最左侧的一个是82,最右侧的一个是100;(2)按照该数阵呈现的规律排下去,那么第10行从左数第9个数是90.4.记P 1=-2,P 2=(-2)×(-2),P 3=(-2)×(-2)×(-2),…,P n =(-2)×(-2)×…×(-2).n 个(1)计算P 4+P 6的值;(2)计算2P 2 019+P 2 020的值;(3)猜想2P n 与P n +1的关系.解:(1)P 4+P 6=(-2)4+(-2)6=80.(2)2P 2 019+P 2 020=2×(-2)2 019+(-2)2 020=-22 020+22 020=0.(3)2P n +P n +1=0.小专题(五) 本章易错专练1.下列说法:①-213是负分数;②3.6不是正数;③非负有理数不包括零;④正整数、负整数统称为整数;⑤零是最小的有理数,其中正确的有(A )A .1个B .2个C .3个D .4个2.化简:(1)-(-2)=2;_ (2)-|-2|=-2;(3)|-(-2)|=2;_ (4)(-1)2=1;(5)-12=-1;_ (6)-(-1)2=-1.3.计算:(1)-143=-164; (2)-324=-94; (3)-(-23)2=-49; (4)-(-2)4=-16; (5)-(-2)3=8;_ (6)[-(-2)]3=8.4.|-12|的相反数是-12. 5.用四舍五入法将12.897 2精确到0.01的近似数是12.90.6.在数轴上,距离表示数1的点3个单位长度的点表示的数是-2或4.7.计算: (1)-38÷35×53;解:原式=-38×53×53=-2524.(2)-12-(-12)3÷4; 解:原式=-1-(-18)÷4 =-1+18×14=-1+132=-3132.(3)24÷(13-18-16). 解:原式=24÷124=24×24=576.8.已知|x|=1,|y|=2,且|x -y|=y -x ,求x +y 的值. 解:因为|x -y|=y -x ,所以x -y<0,即x<y.因为|x|=1,|y|=2,所以y=2,x=1或-1.当x=1时,x+y=1+2=3;当x=-1时,x+y=-1+2=1.9.已知|a|=1,|b|=2,|c|=3,且a>b>c,求ab+bc的值.解:因为a>b>c,|a|=1,|b|=2,|c|=3,所以b=-2,c=-3,a=1或-1.当a=1时,ab+bc=1×(-2)+(-2)×(-3)=4;当a=-1时,ab+bc=-1×(-2)+(-2)×(-3)=8.。

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案

人教版七年级数学上册《第一章有理数》测试卷-附含答案1.设|a |=4 |b |=2 且|a +b |=-(a +b ) 则a -b 所有值的和为( ) A .-8 B .-6 C .-4 D .-2点中可能是原点的为( )A .A 点B .B 点C .C 点D .D 点10010AB BC CD DE ===, 则数9910所对应的点在线段( )上.A .AB B .BC C .CD D .DE【详解】 AB BC =14AB ∴=4.计算202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( )A .23B .32C .23-D .32-20202019 1.53⨯⋅⋅⋅⨯个个20193个在一个由六个圆圈组成的三角形里图中圆圈里 要求三角形每条边上的三个数的和S 都相等 那么S 的最大值是( )A .-9B .-10C .-12D .-13【答案】A【详解】解:六个数的和为:()()()()()()12345621-+-+-+-+-+-=- 最大三个数的和为:()()()1236-+-+-=- S=[(21)(6)]39-+-÷=-. 填数如图:故选A.6.|x﹣2|+|x﹣4|+|x﹣6|+|x﹣8|的最小值是a ||||||1a b ca b c++=-那么||||||||ab bc ac abcab bc ac abc+++的值为()A.﹣2B.﹣1C.0D.不确定【答案】45或23【详解】解:∵|x|=11 |y|=14 |z|=20∵x=±11 y=±14 z=±20.∵|x +y |=x +y |y +z |=﹣(y +z ) ∵x +y ≥0 y +z ≤0.∵x +y ≥0.∵x =±11 y =14. ∵y +z ≤0 ∵z =﹣20当x =11 y =14 z =﹣20时 x +y ﹣z =11+14+20=45; 当x =﹣11 y =14 z =﹣20时 x +y ﹣z =﹣11+14+20=23. 故答案为:45或23.8.若|a|+|b|=|a+b| 则a 、b 满足的关系是_____. 【答案】a 、b 同号或a 、b 有一个为0或同时为0 【详解】∵|a|+|b|=|a+b|∵a 、b 满足的关系是a 、b 同号或a 、b 有一个为0 或同时为0 故答案为a 、b 同号或a 、b 有一个为0 或同时为0.9.计算:11111111111111234201723420182342018⎛⎫⎛⎫⎛⎫----⋯-⨯+++⋯+-----⋯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11112342017⎛⎫⨯+++⋯+= ⎪⎝⎭_________.12017++=12018++=1111111111)]()[1()]()2017232018232018232017⨯+++--+++⨯+++++1[1(2018m -+)(2018m m -+a +2b +3c +4d 的最大值是_____. 【答案】81【详解】解:∵a b c d 表示4个不同的正整数 且a +b 2+c 3+d 4=90 其中d >1 ∵d 4<90 则d =2或3 c 3<90 则c =1 2 3或4b 2<90 则b =1 2 3 4 5 6 7 8 9a <90 则a =1 2 3 … 89 ∵4d ≤12 3c ≤12 2b ≤18 a ≤89 ∵要使得a +2b +3c +4d 取得最大值则a 取最大值时 a =90﹣(b 2+c 3+d 4)取最大值 ∵b c d 要取最小值 则d 取2 c 取1 b 取3 ∵a 的最大值为90﹣(32+13+24)=64 ∵a +2b +3c +4d 的最大值是64+2×3+3×1+4×2=81 故答案为:81.11.如图 将一个半径为1个单位长度的圆片上的点A 放在原点 并把圆片沿数轴滚动1周 点A 到达点A '的位置 则点A '表示的数是 _______;若起点A 开始时是与—1重合的 则滚动2周后点A '表示的数是______.【答案】 2π或2π- 41π-或41π--对数轴上分别表示数a和数b的两个点A B之间的距离进行了探究:(1)利用数轴可知5与1两点之间距离是;一般的数轴上表示数m和数n的两点之间距离为.问题探究:(2)请求出|x﹣3|+|x﹣5|的最小值.问题解决:(3)如图在十四运的场地建设中有一条直线主干道L L旁依次有3处防疫物资放置点A B C已知AB=800米BC=1200米现在设计在主干道L旁修建防疫物资配发点P问P建在直线L上的何处时才能使得配发点P到三处放置点路程之和最短?最短路程是多少?()1求A、B两点之间的距离;()2点C、D在线段AB上AC为14个单位长度BD为8个单位长度求线段CD的长;()3在()2的条件下动点P以3个单位长度/秒的速度从A点出发沿正方向运动同时点Q 以2个单位长度/秒的速度从D点出发沿正方向运动求经过几秒点P、点Q到点C的距离相等.)12a++b-=60b=;6)1218-=;在线段ABAC=AB=1418BC∴=18=CD BD()3设经过AD AB=①当点P的数学工具 它使数和数轴上的点建立起对应关系 揭示了数与点之间的内在联系 它是“数形结合”的基础.例如 式子2x -的几何意义是数轴上x 所对应的点与2所对应的点之间的距离;因为()+=--x 1x 1 所以1x +的几何意义就是数轴上x 所对应的点与-1所对应的点之间的距离.结合数轴与绝对值的知识回答下列问题:(1)若23x -= 则x = ;32x x -++的最小值是 .(2)若327x x -++= 则x 的值为 ;若43113x x x ++-++= 则x 的值为 .(3)是否存在x 使得32143x x x +-+++取最小值 若存在 直接写出这个最小值及此时x 的取值情况;若不存在 请说明理由.当P 在A 点左侧时2255PA PB PA AB PA +=+=+>;同理当P 在B 点右侧时2255PA PB PB AB PB +=+=+>;。

七上奥数典型题举一反三 第一章 有理数

七上奥数典型题举一反三 第一章 有理数

第三单元 有理数的运算【知识·规律·方法】1、分数的拆分:将一个分数拆成几个分数的和或差的形式。

2、比较大小:⑴ 分母相同的两个数,分子大的那个分数大;⑵ 分子相同的两个分数,分母大的那个数小;⑶ 分子、分母均不同的两个分数,可以根据分数的基本性质,化同分母或同分子的两个分数,从而变为上述两种情况进行讨论;⑷ 比较大小常用的方法有作差法(与0比较)、作商法(与1比较)取倒数法、放缩法等。

3、有理数通常可以表示为q p(p 、q 为互质的整数,p ≠0)的形式。

4、有理数的性质:⑴ 有理数对加、减、乘、除四则运算具有封闭性,即有理数四则运算的结果仍是有理数; ⑵ 有理数具有有序性,即有理数可以比较大小;⑶ 有理数具有稠密性,即任何两个不同的有理数之间存在着无限多个有理数。

⑷ 有理数可以写成有限小数或循环小数的形式。

6、有理数的运算中常用的技巧有:⑴ 凑整法:将某些数凑成整十、整百之类的数;⑵ 公式法:利用乘法公式进行运算;⑶ 换元法:用字母表示数,从而达到化繁为简的目的;⑷ 裂项法:将分数拆成两个分数的差。

【范例·解析·拓展】例1:计算⑴ 43-{(-3)4-[(-1)÷2.5+2 14 ×(-4)]÷(24815 -26815)};⑵ 10-10.5÷[5.2×14.6-(9.2×5.2+5.4×3.7-4.6×1.5)]拓展:计算(12 +13 +…+11997 )·(1+12 +…+11996 )-(1+12 +…+11997 )·(12 +13 +…+11996)=。

例2:计算:11×2 +12×3 +13×4 +…+12005×2006拓展2:计算:11×3 +12×4+13×5+…+12005×2007例3:计算:2+4+6+…+2000拓展:计算7+72+73+74+…+72001【检测·反馈·应用】1、有理数-1a的值一定不是 ( ) A .正整数 B .负整数 C .负分数 D .02、a ,b 是有理数,已知 |a |=-a ,| b |= b ,| a | >| b |,用数轴上的点来表示a ,b ,下图正确的是 ( )3、设a 是最小的正整数,b 是最大的负整数的相反数,c 是绝对值最小的有理数,则a,b,c 三数之和为 ( )A .-1B .0C .1D .24、比较-19911992,-9192,-19921993,-9293四个分数的大小,正确的是 ( ) A .-19921993<-19911992<-9192<-9293B .-19911992<-19921993<-9293<-9192C .-19921993<-19911992<-9293<-9192D .-9192>-19921993>-19911992>-92935、若四个有理数a ,b ,c ,d 满足1a -1997=1b +1998=1c -1999=1d +2000,则a ,b ,c ,d 的大小关系是 ( )A .a >c >b >dB .b >d >a >cC .c >a >b >dD .d >b >a >c6、若m 为有理数,则代数式 | m -2 | + |m -4 |+ |m -6 |+ |m -8 |的最小值是( )A .8B .6C .4D .不能确定7、自然数p ,p +10,p +14都是质数,则(p -4)2001+(2-p )2002的值是( )A .-1B .1C .0D .以上都不对8、a ,b ,c 是任意三个整数,则下列三个数:a +b 2,b +c 2,c +a 2中,整数的个数( ) A .仅有1个 B .仅有2个 C .有且只有3个 D .至少有1个9、如果a -1=b +2=c -3=d -4,那么a ,b ,c ,d 中最小的是 ( )A . aB . bC . cD . d10、有三个分数:x =4444355554,y =5555466665,z =8888799998,则它们的大小关系是( ) A .x >y >z B .y >x >z C .x >z >y D .z >y >x11、1×3×5+2×6×10+3×9×15+4×12×20+5×15×251×2×3+2×4×6+3×6×9+4×8×125×10×15=。

有理数奥数题难题1

有理数奥数题难题1

101100991...543143213211⨯⨯++⨯⨯+⨯⨯+⨯⨯ 有理数奥数题1 1.计算: 2. 计算: 3.计算:100981861641421⨯+∙∙∙+⨯++⨯+⨯ 4. 计算:10199200999719697167512538314⨯-⨯+∙∙∙+⨯-⨯+⨯-⨯ 5. 计算3043011741411⨯+∙∙∙+⨯+⨯ 6有一堆苹果,三三数之剩一,五五数之剩二,七七数之剩三,九九数之剩四,这堆苹果至少有多少个? 7有一堆苹果,三三数之剩二,四四数之剩三,六六数之剩五,七七数之剩一,这堆苹果至少有多少个? 8有一堆苹果,三三数之剩二,四四数之剩三,五五数之剩一,六六数之剩五,八八数之剩三,九九数之剩二,这堆苹果至少有多少个?9有一堆苹果,五五数之剩二,六六数之剩一,七七数之剩六,八八数之剩一,九九数之剩七,这堆苹果至少有多少个?10有一堆苹果,三三数之剩一,五数之剩三,七七数之剩五,九九数之剩四,这堆苹果至少有多少个?11.有一堆苹果,三三数之剩二,五数之剩二,七七数之剩一,八八数之剩一,九九数之剩八,这堆苹果至少有多少个?12、 计算:13.计算下列各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)14. 计算 2+5+8+11+……+299 201620151321211⨯+∙∙∙+⨯+⨯1031011531311⨯+∙∙∙+⨯+⨯。

有理数初一奥数习题

有理数初一奥数习题

第一讲:有理数例1:若19a+98b=0,则ab 是 ( )(A )正数 (B )非正数 (C )负数 (D )非负数 例2:有如下四个命题: ○1有理数的相反数是正数; ○2两个同类项的数字系数是相同的; ○3两个有理数的和的绝对值大于这两个有理数绝对值的和; ○4两个负有理数的比值是正数。

其中真命题有( )(A )4个 (B )3个 (C )2个 (D )1个第11届(2000年)初一第2试例3:有理数a 等于它的倒数,有理数b 等于它的相反数,则a 1998+b 1998等于 ( ) (A )0 (B )1 (C )-1 (D )2第9届(1998年)初一第2试例4:22)34(34⨯--⨯-等于 ( )(A )0 (B )72 (C )—180 (D )108第5届(1994年)初一第1试例5:用简便方法计算7+97+997+9997+99997=第10届(1999年)初一培训题例6:=-⨯-÷-⨯-)1331()2.1()125.0321(117第10届(1999年)初一第1试例7:设),43(21,4)32(1),432(1,4321÷÷÷=÷÷÷=÷÷÷=÷÷÷=d c b a 则=÷÷÷)()(d c a b例8:=+++-+-+++-+-+++-+-+151413)12()11(109)8()7(65)4()3(2第3届(1992年)初一第1试例9:)69.032.031.030.0(20++++÷ 的值的整数部分是 ( )(A )1 (B )2 (C )3 (D )4第14届(2003年)初一培训题例10:)10198()9187()8176()7165()6154()5143(-++++++++++等于 ( )(A )5.5 (B )5.65 (C )6.05 (D )5.85第5届(1994年)初一第1试例11:计算=⨯-878)125.0(第6届(1995年)初一第1试例12:=-----)110001)(110011()119961)(119971)(119981(L第10届(1999年)初一第1试 例13:=-+-+-+-+-+-+--+-+-+-1471261058463422120021998200019971998199619961995第8届(1997年)初一第1试例14:=-+-+-+-222222222222)56()45()34()23(第4届(1993年)初一第1试例15:计算:=+--------10987654322222222222第10届(1999年)初一第1试例16:=-+++++12)12)(12)(12)(12)(12(3216842 第1届(1990年)初一第1试例17:=++++++-++++++)199613121)(19971211()19961211)(199713121(第8届(1997年)初一第2试 例18:=⨯++7655.0469.27655.02345.122第2届(1991年)初一第2试例19已知,200020002000200120012001,199919991999200020002000,199819981998199919991999-⨯-⨯-=+⨯-⨯-=+⨯-⨯-=c b a 则abc 等于 ( ) (A )-1 (B )3 (C )-3 (D )1 例20 已知02)1(2=-+-ab a ,求)1998)(1998(1)2)(2(1)1)(1(11++++++++++b a b a b a ab 的值。

七年级数学第一章有理数习题与答案

七年级数学第一章有理数习题与答案

七年级数学第一章有理数习题与答案1.下面四个数中,负数是()A.-6 B.0 C.0.2 D.3参考答案:A2.下面说法正确的有()个.(1)互为相反数的两数的绝对值相等;(2)一个数的绝对值等于本身,这个数不是负数;(3)若|m|>m,则m<0;(4)若|a|>|b|,则a>b.A. 1个B. 2个C. 3个D. 4个参考答案:C试题解析可以根据定义定理直接得结论,也可以通过举反例的办法排除.互为相反数的两数的绝对值是相等的,非负数的绝对值是它本身,故(1)(2)均正确;当m≥0时,|m|=m,当m<0时,|m|>m,故(3)正确;|-3|>|-1|,但-3<-1,故(4)不一定正确.故选:C.3.下列说法中:(1)一个数,如果不是正数,必定就是负数;(2)整数与分数统称为有理数;(3)如果两个数的绝对值相等,那么这两个数相等;(4)符号不同的两个数互为相反数.其中正确的有()参考答案:AA. 1个B. 2个C. 3个D. 4个试题解析(1)一个数,如果不是正数,必定就是负数;错误,还可以是0. (2)正确. (3)如果两个数的绝对值相等,那么这两个数相等;错误,这两个数还可以互为相反数. (4)符号不同的两个数互为相反数;错误,只有符号不同的两个数才互为相反数.故选A.4.下列说法错误的个数是()①一个数的绝对值的相反数一定是负数;②只有负数的绝对值是它的相反数;③正数和零的绝对值都等于它本身;④互为相反数的两个数的绝对值相等.A. 3 个B. 2 个C. 1 个D. 0 个参考答案:B试题解析①一个数的绝对值的相反数一定是负数.反例:当这个数是0时,结果还是0不是负数,所以错误;②只有负数的绝对值是它的相反数.反例:当这个数是0时,结果还是0也是0的相反数,所以错误;③正数和零的绝对值都等于它本身.由绝对值性质可知,正确;④互为相反数的两个数的绝对值相等.正确.所以错误的有2个.根据绝对值的性质和相反数的概念,得①,②错误;③,④正确.故选B.5.下列说法正确的个数有()①-|a|一定是负数②只有两个数相等时,它们的绝对值才相等③若一个数小于它的绝对值,则这个数是负数④若|a|=|b|,则a与b互为相反数⑤若︱a︱+a=0 则a是非正数A. 1个B. 2个C. 3个D. 4个试题答案:B试题解析①-|a|不一定是负数,当a为0时,结果还是0,故错误;②互为相反数的两个数的绝对值也相等,故错误;③若一个数小于它的绝对值,则这个数为负数,符合绝对值的性质,故正确.④a等于b时,|a|=|b|,故错误;⑤若︱a︱+a=0 ,因为︱a︱≥0,所以a≤0,即a是非正数,故正确.所以③、⑤共计2个正确.故选B.6.下列说法中正确的是 ( )A.一个数的相反数是负数B.一个数的绝对值一定不是负数C.一个数的绝对值一定是正数 D.一个数的绝对值的相反数一定是负数试题答案:B7.下列说法正确的是()A. 若两个数互为相反数,则这两个数一定是一个正数,一个负数B. 一个数的绝对值一定不小于这个数C. 如果两个数互为相反数,则它们的商为D. 一个正数一定大于它的倒数试题答案:B7.下面说法中正确是的有()(1)一个数与它的绝对值的和一定不是负数.(2)一个数减去它的相反数,它们的差是原数的2倍(3)零减去一个数一定是负数.(4)正数减负数一定是负数.(5)有理数相加减,结果一定还是有理数.A.2个 B.3个 C.4个 D.5个试题答案:B.试题解析(1)一个数与它的绝对值的和一定不是负数.正确,(2)一个数减去它的相反数,它们的差是原数的2倍,正确,(3)零减去一个数一定是负数.不一定是负数,故不正确,(4)正数减负数一定是负数.不一定,故不正确,(5)有理数相加减,结果一定还是有理数.正确.故选B.考点:1.有理数的加法;2.有理数的减法.。

九年级数学奥数提高班 第一讲 有理数的巧算 试题

九年级数学奥数提高班 第一讲 有理数的巧算  试题

泉港三川中学九年级数学奥数进步班第一讲有理数的巧算华东师大版有理数运算是中学数学中一切运算的根底.它要求同学们在理解有理数的有关概念、法那么的根底上,能根据法那么、公式等正确、迅速地进展运算.不仅如此,还要擅长根据题目条件,将推理与计算相结合,灵敏巧妙地选择合理的简捷的算法解决问题,从而进步运算才能,开展思维的敏捷性与灵敏性.1.括号的使用在代数运算中,可以根据运算法那么和运算律,去掉或者者添上括号,以此来改变运算的次序,使复杂的问题变得较简单.例1 计算下式的值:211×555+445×789+555×789+211×445.例2 在数1,2,3,…,1998前添符号“+〞和“-〞,并依次运算,所得可能的最小非负数是多少?2.用字母表示数我们先来计算(100+2)×(100-2)的值:这是一个对详细数的运算,假设用字母a代换100,用字母b代换2,上述运算过程变为(a+b)(a-b)=___________于是我们得到了一个重要的计算公式____________________________这个公式叫___________公式,以后应用这个公式计算时,不必重复公式的证明过程,可直接利用该公式计算.例3 计算 3001×2999的值.练习1 计算 103×97×10 009的值.练习2 计算:练习3 计算:(2+1)(22+1)(24+1)(28+1)(216+1)(232+1).练习4 计算:.3.观察算式找规律例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.例5 计算1+3+5+7+…+1997+1999的值.例6 计算 1+5+52+53+…+599+5100的值.例7 计算:练习一1.计算以下各式的值:(1)-1+3-5+7-9+11-…-1997+1999;(2)11+12-13-14+15+16-17-18+…+99+100;(3)1991×1999-1990×2000;(4)4726342+472 6352-472 633×472 635-472 634×472 636;(6)1+4+7+ (244)2.某小组20名同学的数学测验成绩如下,试计算他们的平均分.81,72,77,83,73,85,92,84,75,63,76,97,80,90,76,91,86,78,74,85.第一讲有理数的巧算答案例1 计算下式的值:211×555+445×789+555×789+211×445.分析直接计算很费事,根据运算规那么,添加括号改变运算次序,可使计算简单.此题可将第一、第四项和第二、第三项分别结合起来计算.解原式=(211×555+211×445)+(445×789+555×789)=211×(555+445)+(445+555)×789=211×1000+1000×789=1000×(211+789)=1 000 000.说明加括号的一般思想方法是“分组求和〞,它是有理数巧算中的常用技巧.例2 在数1,2,3,…,1998前添符号“+〞和“-〞,并依次运算,所得可能的最小非负数是多少?分析与解因为假设干个整数和的奇偶性,只与奇数的个数有关,所以在1,2,3,...,1998之前任意添加符号“+〞或者“-〞,不会改变和的奇偶性.在1,2,3, (1998)有1998÷2个奇数,即有999个奇数,所以任意添加符号“+〞或者“-〞之后,所得的代数和总为奇数,故最小非负数不小于1.现考虑在自然数n,n+1,n+2,n+3之间添加符号“+〞或者“-〞,显然n-(n+1)-(n+2)+(n+3)=0.这启发我们将1,2,3,…,1998每连续四个数分为一组,再按上述规那么添加符号,即(1-2-3+4)+(5-6-7+8)+…+(1993-1994-1995+1996)-1997+1998=1.所以,所求最小非负数是1.说明本例中,添括号是为了造出一系列的“零〞,这种方法可使计算大大简化.例3 计算 3001×2999的值.解 3001×2999=(3000+1)(3000-1)=30002-12=8 999 999.例4 某班20名学生的数学期末考试成绩如下,请计算他们的总分与平均分.87,91,94,88,93,91,89,87,92,86,90,92,88,90,91,86,89,92,95,88.分析与解假设直接把20个数加起来,显然运算量较大,粗略地估计一下,这些数均在90上下,所以可取90为基准数,大于90的数取“正〞,小于90的数取“负〞,考察这20个数与90的差,这样会大大简化运算.所以总分为90×20+(-3)+1+4+(-2)+3+1+(-1)+(-3)+2+(-4)+0+2+(-2)+0+1+(-4)+(-1)+2+5+(-2)=1800-1=1799,平均分为 90+(-1)÷.例5 计算1+3+5+7+…+1997+1999的值.分析观察发现:首先算式中,从第二项开场,后项减前项的差都等于2;其次算式中首末两项之和与距首末两项等间隔的两项之和都等于2000,于是可有如下解法.解用字母S表示所求算式,即S=1+3+5+…+1997+1999.①再将S各项倒过来写为S=1999+1997+1995+…+3+1.②将①,②两式左右分别相加,得2S=(1+1999)+(3+1997)+…+(1997+3)+(1999+1)=2000+2000+…+2000+2000(500个2000)=2000×500.从而有 S=500 000.例6 计算 1+5+52+53+…+599+5100的值.分析观察发现,上式从第二项起,每一项都是它前面一项的5倍.假如将和式各项都乘以5,所得新和式中除个别项外,其余与原和式中的项一样,于是两式相减将使差易于计算.解设S=1+5+52+…+599+5100,①所以5S=5+52+53+…+5100+5101.②②—①得4S=5101-1,例7 计算:分析一般情况下,分数计算是先通分.此题通分计算将很繁,所以我们不但不通分,反而利用如下一个关系式来把每一项拆成两项之差,然后再计算,这种方法叫做拆项法.解由于所以说明本例使用拆项法的目的是使总和中出现一些可以相消的相反数的项,这种方法在有理数巧算中很常用.。

《有理数》奥数专题练习

《有理数》奥数专题练习

《有理数》奥数专题练习一、填空题.1.绝对值小于4的整数是 ±3,±2,±1,0 ,其中 –3 最小,0,1,2,3 是非负数, 0 的绝对值最小;2. a - b 的相反数是 b – a ,如果 a ≤b ,那么 | a – b | = b – a ;3. 若a,b,c 在数轴上位置如图所示,那么|a|–|b – c| + |c| = -a + b ;a b 0 c4. 如果 那么,111=--m m m < 0 , 如果a 是有理数,那么aa = ±1 ; 5. 如果每个人的工作效率都相同,且a 个人b 天做c 个零件,那么b 个人做a 个零件所需的天数为 ca 2。

略解:1个人1天做ab c 个零件,那么b 个人做a 个零件所需的天数为 .2c a ac a ab c b a ==⋅ 6. 观察下列算式:4 × 1 × 2+1=324 × 2 × 3+l=524 × 3 × 4+l=724 × 4 × 5+1=92用代数式表示上述的规律是 . 2)12(1)1(4+=++a a a7. 701班连班主任一起共48人到公园去划船. 每只小船坐3人,租金20元,每只大船坐5人,租金30元. 他们租船要付的最少租金是 290 元.8.2011减去它的21,再减去剩余数的31,再减去剩余数的41,…,依此类推,一直到减去剩余数的20111,那么最后剩余的数是 1 .二、判断题(每小题2分,共16分):1.若 a + b = 0,则 |a|=|b| (√)2. 若|a|=|b|,则 a = b (×)3. 若|a|=|b|,则a + b = 0 (×)4. 若ab ≥0,则a ≥0且b ≥0 (×)5. 若ab = 0,则 a=0或 b=0 (√)6. 若a < b < 0,则 a 2 > b 2 (√)7. 若 a < b ,则 |a| < |b| (×)8. 若 a 3 > b 3,则a 2 > b 2 (×)提示:设 a = -0.1, b = -0.2,虽有(-0.1)3 > (-0.2)3,但却有(-0.1)2<(-0.2)2三、选择题(每小题4分,共24分):1.把0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章有理数奥数题(1)1.2002*20032003-203*20022002=2.已知a-2的绝对值+2b+1的绝对值=0,求a-2b+1的值3.如果a,b都代表有理数,并且a+b=0,那么( )A.a,b都是0B.B.a,b之一是0C.C.a,b互为相反数D.D.a,b互为倒数4.一乳制品加工场销售员小王给超市送来10箱奶粉,每箱20袋,每袋400g,当他要返回厂里时,突然接到厂部打来电话,说这10箱奶粉中有一箱因装罐机出现了故障,每袋少装了20g,要求他立即把缺量的一箱带回去更换.但超市里正忙,小王只能称一次,就要将那缺量的奶粉找出来.请你帮他想个办法,能办到吗?5.将一张长方形的纸对折,可得到一条折痕,继续对折,对折时每次折痕与上次折痕保持平行,继续对折三次后,可以得7条折痕,如果对这n次,可以得到多少条折痕?6.23个不同的正整数的和是4825,问;这23个数的最大公约数可能达到的最大值是多少?写出你的结论,并说明理由。

7.当x=3分之2,y=-4分之3,z=-2又2分之1,分别求下列代数式值(1)+(-x)-(-y)-(-z)(2) -(+x)+( -y) -(-z)有理数奥数题(2)一、填空题:(每小题5分,共50分) 1、计算: (1)125×888=___________; (2) =___________。

2、把用“<”连接起来:________________。

3、下面有两串按某种规律排列的数,请按规律填上空缺的数。

(1) ( ); (2)15,20,10,( ),5,30,( ),35。

4、有甲、乙、丙三个数,已知甲、乙;乙、丙;丙、甲两数的平均数分别为40、46、43,那么甲、乙、丙三个数的平均数是___________。

5、下边的加法竖式的申、办、奥、运四个汉字,分别代表四个不同的数字,请问:申办奥运分别为何数字时算式成立。

申=______;办=______;奥=______;运=______。

6、甲班有学生48人,其中1/2是女生;乙班有学生45人,其中1/3是女生,那么两班的男生共有_______人。

7、配置3%的葡萄糖50千克,需要1%与6%的葡萄糖分别为______千克、______千克。

8、五个人都属龙,他们岁数的乘积是589225,这五个人的岁数和是__________。

9、加工一批零件,如果师傅先加工20天后,剩下的由徒弟再加工30天正好完成;如果徒弟先加工37天,剩下的由师傅再加工17天也正好完成。

现在师傅、徒弟一起加工若干天后,剩下的由徒弟再加工40天正好完成。

问:师傅和徒弟一起加工了_______天。

10、用两个同样长3厘米,宽2厘米,高1厘米的长方体,拼成一个大长方体,它的表面积最大是________平方厘米。

(即cm2) 二、综合题:(每小题6分,共30分) 1、某商店购买小狗和小熊玩具共80只,已卖出小狗只数的1/5,小熊只数的2/3,共计30只。

购进小狗和小熊的只数分别为多少只? 2、有一本书,如果第一天读35页,以后每天都比前一天多读5页,结果最后一天只读35页,就读完了;还是这本书,如果第一天读45页,以后每天都比前一天多读5页,结果最后一天只读40页也读完了。

问:这本书有多少页? 3、将一个表面是红色的长方体(3×4×5),切成若干个1×1×1的小立方体,问表面中只有一面是红色的小立方体和表面中没有红色的小立方体各有多少块? 4、有红、黄、蓝、白、紫五种颜色珠子各一颗,分别放在编号为1、2、3、4、5号的五只箱内,A、B、C、D、E五人的猜想结果如下: A:2号内装紫色珠子,3号内装黄色珠子。

B:2号内装蓝色珠子,4号内装红色珠子。

C:1号内装红色珠子,5号内装白色珠子。

D:3号内装蓝色珠子,4号内装白色珠子。

E:2号内装黄色珠子,5号内装紫色珠子。

结果每人都猜对了一种,每箱也只有一人猜对,A、B、C、D、E各猜对的珠子的颜色分别为什么颜色? 一.选择题(以下每题的四个选择中,仅有一个是正确的)1.-7的绝对值是( ) (A)-7 (B)7 (C)- (D)2.1999-的值等于( ) (A)-2001 (B)1997(C)2001 (D)1999 3.下面有4个命题: ①存在并且只存在一个正整数和它的相反数相同。

②存在并且只存在一个有理数和它的相反数相同。

③存在并且只存在一个正整数和它的倒数相同。

④存在并且只存在一个有理数和它的倒数相同。

其中正确的命题是:( ) (A)①和②(B)②和③(C)③和④(D)④和①4.4abc的同类项是( ) (A)4bca (B)4cab (C)acb (D)acb 5.某工厂七月份生产某产品的产量比六月份减少了20%,若八月份产品要达到六月份的产量,则八月份的产量比七月份要增加( ) (A)20% (B)25% (C)80% (D)75% 6.,,,四个数中,与的差的绝对值最小的数是( ) (A) (B) (C) (D) 7.如果x=―, Y=0.5,那么X―Y―2X的值是( ) (A)0 (B) (C) (D) ―8.ax+b=0和mx+n=0关于未知数x的同解方程,则有( ) (A)a+m>0. (B)mb≥an. (C)mb≤an. (D)mb=an. 9.(-1)+(-1)-(-1)×(-1)÷(-1)的结果是( ) (A)-1 (B)1 (C)0 (D)2 10.下列运算中,错误的是( ) (A)2X+3X=5X(B)2X-3X=-1 (C)2X·3X=6X (D)2X÷4X= 11.已知a<0,化简,得( ) (A) 2 (B) 1 (C)0 (D) -2 12.计算(-1) +(-1)÷|-1|的结果是( ) (A)0 (B)1 (C)-1 (D)2 13.下列式子中,正确的是( ) (A)a·a=a. (B)(x)=x. (C)3=9. (D)3b·3c=9bc. 14.-|-3|的相反数的负倒数是( ) (A)- (B) (C)-3 (D)3 15.十月一日亲朋聚会,小明统计大家的平均年龄恰是38岁,老爷爷说,两年前的十月一日也是这些人相聚,那么两年前相聚时大家的平均年龄是( )岁。

(A)38 (B)37 (C)36 (D)35 16.若a<0,则4a+7|a|等于( ) (A) 11a (B)-11a (C) -3a (D)3a 17.若有理数x. y满足|2x-1|+(y+2)=0,则x. y的值等于( ) (A)-1 (B)1 (C)-2 (D)2 18.有理数a, b, c在数轴上对应的点如图所示:则下面式子中正确的是( ) (A)c + b > a + b. (C)ac > ab (B)cb < ab. (D) cb > ab 19.不等式< 1的正整数解有( )个。

(A)2 (B)3 (C)4 (D)5 20.某计算机系统在同一时间只能执行一项任务,且完成该任务后才能执行下一项任务,现有U,V,W的时间分别为10秒,2分和15分,一项任务的相对等待时间为提交任务到完成该任务的时间与计算机系统执行该任务的时间之比,则下面四种执行顺序中使三项任务相对等候时间之和最小的执行是( )。

(A)U,V,W. (B)V,W,U (C)W,U,V. (D)U,W,V 21.如图,线段AD,AB,BC和EF的长分别为1,8,3,2,5和2,记闭合折线AEBCFD的面积为S,则下面四个选择中正确的是( ) (A) S=7.5 (B) S=5.4 (C) 5.4<S<7.5 (D)4<S<5.4. 22.第一届希望杯的参赛人数是11万,第十届为148万,则第届参赛人数的平均增长率最接近的数值是( )。

(A)21.8%. (B) 33.5% (C)45% (D) 50% 23.已知X和YI满足3X+4Y=2,X-Y<1,则( )。

(A)X= (B)Y=- (C)X> (D) Y>- 24.下面的四句话中正确的是( ) A.正整数a和b的最大公约数大于等于a。

B.正整数a和b的最小公倍数大于等于ab。

C.正整数a和b的最大公约数小于等于a。

D.正整数a和b的公倍数大于等于ab。

25.已知a≤2,b≥-3,c≤5,且a-b+c=10,则a+b+c的值等于( )。

(A)10 (B)8 (C)6 (D)4 26.的相反数除-6的绝对值所得的结果是___。

27.用科学记数法表示:890000=____。

28.用四舍五入法,把1999.509取近似值(精确到个位),得到的近似数是__。

29.已知两个有理数-12.43和-12.45。

那么,其中的大数减小数所得的差是__。

30.已知与是同类项,则=__。

31.|-|的负倒数与-|4|的倒数之和等于__。

32.近似数0,1990的有效数字是__。

33.甲、乙、丙、丁四个数之和等于-90,甲数减-4,乙数加-4,丙数乘-4,丁数除-4彼比相等,则四个数中的最大的一个数比最小的一个数大__。

34.已知式子+□=,则□中应填的数是__。

35.(÷)÷___。

36.已知角a的补角等于角a的3.5倍,则角a 等于__度。

37.已知方程(1.9x-1.1)-()=0.9(3 x-1)+0.1,则解得x的值是_。

38.甲楼比丙楼高24.5米, 乙楼比丙楼高15.6米, 则乙楼比甲楼低___米. 39.如图,四个小三角形中所填四个数之和等于零,则这四个数绝对值之和等于__。

40.关于x的方程3mx+7=0和2 x+3n=0是同解方程,那么x-2y=1999 41.方程组{ 的解是___。

2x-y=2000 42.小明骑车自甲地经乙地,先上坡后下坡,到达乙地后立即返回甲地,共用34分钟,已知上坡速度是400米/分,下坡速度是450米/分,则甲地到乙地的路程是__米。

43.父亲比小明大24岁,并且1998年的年龄是小明2000年年龄的3倍,则小明1999年时的年龄是__岁。

44.已知和是同类项,则___。

45.,并且=。

则46.都是二位的正整楼,已知它们的最小公倍数是385,则的最大值是__。

47.甲瓶食盐水浓度为8%,乙瓶食盐水浓度为12%,两瓶食盐水共重1000克,把甲、乙两瓶食盐后的浓度是10.08%,则甲瓶食盐水重___克。

48.如图所示的五角星形中共可数出__个三角形。

49.已知则_。

50.已知数串1,1,2,3,5,8,13,……,从第3个数起每个数都等于它前面相邻的两个数之和,那么,数串中第1999个数被3除所得的余数是_。

相关文档
最新文档