直线与椭圆的位置关系练习题目与答案
直线与椭圆的位置关系

3.若椭圆3x62+y92=1 的弦被点(4,2)平分,则这条弦所在的
直线方程是( )
A.x-2y=0
B.x+2y-4=0
C.2x+3y-12=0
D.x+2y-8=0
答案 D 解析 设这条弦的两端点为 A(x1,y1),B(x2,y2),斜率为 k, 则xx33126622++yy991222==11,, 两式相减再变形,得x13+6x2+ky1+9 y2=0. 又弦中点为(4,2),∴k=-21. ∴这条弦所在的直线方程为 y-2=-12(x-4),即 x+2y-8=0.
解得 k=±1.
(2)∵M→A=(x1,y1-1),M→B=(x2,y2-1), ∴M→A·M→B=x1x2+(y1-1)(y2-1) =(1+k2)x1x2-43k(x1+x2)+196 =-19(6(2k1+2+k12))-9(21k62k+2 1)+196=0. ∴不论 k 取何值,以 AB 为直径的圆恒过点 M. 【答案】 (1)±1 (2)略
【例2】已知椭ax22圆by22 1(ab0)的一个顶点 B(为 0,4) ,离心率
e 5,直线 l交椭圆M于、N两点。 5
(1)若直l的 线方程y为 x4,求弦M长N的长; (2)如果三角 BM形N的重心恰好为椭焦 圆点 的 F, 右求直线
l方程的一般式。
题型二 弦长问题
3 椭圆两顶点 A(-1,0),B(1,0)过焦点 F(0,1)的直线 l 与椭圆交于 CD 两点.当|CD|=32 2时.求 l 的方程.
当
y=-31时,弦长最大为4
3
3 .
方法二:直线所过的定点为(0,1)在椭圆上,可设另外一交 点为(2cosθ,sinθ),则弦长为
4cos2θ+(1-sinθ)2 = -3sin2θ-inθ+5 =
2018年高考数学命题角度5.2直线与椭圆位置关系大题狂练理

命题角度5.2 :直线与椭圆位置关系1.已知椭圆 的两个焦点为且经过点 ⑴求椭圆•的方程; ⑵过 的直线与椭圆-交于| ■两点(点」位于 轴上方),若人 ;,且—■:: ,求直线的斜率的取值范围.£十几1 並【答案】(1);( 2).【解析】试题分析:(2)联立直线与椭圆的方程,结合韦达定理得到关于实数 £斜率 的取值范围是k=.试题解析;⑴由椭圆定义2。
= |阴| + |跖| = 4,有a = 2f c =从而W +-w 3(y =+1) ⑵设直线=比& + i)(A >0),有|兰+邑=]设百0") 玖%y)有% = -久仏y 1y 3=^(y 1+y 3)S 讐二戏戶人#一ST2 <A<3f注洁訂》解得0C 冬乎.3^4Jt==a, A = +y,由已矢皿=¥・2.已知椭圆C 的中心在原点,焦点在 x 轴上,离心率e 2 •以两个焦点和短轴的两个端点2为顶点的四边形的周长为 8,面积为2^3 •(I)求椭圆C 的方程;(n)若点P X o ,y 。
为椭圆C 上一点,直线I 的方程为3x °x • 4y °y -12=0,求证:直线I 与椭圆C 有且只有一个交点.(1)由题意可得 , i — -- + —,—则椭圆方程为k 的不等式,求解不等式可得直线的J 整理得任+斗a+^fc 2 ■【来源】【全国市级联考】广西桂林 ,百色,梧州,北海,崇左五市2017届高三5月联合模拟理 科数学试题2 2【答案】(I )- y 1 ;( II )详见解析•4 3【解析】试题分析:2 2(1) 利用题意求得b 「3, c =1,椭圆C 的方程为 —1 .4 3(2) 首先讨论当y 。
=0的情况,否则联立直线与椭圆的方程, 结合直线的特点整理可得直线 I 与 椭圆C 有且只有一个交点.试题解析:(I >依题意,设椭圆c 的方程为4 + = 焦距为丸,由题设条件知,4^=8, “2,2x 丄x 2c xb= 2-^5 , b 1= / = 4』所以“省,c = b 或— C = j3 (经检验不合题意舍去), 故椭圆。
高中数学 同步学案 直线与椭圆的位置关系(习题课)

第二课时 直线与椭圆的位置关系(习题课)[新知初探]1.点与椭圆的位置关系点P(x 0,y 0)与椭圆x 2a 2+y2b2=1(a>b>0)的位置关系:点P 在椭圆上⇔x 20a 2+y 20b 2=1;点P 在椭圆内部⇔x 20a 2+y 20b 2<1;点P 在椭圆外部⇔x 20a 2+y 2b 2>1.2.直线与椭圆的位置关系直线y =kx +m 与椭圆x 2a 2+y2b 2=1(a>b>0)的位置关系,判断方法:联立⎩⎪⎨⎪⎧y =kx +m ,x 2a 2+y2b2=1,消y 得一元二次方程.当Δ>0时,方程有两解,直线与椭圆相交; 当Δ=0时,方程有一解,直线与椭圆相切; 当Δ<0时,方程无解,直线与椭圆相离. 3.直线与椭圆相交的弦长公式(1)定义:连接椭圆上两个点的线段称为椭圆的弦. (2)求弦长的方法①交点法:将直线的方程与椭圆的方程联立,求出两交点的坐标,然后运用两点间的距离公式来求. ②根与系数的关系法:如果直线的斜率为k,被椭圆截得弦AB 两端点坐标分别为(x 1,y 1),(x 2,y 2),则弦长公式为: |AB|=1+k 2·x 1+x 22-4x 1x 2=1+1k2·y 1+y 22-4y 1y 2.[小试身手]1.已知点(2,3)在椭圆x 2m 2+y2n 2=1上,则下列说法正确的是( )A .点(-2,3)在椭圆外B .点(3,2)在椭圆上C .点(-2,-3)在椭圆内D .点(2,-3)在椭圆上 答案:D2.直线y =x +1被椭圆x 24+y22=1所截得的弦的中点坐标是( )A.⎝ ⎛⎭⎪⎫23,53B.⎝ ⎛⎭⎪⎫43,73C.⎝ ⎛⎭⎪⎫-23,13 D.⎝ ⎛⎭⎪⎫-132,172 答案:C3.设F 1,F 2分别是椭圆x 225+y216=1的左、右焦点,P 为椭圆上一点,M 是F 1P 的中点,|OM|=3,则P 点到椭圆左焦点的距离为________.答案:4直线与椭圆的位置关系[典例] 对不同的实数值m,讨论直线y =x +m 与椭圆x 24+y 2=1的位置关系.[解] 由⎩⎪⎨⎪⎧y =x +m ,x 24+y 2=1,消去y,得x 24+(x +m)2=1, 整理得5x 2+8mx +4m 2-4=0.Δ=(8m)2-4×5(4m 2-4)=16(5-m 2). 当-5<m<5时,Δ>0,直线与椭圆相交; 当m =-5或m =5时,Δ=0,直线与椭圆相切; 当m<-5或m>5时,Δ<0,直线与椭圆相离.判断直线与椭圆的位置关系,通过解直线方程与椭圆方程组成的方程组,消去方程组中的一个变量,得到关于另一个变量的一元二次方程,则Δ>0⇔直线与椭圆相交; Δ=0⇔直线与椭圆相切;Δ<0⇔直线与椭圆相离. [活学活用]若直线y =kx +1与焦点在x 轴上的椭圆x 25+y2m =1总有公共点,求m 的取值范围.解:∵直线y =kx +1过定点A(0,1). 由题意知,点A 在椭圆x 25+y2m =1内或椭圆上,∴025+12m ≤1,∴m≥1. 又椭圆焦点在x 轴上∴m<5, 故m 的取值范围为[1,5).弦长及中点弦问题[典例] 已知点P(4,2)是直线l 被椭圆x 236+y29=1所截得的线段的中点.(1)求直线l 的方程;(2)求直线l 被椭圆截得的弦长. [解] (1)[法一 根与系数关系法] 由题意可设直线l 的方程为y -2=k(x -4), 而椭圆的方程可以化为x 2+4y 2-36=0. 将直线方程代入椭圆方程有(4k 2+1)x 2-8k(4k -2)x +4(4k -2)2-36=0. 所以x 1+x 2=8k4k -24k 2+1=8,解得k =-12. 所以直线l 的方程为y -2=-12(x -4),即x +2y -8=0. [法二 点差法]设直线l 与椭圆的交点为A(x 1,y 1),B(x 2,y 2),所以⎩⎪⎨⎪⎧x 21+4y 21-36=0,x 22+4y 22-36=0.两式相减,有(x 1+x 2)(x 1-x 2)+4(y 1+y 2)·(y 1-y 2)=0. 又x 1+x 2=8,y 1+y 2=4,所以y 1-y 2x 1-x 2=-12, 即k =-12.所以直线l 的方程为x +2y -8=0.(2)由题意可知直线l 的方程为x +2y -8=0,联立椭圆方程得x 2-8x +14=0.法一:解方程得⎩⎪⎨⎪⎧x 1=4+2,y 1=2-22, ⎩⎪⎨⎪⎧x 2=4-2,y 2=2+22,所以直线l 被椭圆截得的弦长为[4+2-4-2]2+⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫2-22-⎝ ⎛⎭⎪⎫2+222 =10.法二:因为x 1+x 2=8,x 1x 2=14. 所以直线l 被椭圆截得的弦长为1+⎝ ⎛⎭⎪⎫-12282-4×14=10.解决椭圆中点弦问题的两种方法(1)根与系数关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;(2)点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:已知A(x 1,y 1),B(x 2,y 2)是椭圆x 2a 2+y2b 2=1(a>b>0)上的两个不同的点,M(x 0,y 0)是线段AB 的中点,则⎩⎪⎨⎪⎧x 21a 2+y 21b2=1, ①x 22a 2+y 22b 2=1, ②由①-②,得1a 2(x 21-x 22)+1b 2(y 21-y 22)=0,变形得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2=-b 2a 2·x 0y 0,即k AB =-b 2x 0a 2y 0.已知椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A,B,线段AB 的中点为M.证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解:(1)由题意有a 2-b 2a =22,4a 2+2b 2=1,解得a 2=8,b 2=4.所以C 的方程为x 28+y24=1.(2)证明:法一:设直线l :y =kx +b(k≠0,b≠0),A(x 1,y 1),B(x 2,y 2),M(x M ,y M ).将y =kx +b 代入x28+y 24=1,得(2k 2+1)x 2+4kbx +2b 2-8=0. 故x M =x 1+x 22=-2kb 2k 2+1,y M =k·x M +b =b 2k 2+1.于是直线OM 的斜率k OM =y M x M =-12k ,即k OM ·k=-12.所以直线OM 的斜率与直线l 的斜率的乘积为定值. 法二:设A(x 1,y 1),B(x 2,y 2),M(x M ,y M ),则⎩⎪⎨⎪⎧x 218+y 214=1, ①x 228+y 224=1, ②①-②得x 1+x 2x 1-x 28+y 1+y 2y 1-y 24=0,∴k AB =y 1-y 2x 1-x 2=-4x 1+x 28y 1+y 2=-12·x My M.又k O M =y M x M ,∴k AB ·k OM =-12.∴直线OM 的斜率与直线l 的斜率的乘积为定值.与椭圆有关的综合问题[典例] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a>b>0)的离心率e =22,且点P(2,1)在椭圆C上.(1)求椭圆C 的方程;(2)斜率为-1的直线与椭圆C 相交于A,B 两点,求△AOB 面积的最大值.[解] (1)由题意得⎩⎪⎨⎪⎧e =c a =22,4a 2+1b 2=1,a 2=b 2+c 2,∴⎩⎨⎧a =6,b =3,∴椭圆C 的方程为x 26+y23=1.(2)设直线AB 的方程为y =-x +m, 联立⎩⎪⎨⎪⎧y =-x +m ,x 26+y23=1,得3x 2-4mx +2m 2-6=0,∴⎩⎪⎨⎪⎧Δ>0,x 1+x 2=4m 3,x 1x 2=2m 2-63,∴|AB|=1+-12|x 1-x 2|=439-m 2,原点到直线的距离d =|m|2.∴S △OAB =12×43 9-m 2·|m|2=239-m2m 2≤23·9-m 2+m 22=322.当且仅当m =±322时,等号成立,∴△AOB 面积的最大值为322.求与椭圆有关的最值、范围问题的方法(1)定义法:利用定义转化为几何问题处理.(2)数形结合法:利用数与形的结合,挖掘几何特征,进而求解.(3)函数法:探求函数模型,转化为函数的最值问题,借助函数的单调性、基本不等式等求解,注意椭圆的范围.已知椭圆C 的方程为x 2a 2+y 2b 2=1(a>b>0),左、右焦点分别是F 1,F 2,若椭圆C 上的点P ⎝ ⎛⎭⎪⎫1,32到F 1,F 2的距离和等于4.(1)写出椭圆C 的方程和焦点坐标;(2)直线l 过定点M(0,2),且与椭圆C 交于不同的两点A,B,若∠AOB 为锐角(O 为坐标原点),求直线l 的斜率k 的取值范围.解:(1)由题意得2a =4,得a =2, 又点P ⎝ ⎛⎭⎪⎫1,32在椭圆x 2a 2+y 2b 2=1上,∴14+34b 2=1,解得b 2=1. ∴椭圆C 的方程为x 24+y 2=1,焦点F 1(-3,0),F 2(3,0).(2)由题意得直线l 的斜率存在且不为0,设l :y =kx +2,代入x 24+y 2=1,整理得(1+4k 2)x 2+16kx +12=0,Δ=(16k)2-4(1+4k 2)·12=16(4k 2-3)>0,得k 2>34.①设A(x 1,y 1),B(x 2,y 2),∴x 1+x 2=-16k 1+4k 2,x 1x 2=121+4k 2.∵∠AOB 为锐角,∴cos ∠AOB>0, 则OA ―→·OB ―→=x 1x 2+y 1y 2>0, 又y 1y 2=(kx 1+2)·(kx 2+2) =k 2x 1x 2+2k(x 1+x 2)+4,∴x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k(x 1+x 2)+4 =(1+k 2)·121+4k 2+2k·⎝ ⎛⎭⎪⎫-16k 1+4k 2+4 =44-k21+4k 2>0, ∴k 2<4.② 由①②得34<k 2<4.解得-2<k<-32或32<k<2, ∴k 的取值范围是⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2.层级一 学业水平达标1.直线y =kx -k +1与椭圆x 29+y24=1的位置关系为( )A .相切B .相交C .相离D .不确定解析:选B 直线y =kx -k +1可变形为y -1=k(x -1),故直线恒过定点(1,1),而该点在椭圆x 29+y24=1内部,所以直线y =kx -k +1与椭圆x 29+y24=1相交,故选B.2.过椭圆x 2a 2+y2b 2=1(a>b>0)的焦点F(c,0)的弦中最短弦长是( )A.2b 2a B.2a 2bC.2c 2aD.2c 2b解析:选A 最短弦是过焦点F(c,0)且与焦点所在直线垂直的弦.将点(c,y)的坐标代入椭圆x 2a 2+y2b 2=1,得y =±b 2a ,故最短弦长是2b2a.3.若直线kx -y +3=0与椭圆x 216+y24=1有两个公共点,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-54,54 B.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫54,-54 C.⎝ ⎛⎭⎪⎫-∞,-54∪⎝ ⎛⎭⎪⎫54,+∞ D.⎝⎛⎭⎪⎫-∞,-54∪⎝ ⎛⎭⎪⎫-54,54 解析:选C 由⎩⎪⎨⎪⎧y =kx +3,x 216+y24=1得(4k 2+1)x 2+24kx +20=0,当Δ=16(16k 2-5)>0,即k>54或k<-54时,直线与椭圆有两个公共点.故选C. 4.已知椭圆C :y 29+x 2=1,过点P ⎝ ⎛⎭⎪⎫12,12的直线与椭圆C 相交于A,B 两点,且弦AB 被点P 平分,则直线AB 的方程为( )A .9x -y -4=0B .9x +y -5=0C .4x +2y -3=0D .4x -2y -1=0解析:选B 设A(x 1,y 1),B(x 2,y 2). ∵点A,B 在椭圆上,∴y 219+x 21=1,① y 229+x 22=1.② ①-②,得y 1+y 2y 1-y 29+(x 1+x 2)·(x 1-x 2)=0.③∵P ⎝ ⎛⎭⎪⎫12,12是线段AB 的中点, ∴x 1+x 2=1,y 1+y 2=1,代入③得y 1-y 2x 1-x 2=-9,即直线AB 的斜率为-9.故直线AB 的方程为y -12=-9⎝ ⎛⎭⎪⎫x -12, 整理得9x +y -5=0.5.已知椭圆C :x 22+y 2=1的右焦点为F,直线l :x =2,点A ∈l,线段AF 交椭圆C 于点B,若FA ―→=3FB ―→,则|AF ―→|=( )A. 2 B .2 C. 3D .3解析:选A 设点A(2,n),B(x 0,y 0). 由椭圆C :x 22+y 2=1知a 2=2,b 2=1,∴c 2=1,即c =1.∴右焦点F(1,0). 由FA ―→=3FB ―→得(1,n)=3(x 0-1,y 0). ∴1=3(x 0-1)且n =3y 0. ∴x 0=43,y 0=13n.将x 0,y 0代入x 22+y 2=1,得12×⎝ ⎛⎭⎪⎫432+⎝ ⎛⎭⎪⎫13n 2=1. 解得n 2=1, ∴|AF ―→|=2-12+n 2=1+1= 2.6.已知斜率为2的直线l 经过椭圆x 25+y24=1的右焦点F 1,与椭圆交于A,B 两点,则|AB|=________.解析:因为直线l 经过椭圆的右焦点F 1(1,0),且斜率为2,则直线l 的方程为y =2(x -1),即2x -y -2=0.由⎩⎪⎨⎪⎧2x -y -2=0,x 25+y24=1得3x 2-5x =0.设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=53,x 1x 2=0,所以|AB|=1+k 2·x 1+x 22-4x 1x 2=1+22⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553. 答案:5537.已知F 1,F 2是椭圆的两个焦点,满足MF 1―→·MF 2―→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.解析:∵MF 1―→⊥MF 2―→,∴点M 在以F 1F 2为直径的圆上,又点M 在椭圆内部,∴c<b,∴c 2<b 2=a 2-c 2,即2c 2<a 2,∴c 2a 2<12,即c a <22.又e>0,∴0<e<22. 答案:⎝ ⎛⎭⎪⎫0,22 8.已知动点P(x,y)在椭圆x 225+y 216=1上,若A 点坐标为(3,0),|AM ―→|=1,且PM ―→·AM ―→=0,则|PM ―→|的最小值是________.解析:易知点A(3,0)是椭圆的右焦点.∵PM ―→·AM ―→=0, ∴AM ―→⊥PM ―→.∴|PM ―→|2=|AP ―→|2-|AM ―→|2=|AP ―→|2-1,∵椭圆右顶点到右焦点A 的距离最小,故|AP ―→|min =2,∴|PM ―→|min = 3. 答案: 39.设椭圆C :x 2a 2+y 2b 2=1(a>b>0)过点(0,4),离心率为35.(1)求C 的方程;(2)求过点(3,0)且斜率为45的直线被C 所截线段的中点坐标.解:(1)将(0,4)代入C 的方程得16b 2=1,∴b =4.又e =c a =35,得a 2-b 2a 2=925,即1-16a 2=925,∴a =5,∴C 的方程为x 225+y216=1.(2)过点(3,0)且斜率为45的直线方程为y =45(x -3).设直线与C 的交点为A(x 1,y 1),B(x 2,y 2),将直线方程y =45(x -3)代入C 的方程,得x 225+x -3225=1,即x 2-3x -8=0,解得x 1+x 2=3,∴AB 的中点坐标 x 0=x 1+x 22=32,y 0=y 1+y 22=25(x 1+x 2-6)=-65,即中点坐标为⎝ ⎛⎭⎪⎫32,-65.10.如图,已知椭圆x 2a 2+y2b 2=1(a>b>0),F 1,F 2分别为椭圆的左、右焦点,A 为椭圆的上顶点,直线AF 2交椭圆于另一点B.(1)若∠F 1AB =90°,求椭圆的离心率;(2)若椭圆的焦距为2,且AF 2―→=2F 2B ―→,求椭圆的方程.解:(1)若∠F 1AB =90°,则△AOF 2为等腰直角三角形.所以有|OA|=|OF 2|,即b =c. 所以a =2c,e =c a =22.(2)由题知A(0,b),F 2(1,0),设B(x,y),由AF 2―→=2F 2B ―→,解得x =32,y =-b 2.代入x 2a 2+y 2b 2=1,得94a 2+b24b 2=1,即94a 2+14=1,解得a 2=3,b 2=2,所以椭圆方程为x 23+y22=1.层级二 应试能力达标1.若直线mx +ny =4和圆O :x 2+y 2=4没有交点,则过点P(m,n)的直线与椭圆x 29+y24=1的交点个数为( )A .2B .1C .0D .0或1解析:选A 由题意,得4m 2+n 2 >2,所以m 2+n 2<4,则-2<m<2,-2<n<2,所以点P(m,n)在椭圆x 29+y24=1内,则过点P(m,n)的直线与椭圆x 29+y24=1有2个交点.故选A.2.椭圆mx 2+ny 2=1与直线y =1-x 交于M,N 两点,过原点与线段MN 中点所在直线的斜率为22,则mn的值是( )A.22B.233C.922D.2327解析:选A 由⎩⎪⎨⎪⎧mx 2+ny 2=1,y =1-x消去y 得,(m +n)x 2-2nx +n -1=0.设M(x 1,y 1),N(x 2,y 2),MN 中点为(x 0,y 0), 则x 1+x 2=2n m +n ,∴x 0=n m +n, 代入y =1-x 得y 0=mm +n. 由题意y 0x 0=22,∴m n =22,选A.3.若点(x,y)在椭圆4x 2+y 2=4上,则y x -2的最小值为( )A .1B .-1C .-233D .以上都不对解析:选C 设yx -2=k,则y =k(x -2). 由⎩⎪⎨⎪⎧4x 2+y 2=4,y =k x -2消去y,整理得(k 2+4)x 2-4k 2x 2+4(k 2-1)=0, Δ=16k 4-4×4(k 2-1)(k 2+4)=0, 解得k =±233,∴k min =-233.选C.4.已知椭圆E :x 2a 2+y2b 2=1(a>b>0)的右焦点为F(3,0),过点F 的直线交E 于A,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y236=1 B.x 236+y227=1 C.x 227+y218=1D.x 218+y29=1 解析:选D 因为直线AB 过点F(3,0)和点(1,-1), 所以直线AB 的方程为y =12(x -3),代入椭圆方程x 2a 2+y2b 2=1消去y,得⎝ ⎛⎭⎪⎫a24+b 2x 2-32a 2x +94a 2-a 2b 2=0,所以AB 的中点的横坐标为32a 22⎝ ⎛⎭⎪⎫a 24+b 2=1,即a 2=2b 2,又a 2=b 2+c 2,所以b =c =3. 所以E 的方程为x 218+y29=1.5.过点M(1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b 2=1(a>b>0)相交于A,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.解析:设A(x 1,y 1),B(x 2,y 2),分别代入椭圆方程相减得x 1-x 2x 1+x 2a2+y 1-y 2y 1+y 2b2=0,根据题意有x 1+x 2=2×1=2,y 1+y 2=2×1=2,且y 1-y 2x 1-x 2=-12,所以2a 2+2b 2×⎝ ⎛⎭⎪⎫-12=0,得a 2=2b 2,所以a 2=2(a 2-c 2),整理得a 2=2c 2,所以c a =22,即e =22.答案:226.在离心率为32的椭圆x 2a 2+y 2b 2=1(a>b>0)上任取一点M,过M 作MN 垂直y 轴于点N,若MP ―→=12MN ―→,点P 的轨迹图形的面积为π,则a 的值为________.解析:设P(x,y),M(x 0,y 0),则N(0,y 0), 由条件MP ―→=12MN ―→可知点P 是线段MN 的中点,故⎩⎪⎨⎪⎧x =12x 0,y =y 0,即⎩⎪⎨⎪⎧x 0=2x ,y 0=y ,由离心率为c a =32,可得4c 2=3a 2,即4a 2-4b 2=3a 2,故a =2b. 故椭圆方程为x 24b 2+y2b 2=1,把点M(x 0,y 0)代入可得2x24b2+y2b2=1, 即x 2+y 2=b 2,表示半径为b 的圆,面积为πb 2=π. 故b =1,a =2b =2.答案:27.在平面直角坐标系xOy 中,点P 到两点(0,-3),(0,3)的距离之和等于4,设点P 的轨迹为C. (1)求C 的方程;(2)设直线y =kx +1与C 交于A,B 两点,k 为何值时OA ―→⊥OB ―→?此时|AB|的值是多少.解:(1)设P(x,y),由椭圆的定义知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,它的短半轴长b =22-32=1.故曲线C 的方程为y 24+x 2=1.(2)设A(x 1,y 1),B(x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +1,y 2+4x 2=4.消去y,并整理,得(k 2+4)x 2+2kx -3=0. 由根与系数的关系得 x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4. 若OA ―→⊥OB ―→,则x 1x 2+y 1y 2=0. 因为y 1y 2=(kx 1+1)(kx 2+1) =k 2x 1x 2+k(x 1+x 2)+1,所以x 1x 2+y 1y 2=-3k 2+4-3k 2k 2+4-2k2k 2+4+1=-4k 2-1k 2+4=0,所以k =±12.当k =±12时,x 1+x 2=∓417,x 1x 2=-1217.所以|AB|=1+k 2·x 1+x 22-4x 1x 2=54×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫±4172+4×1217=46517.8.在直角坐标平面内,已知点A(2,0),B(-2,0),P 是平面内一动点,直线PA,PB 斜率之积为-34.(1)求动点P 的轨迹C 的方程;(2)过点⎝ ⎛⎭⎪⎫12,0作直线l 与轨迹C 交于E,F 两点,线段EF 的中点为M,求直线MA 的斜率k 的取值范围. 解:(1)设P 点的坐标为(x,y), 依题意,有y x -2·y x +2=-34(x≠±2),化简并整理,得x 24+y23=1(x≠±2).∴动点P 的轨迹C 的方程是x 24+y23=1(x≠±2).(2)依题意,直线l 过点⎝ ⎛⎭⎪⎫12,0且斜率不为零,故可设其方程为x =my +12,联立⎩⎪⎨⎪⎧x =my +12,x 24+y23=1消去x,并整理得4(3m 2+4)y 2+12my -45=0,∴Δ>0恒成立. 设E(x 1,y 1),F(x 2,y 2),M(x 0,y 0), 则y 1+y 2=-3m 3m 2+4,∴y 0=y 1+y 22=-3m23m 2+4, ∴x 0=my 0+12=23m 2+4,∴k =y 0x 0-2=m4m 2+4.①当m =0时,k =0; ②当m≠0时,k =14m +4m.∵⎪⎪⎪⎪⎪⎪4m +4m =4|m|+4|m|≥8,∴0<1⎪⎪⎪⎪⎪⎪4m +4m ≤18,∴0<|k|≤18,∴-18≤k≤18且k≠0. 综合①②可知直线MA 的斜率k 的取值范围是⎣⎢⎡⎦⎥⎤-18,18.。
2020届高三理数一轮讲义:9.5.2-直线与椭圆的位置关系(含答案)

第2课时 直线与椭圆的位置关系考点一 直线与椭圆的位置关系【例1】 已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.解 将直线l 的方程与椭圆C 的方程联立, 得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y 22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4)=-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知原方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知原方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(3)当Δ<0,即m <-32或m >32时,方程③没有实数根,可知原方程组没有实数解.这时直线l 与椭圆C 没有公共点. 规律方法 研究直线与椭圆位置关系的方法(1)研究直线和椭圆的位置关系,一般转化为研究其直线方程与椭圆方程组成的方程组解的个数.(2)对于过定点的直线,也可以通过定点在椭圆内部或椭圆上判定直线和椭圆有交点.【训练1】 直线y =kx -k +1与椭圆x 29+y 24=1的位置关系为( ) A.相交B.相切C.相离D.不确定解析 直线y =kx -k +1=k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交. 答案 A考点二 中点弦及弦长问题 多维探究角度1 中点弦问题【例2-1】 已知椭圆x 22+y 2=1,(1)过A (2,1)的直线l 与椭圆相交,求l 被截得的弦的中点轨迹方程; (2)求过点P ⎝ ⎛⎭⎪⎫12,12且被P 点平分的弦所在直线的方程.解 (1)设弦的端点为P (x 1,y 1),Q (x 2,y 2),其中点是M (x ,y ),则x 2+x 1=2x ,y 2+y 1=2y ,由于点P ,Q 在椭圆上,则有:⎩⎪⎨⎪⎧x 212+y 21=1,①x 222+y 22=1,② ①-②得y 2-y 1x 2-x 1=-x 2+x 12(y 2+y 1)=-x2y , 所以-x 2y =y -1x -2,化简得x 2-2x +2y 2-2y =0(包含在椭圆x 22+y 2=1内部的部分).(2)由(1)可得弦所在直线的斜率为k =-x 2y =-12,因此所求直线方程是y -12=-12⎝ ⎛⎭⎪⎫x -12,化简得2x +4y -3=0. 规律方法 弦及弦中点问题的解决方法(1)根与系数的关系:直线与椭圆方程联立、消元,利用根与系数关系表示中点;(2)点差法:利用弦两端点适合椭圆方程,作差构造中点、斜率.角度2 弦长问题【例2-2】 (2019·孝义模拟)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,且点F 1到椭圆C 上任意一点的最大距离为3,椭圆C 的离心率为12. (1)求椭圆C 的标准方程;(2)是否存在斜率为-1的直线l 与以线段F 1F 2为直径的圆相交于A ,B 两点,与椭圆相交于C ,D ,且|CD ||AB |=837?若存在,求出直线l 的方程;若不存在,说明理由.解 (1)根据题意,设F 1,F 2的坐标分别为(-c ,0),(c ,0), 由题意可得⎩⎪⎨⎪⎧a +c =3,c a =12,解得a =2,c =1,则b 2=a 2-c 2=3, 故椭圆C 的标准方程为x 24+y 23=1.(2)假设存在斜率为-1的直线l ,设为y =-x +m , 由(1)知F 1,F 2的坐标分别为(-1,0),(1,0), 所以以线段F 1F 2为直径的圆为x 2+y 2=1, 由题意知圆心(0,0)到直线l 的距离d =|-m |2<1, 得|m |< 2. |AB |=21-d 2=21-m 22=2×2-m 2,联立得⎩⎪⎨⎪⎧x 24+y 23=1,y =-x +m ,消去y ,得7x 2-8mx +4m 2-12=0,由题意得Δ=(-8m )2-4×7(4m 2-12)=336-48m 2=48(7-m 2)>0,解得m 2<7, 设C (x 1,y 1),D (x 2,y 2), 则x 1+x 2=8m7,x 1x 2=4m 2-127,|CD |=2|x 1-x 2|=2×⎝ ⎛⎭⎪⎫8m 72-4×4m 2-127=2×336-48m 249=467×7-m 2=837|AB |=837×2×2-m 2,解得m 2=13<7,得m =±33.即存在符合条件的直线l ,其方程为y =-x ±33.规律方法 1.解决直线与椭圆相交的问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题. 2.设直线与椭圆的交点坐标为A (x 1,y 1),B (x 2,y 2), 则|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2](k 为直线斜率). 【训练2】 (1)(一题多解)已知斜率为2的直线经过椭圆x 25+y 24=1的右焦点F 1,与椭圆相交于A ,B 两点,则弦AB 的长为________.(2)(一题多解)(2019·广东五校调研)若椭圆的中心在原点,一个焦点为(0,2),直线y =3x +7与椭圆相交所得弦的中点的纵坐标为1,则这个椭圆的方程为( ) A.x 212+y 220=1 B.x 24+y 212=1 C.x 212+y 28=1D.x 28+y 212=1解析 (1)法一 由题意知,椭圆的右焦点F 1的坐标为(1,0),直线AB 的方程为y =2(x -1),由⎩⎨⎧y =2(x -1),x 25+y 24=1消去y ,得3x 2-5x =0, 故得A (0,-2),B ⎝ ⎛⎭⎪⎫53,43,则|AB |=⎝ ⎛⎭⎪⎫0-532+⎝ ⎛⎭⎪⎫-2-432=553. 法二 由题意知,椭圆的右焦点F 1的坐标为(1,0), 直线AB 的方程为y =2(x -1),由⎩⎨⎧y =2(x -1),x 25+y 24=1,消去y 得3x 2-5x =0, 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=53,x 1x 2=0, 则|AB |=(x 1-x 2)2+(y 1-y 2)2=(1+k 2)[(x 1+x 2)2-4x 1x 2] =(1+22)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫532-4×0=553.(2)法一 ∵椭圆的中心在原点,一个焦点为(0,2), ∴设椭圆方程为y 2b 2+4+x 2b 2=1(b >0),由⎩⎪⎨⎪⎧y 2b 2+4+x 2b 2=1,y =3x +7消去x ,得(10b 2+4)y 2-14(b 2+4)y -9b 4+13b 2+196=0,设直线y =3x +7与椭圆相交所得弦的端点分别为A (x 1,y 1),B (x 2,y 2), 由题意知y 1+y 22=1,∴y 1+y 2=14(b 2+4)10b 2+4=2,解得b 2=8. ∴所求椭圆方程为x 28+y 212=1.法二 ∵椭圆的中心在原点,一个焦点为(0,2), ∴设椭圆的方程为y 2b 2+4+x 2b 2=1.设直线y =3x +7与椭圆相交所得弦的端点分别为A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21b 2+4+x 21b 2=1, ①y 22b 2+4+x22b 2=1,②①-②得(y 1-y 2)(y 1+y 2)b 2+4+(x 1-x 2)(x 1+x 2)b 2=0, 即y 1-y 2x 1-x 2·y 1+y 2x 1+x 2=-b 2+4b 2, 又∵弦AB 的中点的纵坐标为1,故横坐标为-2,k =y 1-y 2x 1-x 2=3,代入上式得3×2×12×(-2)=-b 2+4b 2,解得b 2=8,故所求的椭圆方程为x 28+y 212=1.答案 (1)553 (2)D 考点三 最值与范围问题易错警示【例3】 (2019·沈阳质检)已知P 点坐标为(0,-2),点A ,B 分别为椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点,直线BP 交E 于点Q ,△ABP 是等腰直角三角形,且PQ→=32QB →. (1)求椭圆E 的方程;(2)设过点P 的动直线l 与E 相交于M ,N 两点,当坐标原点O 位于以MN 为直径的圆外时,求直线l 斜率的取值范围.解 (1)由△ABP 是等腰直角三角形,得a =2,B (2,0). 设Q (x 0,y 0),则由PQ →=32QB →,得⎩⎪⎨⎪⎧x 0=65,y 0=-45, 代入椭圆方程得b 2=1, 所以椭圆E 的方程为x 24+y 2=1.(2)依题意得,直线l 的斜率存在,方程设为y =kx -2.联立⎩⎪⎨⎪⎧y =kx -2,x 24+y 2=1,消去y 并整理得(1+4k 2)x 2-16kx +12=0.(*)因直线l 与E 有两个交点,即方程(*)有不等的两实根, 故Δ=(-16k )2-48(1+4k 2)>0,解得k 2>34. 设M (x 1,y 1),N (x 2,y 2),由根与系数的关系得⎩⎪⎨⎪⎧x 1+x 2=16k1+4k 2,x 1x 2=121+4k 2,因坐标原点O 位于以MN 为直径的圆外, 所以OM →·ON →>0,即x 1x 2+y 1y 2>0,又由x 1x 2+y 1y 2=x 1x 2+(kx 1-2)(kx 2-2) =(1+k 2)x 1x 2-2k (x 1+x 2)+4=(1+k 2)·121+4k 2-2k ·16k 1+4k 2+4>0, 解得k 2<4,综上可得34<k 2<4,则32<k <2或-2<k <-32.则满足条件的斜率k 的取值范围为⎝ ⎛⎭⎪⎫-2,-32∪⎝ ⎛⎭⎪⎫32,2.规律方法 最值与范围问题的解题思路1.构造关于所求量的函数,通过求函数的值域来获得问题的解.2.构造关于所求量的不等式,通过解不等式来获得问题的解.在解题过程中,一定要深刻挖掘题目中的隐含条件,如判别式大于零等.易错警示 (1)设直线方程时,应注意讨论斜率不存在的情况.(2)利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式.【训练3】 已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2是C 的两个焦点,若PF 1→·PF 2→<0,则x 0的取值范围是( ) A.⎝ ⎛⎭⎪⎫-263,263 B.⎝ ⎛⎭⎪⎫-233,233 C.⎝ ⎛⎭⎪⎫-33,33D.⎝ ⎛⎭⎪⎫-63,63解析 由题意可知F 1(-3,0),F 2(3,0),则PF 1→·PF 2→=(x 0+3)(x 0-3)+y 2=x 20+y 20-3<0.因为点P 在椭圆上,所以y 20=1-x 204.所以x 20+⎝ ⎛⎭⎪⎫1-x 204-3<0,解得-263<x 0<263,即x 0的取值范围是⎝ ⎛⎭⎪⎫-263,263. 答案 A[思维升华]1.判断直线与椭圆的位置关系主要是代数法,即通过联立直线方程和椭圆方程所得的二次方程的根的个数来进行,当直线过某一定点时,也可利用该定点与椭圆的位置关系,来判断直线与椭圆的位置关系.2.解决中点弦、弦长及最值与范围问题一般利用“设而不求”的思想,通过根与系数的关系构建方程求解参数、计算弦长、表达函数. [易错防范]1.涉及直线的斜率时,要考虑直线斜率不存在的情况是否符合题意.2.直线与椭圆有交点时,注意由直线方程和椭圆方程联立所得二次方程的Δ≥0.3.求某几何量的最值或范围要考虑其中变量的取值范围.数学运算——高考解析几何问题中的“设而不求”1.数学运算是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程,解析几何正是利用数学运算解决几何问题的一门科学.2.“设而不求”是简化运算的一种重要手段,它的精彩在于设而不求,化繁为简.解题过程中,巧妙设点,避免解方程组,常见类型有:(1)灵活应用“点、线的几何性质”解题;(2)根据题意,整体消参或整体代入等.类型1 巧妙运用抛物线定义得出与根与系数关系的联系,从而设而不求 【例1】 (2017·山东卷)在平面直角坐标系xOy 中,双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右支与焦点为F 的抛物线x 2=2py (p >0)交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为________.解析 法一 设A (x A ,y A ),B (x B ,y B ),由抛物线定义可得|AF |+|BF |=y A +p 2+y B+p 2=4×p2⇒y A +y B =p , 由⎩⎨⎧x 2a 2-y 2b 2=1,x 2=2py 可得a 2y 2-2pb 2y +a 2b 2=0,所以y A +y B =2pb 2a 2=p ,解得a =2b ,故该双曲线的渐近线方程为y =±22x .法二 (点差法)设A (x 1,y 1),B (x 2,y 2),由抛物线的定义可知|AF |=y 1+p2,|BF |=y 2+p 2,|OF |=p 2,由|AF |+|BF |=y 1+p 2+y 2+p2=y 1+y 2+p =4|OF |=2p ,得y 1+y 2=p .易知直线AB 的斜率k AB =y 2-y 1x 2-x 1=x 222p -x 212px 2-x 1=x 2+x 12p .由⎩⎪⎨⎪⎧x 21a 2-y 21b2=1,x 22a 2-y 22b 2=1,得k AB =y 2-y 1x 2-x 1=b 2(x 1+x 2)a 2(y 1+y 2)=b 2a2·x 1+x 2p ,则b 2a 2·x 1+x 2p =x 2+x 12p ,所以b 2a 2=12⇒b a =22,所以双曲线的渐近线方程为y =±22x .答案 y =±22x类型2 中点弦或对称问题,可以利用“点差法”,“点差法”实质上是“设而不求”的一种方法【例2】 (1)△ABC 的三个顶点都在抛物线E :y 2=2x 上,其中A (2,2),△ABC的重心G 是抛物线E 的焦点,则BC 所在直线的方程为________________. (2)抛物线E :y 2=2x 上存在两点关于直线y =k (x -2)对称,则k 的取值范围是________.解析 (1)设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),易知G ⎝ ⎛⎭⎪⎫12,0,则⎩⎨⎧x 1+x 2+23=12,y 1+y 2+23=0,从而⎩⎨⎧x 0=x 1+x22=-14,y 0=y 1+y22=-1,即M ⎝ ⎛⎭⎪⎫-14,-1,又y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC =y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0=-1,故直线BC 的方程为y -(-1)=-⎝ ⎛⎭⎪⎫x +14,即4x +4y +5=0.(2)当k =0时,显然成立.当k ≠0时,设两对称点为B (x 1,y 1),C (x 2,y 2),BC 的中点为M (x 0,y 0),由y 21=2x 1,y 22=2x 2,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率k BC = y 1-y 2x 1-x 2=2y 1+y 2=22y 0=1y 0,由对称性知k BC =-1k ,点M 在直线y =k (x -2)上,所以y 0=-k ,y 0=k (x 0-2),所以x 0=1.由点M 在抛物线内,得y 20<2x 0,即(-k )2<2,所以-2<k <2,且k ≠0. 综上,k 的取值范围为(-2,2). 答案 (1)x +y +54=0 (2)(-2,2)类型3 中点弦或对称问题,可以利用“点差法”,但不要忘记验证Δ>0 【例3】 人教A 版教材《选修2-1》第62页习题2.3 B 组第4题:已知双曲线x 2-y 22=1,过点P (1,1)能否作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点?解 假设存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.设A (x 1,y 1),B (x 2,y 2),易知x 1≠x 2,由⎩⎪⎨⎪⎧x 21-y 212=1,x 22-y 222=1,两式相减得(x 1+x 2)(x 1-x 2)-(y 1+y 2)(y 1-y 2)2=0,又x 1+x 22=1,y 1+y 22=1,所以2(x 1-x 2)-(y 1-y 2)=0,所以k AB =y 1-y 2x 1-x 2=2, 故直线l 的方程为y -1=2(x -1),即y =2x -1. 由⎩⎪⎨⎪⎧y =2x -1,x 2-y 22=1,消去y 得2x 2-4x +3=0, 因为Δ=16-24=-8<0,方程无解,故不存在一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.类型4 求解直线与圆锥曲线的相关问题时,若两条直线互相垂直或两直线斜率有明确等量关系,可用“替代法”,“替代法”的实质是设而不求【例4】 (2017·全国Ⅰ卷改编)已知F 为抛物线C :y 2=2x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A ,B 两点,直线l 2与C 交于D ,E 两点,则|AB |+|DE |的最小值为________.解析 法一 由题意知,直线l 1,l 2的斜率都存在且不为0,F ⎝ ⎛⎭⎪⎫12,0,设l 1:x =ty +12,则直线l 1的斜率为1t ,联立方程得⎩⎨⎧y 2=2x ,x =ty +12,消去x 得y 2-2ty -1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=2t ,y 1y 2=-1. 所以|AB |=t 2+1|y 1-y 2|=t 2+1(y 1+y 2)2-4y 1y 2=t 2+14t 2+4=2t 2+2,同理得,用1t 替换t 可得|DE |=2t 2+2,所以|AB |+|DE |=2⎝ ⎛⎭⎪⎫t 2+1t 2+4≥4+4=8,当且仅当t 2=1t 2,即t =±1时等号成立,故|AB |+|DE |的最小值为8.法二 由题意知,直线l 1,l 2的斜率都存在且不为0,F ⎝ ⎛⎭⎪⎫12,0,不妨设l 1的斜率为k ,则l 1:y =k ⎝ ⎛⎭⎪⎫x -12,l 2:y =-1k ⎝ ⎛⎭⎪⎫x -12.由⎩⎨⎧y 2=2x ,y =k ⎝ ⎛⎭⎪⎫x -12,消去y 得k 2x 2-(k 2+2)x +k 24=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=1+2k 2. 由抛物线的定义知,|AB |=x 1+x 2+1=1+2k 2+1=2+2k 2.同理可得,用-1k 替换|AB |中k ,可得|DE |=2+2k 2,所以|AB |+|DE |=2+2k 2+2+2k 2=4+2k 2+2k 2≥4+4=8,当且仅当2k 2=2k 2,即k =±1时等号成立,故|AB |+|DE |的最小值为8. 答案 8基础巩固题组 (建议用时:40分钟)一、选择题1.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( ) A.(1,+∞) B.(1,3)∪(3,+∞) C.(3,+∞)D.(0,3)∪(3,+∞)解析由⎩⎨⎧y =x +2,x 2m +y 23=1,得(m +3)x 2+4mx +m =0. 由Δ>0且m ≠3及m >0得m >1且m ≠3. 答案 B2.设直线y =kx 与椭圆x 24+y 23=1相交于A ,B 两点,分别过A ,B 两点向x 轴作垂线,若垂足恰为椭圆的两个焦点,则k 等于( ) A.±32B.±23C.±12D.±2解析 由题意可知,点A 与点B 的横坐标即为焦点的横坐标,又c =1,当k >0时,不妨设A ,B 两点的坐标分别为(-1,y 1),(1,y 2),代入椭圆方程得y 1=-32,y 2=32,解得k =32;同理可得当k <0时k =-32. 答案 A3.(2019·长春二检)椭圆4x 2+9y 2=144内有一点P (3,2),则以P 为中点的弦所在直线的斜率为( ) A.-23B.-32C.-49D.-94解析 设以P 为中点的弦所在的直线与椭圆交于点A (x 1,y 1),B (x 2,y 2),斜率为k ,则4x 21+9y 21=144,4x 22+9y 22=144,两式相减得4(x 1+x 2)(x 1-x 2)+9(y 1+y 2)(y 1-y 2)=0,又x 1+x 2=6,y 1+y 2=4,y 1-y 2x 1-x 2=k ,代入解得k =-23.答案 A4.(2018·武汉调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)及点B (0,a ),过点B 与椭圆相切的直线交x 轴的负半轴于点A ,F 为椭圆的右焦点,则∠ABF =( ) A.60°B.90°C.120°D.150°解析 由题意知,切线的斜率存在,设切线方程y =kx +a (k >0),与椭圆方程联立⎩⎨⎧y =kx +a ,x 2a 2+y 2b 2=1,消去y 整理得(b 2+a 2k 2)x 2+2ka 3x +a 4-a 2b 2=0, 由Δ=(2ka 3)2-4(b 2+a 2k 2)(a 4-a 2b 2)=0,得k =c a ,从而y =c a x +a 交x 轴于点A ⎝ ⎛⎭⎪⎫-a 2c ,0,又F (c ,0),易知BA →·BF →=0,故∠ABF =90°.答案 B5.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A.2B.455C.4105D.8105解析 设直线l 的方程为y =x +t ,代入x 24+y 2=1,消去y 得54x 2+2tx +t 2-1=0,由题意知Δ=(2t )2-5(t 2-1)>0即t 2<5,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8t5,x 1x 2=4(t 2-1)5,|AB |=(1+12)[(x 1+x 2)2-4x 1x 2]=4255-t 2≤4105(当且仅当t =0时取等号). 答案 C 二、填空题6.已知椭圆y 2a 2+x 2b 2=1(a >b >0)的右顶点为A (1,0),过其焦点且垂直于长轴的弦长为1,则椭圆方程为________________________.解析 因为椭圆y 2a 2+x 2b 2=1的右顶点为A (1,0),所以b =1,焦点坐标为(0,c ),因为过焦点且垂直于长轴的弦长为1,所以2b 2a =1,a =2,所以椭圆方程为y 24+x 2=1.答案 y 24+x 2=17.(2019·河南八校联考)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP ⊥PQ ,则椭圆C 的离心率为________.解析 不妨设点P 在第一象限,O 为坐标原点,由对称性可得|OP |=|PQ |2=a2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =|OP ||OA |=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎫a 4,3a 4,代入椭圆方程得116+3a 216b 2=1,故a 2=5b 2=5(a 2-c 2),所以椭圆C 的离心率e =255.答案 2558.已知椭圆的方程是x 2+2y 2-4=0,则以M (1,1)为中点的弦所在直线方程是________.解析 由题意知,以M (1,1)为中点的弦所在直线的斜率存在,设其方程为y =kx +b ,则有k +b =1,即b =1-k ,即y =kx +(1-k ),联立方程组⎩⎪⎨⎪⎧x 2+2y 2-4=0,y =kx +(1-k ),则有(1+2k 2)x 2+(4k -4k 2)x +(2k 2-4k -2)=0, 所以x 1+x 22=12·4k 2-4k1+2k 2=1, 解得k =-12(满足Δ>0),故b =32, 所以y =-12x +32,即x +2y -3=0. 答案 x +2y -3=0 三、解答题9.(2017·北京卷)已知椭圆C 的两个顶点分别为A (-2,0),B (2,0),焦点在x 轴上,离心率为32. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点M ,N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4∶5. (1)解 设椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0).由题意得⎩⎨⎧a =2,c a =32,解得c =3.所以b 2=a 2-c 2=1.所以椭圆C 的方程为x 24+y 2=1.(2)证明 设M (m ,n ),则D (m ,0),N (m ,-n ). 由题设知m ≠±2,且n ≠0.直线AM 的斜率k AM =nm +2, 故直线DE 的斜率k DE =-m +2n .所以直线DE 的方程为y =-m +2n (x -m ).直线BN 的方程为y =n2-m (x -2).联立⎩⎪⎨⎪⎧y =-m +2n (x -m ),y =n2-m (x -2),解得点E 的纵坐标y E =-n (4-m 2)4-m 2+n 2.由点M 在椭圆C 上,得4-m 2=4n 2, 所以y E =-45n .又S △BDE =12|BD |·|y E |=25|BD |·|n |,S △BDN =12|BD |·|n |.所以△BDE 与△BDN 的面积之比为4∶5.10.已知A ,B 分别为椭圆C :y 2a 2+x 2b 2=1(a >b >0)在x 轴正半轴、y 轴正半轴上的顶点,原点O 到直线AB 的距离为2217,且|AB |=7. (1)求椭圆C 的离心率;(2)直线l :y =kx +m 与圆x 2+y 2=2相切,并与椭圆C 交于M ,N 两点,若|MN |=1227,求k 的值.解 (1)由题设知,A (b ,0),B (0,a ),直线AB 的方程为x b +ya =1,又|AB |=a 2+b 2=7,ab a 2+b2=2217,a >b >0, 计算得出a =2,b =3,则椭圆C 的离心率为e =1-b 2a 2=12.(2)由(1)知椭圆方程为y 24+x 23=1,设M (x 1,y 1),N (x 2,y 2),则⎩⎪⎨⎪⎧y 24+x 23=1,y =kx +m消去y得,(3k 2+4)x 2+6kmx +3m 2-12=0,直线l 与椭圆相交,则Δ>0,即48(3k 2-m 2+4)>0,且x 1+x 2=-6km3k 2+4,x 1x 2=3m 2-123k 2+4.又直线l 与圆x 2+y 2=2相切, 则|m |k 2+1=2,即m 2=2(k 2+1). 而|MN |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·48(3k 2-m 2+4)3k 2+4=1+k 2·48(k 2+2)3k 2+4=43·k 4+3k 2+23k 2+4,又|MN |=1227,所以43·k 4+3k 2+23k 2+4=1227,即5k 4-3k 2-2=0,解得k =±1,且满足Δ>0,故k 的值为±1.能力提升题组 (建议用时:20分钟)11.(2019·北京东城区调研)已知圆M :(x -2)2+y 2=1经过椭圆C :x 2m +y 23=1(m >3)的一个焦点,圆M 与椭圆C 的公共点为A ,B ,点P 为圆M 上一动点,则P 到直线AB 的距离的最大值为( ) A.210-5 B.210-4 C.410-11D.410-10解析 易知圆M 与x 轴的交点为(1,0),(3,0),∴m -3=1或m -3=9,则m =4或m =12.当m =12时,圆M 与椭圆C 无交点,舍去.所以m =4.联立⎩⎨⎧(x -2)2+y 2=1,x 24+y 23=1,得x 2-16x +24=0.又x ≤2,所以x =8-210.故点P 到直线AB 距离的最大值为3-(8-210)=210-5. 答案 A12.(2019·广州调研)在平面直角坐标系xOy 中,直线x +2y -22=0与椭圆C :x 2a 2+y 2b 2=1(a >b >0)相切,且椭圆C 的右焦点F (c ,0)关于直线l :y =c b x 的对称点E 在椭圆C 上,则△OEF 的面积为( ) A.12 B.32C.1D.2解析联立方程可得⎩⎨⎧x +2y -22=0,x 2a 2+y 2b 2=1,消去x ,化简得(a 2+2b 2)y 2-8b 2y +b 2(8-a 2)=0,由Δ=0得2b 2+a 2-8=0.设F ′为椭圆C 的左焦点,连接F ′E ,易知F ′E ∥l ,所以F ′E ⊥EF ,又点F 到直线l 的距离d =c 2c 2+b2=c 2a ,所以|EF |=2c 2a ,|F ′E |=2a -|EF |=2b 2a ,在Rt △F ′EF 中,|F ′E |2+|EF |2=|F ′F |2,化简得2b 2=a 2,代入2b 2+a 2-8=0得b 2=2,a =2,所以|EF |=|F ′E |=2,所以S △OEF =12S △F ′EF =1. 答案 C13.已知直线l :y =kx +2过椭圆x 2a 2+y 2b 2=1(a >b >0)的上顶点B 和左焦点F ,且被圆x 2+y 2=4截得的弦长为L ,若L ≥455,则椭圆离心率e 的取值范围是________.解析 依题意,知b =2,kc =2. 设圆心到直线l 的距离为d ,则L =24-d 2≥455,解得d 2≤165.又因为d =21+k2,所以11+k 2≤45, 解得k 2≥14.于是e 2=c 2a 2=c 2b 2+c 2=11+k2,所以0<e 2≤45,又由0<e <1,解得0<e ≤255.答案 ⎝⎛⎦⎥⎤0,255 14.(2019·咸阳一模)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点,求△PAB 的面积的最大值. 解 (1)因为e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2.又椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点P (2,1),所以4a 2+1b 2=1.所以a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y 22=1消去y 整理,得x 2+2mx +2m 2-4=0. 所以x 1+x 2=-2m ,x 1x 2=2m 2-4.又直线l 与椭圆相交,所以Δ=4m 2-8m 2+16>0,解得|m |<2. 则|AB |=1+14×(x 1+x 2)2-4x 1x 2=5(4-m 2).点P 到直线l 的距离d =|m |1+14=2|m |5.所以S △PAB =12d |AB |=12×2|m |5×5(4-m 2)=m 2(4-m 2)≤m 2+4-m 22=2.当且仅当m 2=2,即m =±2时,△PAB 的面积取得最大值为2.。
直线与椭圆关系试题

直线与椭圆一.选择题1.椭圆两焦点F1、F2,过F1作直线AB与椭圆交于A、B两点,△ABF2为正三角形,则椭圆的离心率为()A.B.C.D.2.过椭圆+y2=1的左焦点F1的直线与椭圆相交于A、B两,F2为椭圆的右焦点,则△ABF2的周长为()A.4B.8C.12 D.16二.解答题3.已知椭圆的中心在原点,左焦点F1(﹣2,0),过左焦点且垂直于长轴的弦长为.(1)求椭圆的标准方程;(2)过(﹣3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.4.如图,椭圆的中心在坐标原点O,左右焦点分别为F1,F2,右顶点为A,上顶点为B,离心率,三角形△BF1F2的周长为16.直线y=kx(k>0)与AB相交于点D,与椭圆相交于E,F两点.(1)求该椭圆的标准方程.(2)求四边形AEBF面积的最大值.、5.已知焦点在x轴上,对称轴为坐标轴的椭圆的离心率为,且以该椭圆上的点和椭圆的两焦点F1,F2为顶点的三角形的周长为6,(1)求椭圆的标准方程;(2)设过点N(1,0)斜率为k直线l与椭圆相交与A、B两点,若,求直线l斜率k的取值范围.6.过椭圆x2+2y2=2的左焦点引一条倾斜角为450的直线,求以此直线与椭圆的两个交点及椭圆中心为顶点的三角形的面积.7.已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为(1)求椭圆的标准方程;(2)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.8.已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(1)求椭圆C的方程;(2)已知动直线y=k(x+1)与椭圆C相交于A、B两点,若线段AB中点的横坐标为,求斜率k的值.9.已知椭圆的右焦点F与抛物线y2=4x的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,BC∥x轴.(1)求椭圆的标准方程,并指出其离心率;(2)求证:线段EF被直线AC平分.10.已知椭圆C:(a>b>0)的两个焦点和短轴的两个端点都在圆x2+y2=1上.(1)求椭圆C的方程;(2)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试探讨k为何值时,三角形OAB为直角三角形.11.已知椭圆E的右焦点F(1,0),右准线l:x=4,离心率e=.(1)求椭圆E的方程;(2)设A是椭圆E的左顶点,一经过右焦点F的直线与椭圆E相交于P、Q两点(P、Q与A不重合),直线AP、AQ分别与右准线l相交于点M、N,求证:直线PN、直线QM与x轴相交于同一点.12.椭圆C:的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny﹣4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.13.已知椭圆C的中心在原点,对称轴为坐标轴,焦点在x轴上,右焦点F到其左顶点A的距离为3,到右顶点B 的距离为1.(1)求椭圆C的标准方程;(2)P是椭圆C上不同于A,B的任意一点,直线AP,BP分别与直线x=3相交于点M,N,直线BM与椭圆C 相交于异于点B的另一点Q.(i)求的值;(ii)求证:A,Q,N三点共线.14.已知椭圆E的中心在坐标原点,焦点在x轴上,短轴长与焦距相等,直线x+y﹣1=0与E相交于A,B两点,与x轴相交于C点,且.(1)求椭圆E的方程;(2)如果椭圆E上存在两点M,N关于直线l:y=4x+m对称,求实数m的取值范围.15.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的图过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.参考答案与试题解析一.选择题(共2小题)1.椭圆两焦点F1、F2,过F1作直线AB与椭圆交于A、B两点,△ABF2为正三角形,则椭圆的离心率为()A.B.C.D.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由题意,AB⊥F1F2,则,由此可得a,c的方程,即可求得椭圆的离心率.解答:解:由题意,AB⊥F1F2,则∵,∴∴∴∴e=故选A.点评:本题考查椭圆的几何性质,考查学生分析解决问题的能力,属于中档题.2.过椭圆+y2=1的左焦点F1的直线与椭圆相交于A、B两,F2为椭圆的右焦点,则△ABF2的周长为()A.4B.8C.12 D.16考点:椭圆的简单性质.专题:计算题.分析:首先根据椭圆方程求出椭圆的长半轴a,再根据椭圆的定义得到AF1+AF2=BF1+BF2=2a=4,最后将此式代入到三角形ABF2的周长表达式中,即可得到答案.解答:解:∵椭圆方程为:+y2=1∴椭圆的长半轴a=2由椭圆的定义可得,AF1+AF2=2a=4,且BF1+BF2=2a=4∴△ABF2的周长为AB+AF2+BF2=(AF1+BF1)+(AF2+BF2)=4a=8故选:B点评:本题以椭圆中的三角形为例,考查椭圆的定义、标准方程,以及椭圆简单性质的应用,属于基础题.二.解答题(共13小题)3.已知椭圆的中心在原点,左焦点F1(﹣2,0),过左焦点且垂直于长轴的弦长为.(Ⅰ)求椭圆的标准方程;(Ⅱ)过(﹣3,0)点的直线l与椭圆相交于A,B两点,若以线段A,B为直径的圆过椭圆的左焦点,求直线l的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)设出椭圆方程,表示出通径,由其长等于,联立c=2及a2=b2+c2求解a,b的值,所以椭圆的标准方程可求;(Ⅱ)设出直线l的方程,和椭圆方程联立后化为关于y的一元二次方程,由根与系数的关系得到两交点A,B的纵坐标的和与积,代入向量数量积等于0求解答案.解答:解:(Ⅰ)设椭圆方程为.令x=﹣c,代入椭圆方程得,.所以,又a2=b2+c2,解得.∴椭圆的标准方程为;(Ⅱ)设直线l的方程为x=my﹣3,A(x1,y1),B(x2,y2)联立直线与椭圆的方程,得(m2+3)y2﹣6my+3=0,,由题意可知AF1⊥BF1,即,∴=整理得:(m2+1)y1y2﹣m(y1+y2)+1=0.∴,解得m=.代入△=36m2﹣12(m2+3)=24×3﹣36=36>0.所以直线l的方程为或x﹣+3=0.点评:本题考查了椭圆的标准方程,考查了直线和椭圆的关系,直线和圆锥曲线的关系问题,常采用根与系数的关系来解决,考查了学生的计算能力,属有一定难度题目.4.如图,椭圆的中心在坐标原点O,左右焦点分别为F1,F2,右顶点为A,上顶点为B,离心率,三角形△BF1F2的周长为16.直线y=kx(k>0)与AB相交于点D,与椭圆相交于E,F两点.(1)求该椭圆的标准方程.(2)求四边形AEBF面积的最大值.考点:椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)设中心在原点,长轴在x轴上的椭圆方程,焦距为2c.由题意可得a,c的关系,结合a2=b2+c2,可求a,b,c进而可求椭圆的方程;(2)解法一:将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程:(16+25k2)x2=400如图,设E(x1,kx1),F(x2,kx2),表示出四边形AEBF的面积,最后利用基本不等式求S的最大值;解法二:由题设,|BO|=4,|AO|=5.再设y1=kx1,y2=kx2,表示出四边形AEBF的面积为S=S△BEF+S△AEF=4x2+5y2,最后利用基本不等式求其最大值即可.解答:解:(1)设椭圆的方程为,焦距为2c,依题意有,解得∴椭圆的方程为,(5分)(2)解法一:由消去y,得(16+25k2)x2=400如图,设E(x1,kx1),F(x2,kx2),其中x1<x2,∴.①(8分)∵直线AB的方程分别为即4x+5y﹣20=0,∴点E,F到AB的距离分别为,(10分)又,所以四边形AEBF的面积为====,当且仅当16=25k2即时,上式取等号.所以S的最大值为.(14分)解法二:由题设,|BO|=4,|AO|=5.设y1=kx1,y2=kx2,由①得x2>0,y2=﹣y1>0,且故四边形AEBF的面积为S=S△BEF+S△AEF=4x2+5y2(10分)===,当且仅当4x2=5y2时,上式取等号.所以S的最大值为.(14分)点评:本题主要考查了由椭圆的性质求解椭圆方程,直线与椭圆的位置关系的应用,体现了方程的思想的应用,要注意弦长公式的应用.5.已知焦点在x轴上,对称轴为坐标轴的椭圆的离心率为,且以该椭圆上的点和椭圆的两焦点F1,F2为顶点的三角形的周长为6,(1)求椭圆的标准方程;(2)设过点N(1,0)斜率为k直线l与椭圆相交与A、B两点,若,求直线l斜率k的取值范围.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:计算题.分析:(1)直接利用离心率为,以及三角形的周长为6列出关于a,b,c的方程,求出a,b,c即可得椭圆的标准方程;(2)先设直线l的方程为y=k(x﹣1),再把直线方程与椭圆的标准方程联立求出A、B两点的坐标与k之间的关系,代入,整理后即可直线l斜率k的取值范围.解答:解:(1)设椭圆的标准方程为,依题有2a+2c=6,即a+c=6,又因为,所以a=2,c=1,∴b2=a2﹣c2=3,所以椭圆的标准方程为(2)设过点N(1,0)的斜率为k直线l的方程为y=k(x﹣1),A(x1,y1),B(x2,y2)由可得(3+4k2)x2﹣8k2x+4k2﹣12=0∴,∵=(1+k2)[x1•x2﹣(x1+x2)+1]=,∴,∴点评:本题主要考查直线与圆锥曲线的综合问题.在解决直线与圆锥曲线的位置关系时,韦达定理是一个必不可少的工具,比如本题的第二问.6.(2007•汕头二模)过椭圆x2+2y2=2的左焦点引一条倾斜角为450的直线,求以此直线与椭圆的两个交点及椭圆中心为顶点的三角形的面积.考点:直线与圆锥曲线的关系.专题:综合题;圆锥曲线的定义、性质与方程.分析:化椭圆的方程为标准方程,求出椭圆的左焦点坐标,写出直线l的方程,和椭圆方程联立后求出两个交点的横坐标,由此可得三角形是以半短轴为底的三角形,直接利用面积公式求面积.解答:解:由x2+2y2=2,得椭圆方程,∴a2=2,b2=c2=1,∴c=1,∴左焦点为F1(﹣1,0),∴过左焦点F1的直线为y=tan45°(x+1),即y=x+1.代入椭圆方程得3x2+4x=0,∴,∴所求三角形以半短轴为底,其面积为.点评:本题考查了直线和圆锥曲线的关系,考查了方程思想方法,训练了学生的计算能力,是中档题.7.已知椭圆(a>b>0)的离心率为,以该椭圆上的点和椭圆的左、右焦点F1,F2为顶点的三角形的周长为(Ⅰ)求椭圆的标准方程;(Ⅱ)设n是过原点的直线,l是与n垂直相交于P点、与椭圆相交于A,B两点的直线,,是否存在上述直线l使成立?若存在,求出直线l的方程;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题;直线的一般式方程;椭圆的标准方程.专题:综合题;压轴题.分析:(Ⅰ)设椭圆的半焦距为c,由题意知,由此能求出椭圆的标准方程.(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),假设使成立的直线l存在,当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且得,由,,知x1x2+y1y2=0.将y=kx+m代入椭圆方程,得(1+2k2)x2+4kmx+(2m2﹣8)=0,由韦达定理能够导出k2=﹣1,即此时直线l不存在;当l垂直于x轴时,满足的直线l的方程为x=1或x=﹣1,由此能够导出此时直线l不存在.所以使成立的直线l不存在.解答:解:(Ⅰ)设椭圆的半焦距为c,由题意知所以,又a2=b2+c2,因此b=2故椭圆的标准方程为(6分)(Ⅱ)设A,B两点的坐标分别为(x1,y1),(x2,y2),假设使成立的直线l存在,(ⅰ)当l不垂直于x轴时,设l的方程为y=kx+m,由l与n垂直相交于P点且得,即m2=k2+1∵,,∴==1+0+0﹣1=0,即x1x2+y1y2=0将y=kx+m代入椭圆方程,得(1+2k2)x2+4kmx+(2m2﹣8)=0由求根公式可得,0=x1x2+y1y2=x1x2+(kx1+m)(kx2+m)=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2因此(1+k2)(2m2﹣8)﹣4k2m2+m2(1+2k2)=0将m2=k2+1代入上式并化简得k2=﹣1,即此时直线l不存在;(10分)(ⅱ)当l垂直于x轴时,满足的直线l的方程为x=1或x=﹣1,当x=1时,A,B,P的坐标分别为,∴,∴当x=﹣1时,同理可得,矛盾,即此时直线l不存在综上可知,使成立的直线l不存在.(14分)点评:本题考查直线和圆锥曲线的位置关系,解题时要认真审题,注意计算能力的培养,提高解题能力和解题技巧.8.已知椭圆C:的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为.(Ⅰ)求椭圆C的方程;(Ⅱ)已知动直线y=k(x+1)与椭圆C相交于A、B两点,若线段AB中点的横坐标为,求斜率k的值.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(Ⅰ)利用椭圆的离心率为,椭圆短轴的一个端点与两个焦点构成的三角形的面积为,建立方程,即可求椭圆C的方程;(Ⅱ)将y=k(x+1)代入椭圆方程,利用韦达定理,及线段AB中点的横坐标为,可求斜率k的值.解答:解:(Ⅰ)由题意,满足a2=b2+c2,,…(3分)解得,则椭圆方程为…(6分)(Ⅱ)将y=k(x+1)代入中得(1+3k2)x2+6k2x+3k2﹣5=0…(8分)△=36k4﹣4(3k2+1)(3k2﹣5)=48k2+20>0,所以…(10分)因为AB中点的横坐标为,所以,解得…(12分)点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查学生的计算能力,属于中档题.9.已知椭圆的右焦点F与抛物线y2=4x的焦点重合,短轴长为2.椭圆的右准线l与x轴交于E,过右焦点F的直线与椭圆相交于A、B两点,点C在右准线l上,BC∥x轴.(1)求椭圆的标准方程,并指出其离心率;(2)求证:线段EF被直线AC平分.考点:圆锥曲线的综合;椭圆的标准方程.专题:计算题;综合题;分类讨论.分析:(1)先设出椭圆的标准方程,根据抛物线的方程求得其焦点坐标,进而求得椭圆的c,短半轴b求得a,则椭圆的方程和离心率可得.(2)根据(1)中的椭圆方程求得其准线l的方程,求得点E的坐标,设EF的中点为M,则M的坐标可得,先看当AB垂直于x轴,则设出点A,B,C的坐标,求得AC中点的坐标,判断出线段EF的中点与AC的中点重合;再看AB不垂直于x轴,则可设直线AB的方程与椭圆方程联立消去y,根据韦达定理表示出x1+x2和x1x2的表达式,可表示出AM和CM的斜率,求得二者相等,进而推断出A、M、C三点共线,即AC过EF的中点M,最后综合证明题设.解答:解:(1)由题意,可设椭圆的标准方程为(a>b>0)∵y2=4x的焦点为F(1,0)∴c=1,又2b=2,∴b=1,a2=b2+c2=2,所以,椭圆的标准方程为其离心率为e=(2)证明:∵椭圆的右准线1的方程为:x=2,∴点E的坐标为(2,0)设EF的中点为M,则M(,0)若AB垂直于x轴,则A(1,y1),B(1,﹣y1),C(2,﹣y1)∴AC的中点为N(,0)∴线段EF的中点与AC的中点重合,∴线段EF被直线AC平分,若AB不垂直于x轴,则可设直线AB的方程为y=k(x﹣1),k≠0,A(x1,y1),B(x2,y2)则C(2,﹣y2)把y=k(x﹣1)代入得(1+2k2)x2﹣4k2x+2(k2﹣1)=0则有x1+x2=,x1x2=∴k AM==,k CM=,∵k AM﹣k CM=2k\frac{({x}_{1}﹣1)﹣({x}_{2}﹣1)}{2{x}_{1}﹣3}2({x}_{1}﹣3)=0=∴k AM=k CM∴A、M、C三点共线,即AC过EF的中点M,∴线段EF被直线AC平分.点评:本题主要考查了圆锥曲线的综合运用.考查了学生综合分析问题和分类讨论思想的运用.属中档题.10.已知椭圆C:(a>b>0)的两个焦点和短轴的两个端点都在圆x2+y2=1上.(I)求椭圆C的方程;(Ⅱ)若斜率为k的直线过点M(2,0),且与椭圆C相交于A,B两点.试探讨k为何值时,三角形OAB为直角三角形.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(Ⅰ)由题意可知b和c,利用隐含条件求出a,则椭圆方程可求;(Ⅱ)设出直线AB的方程,联立直线方程和椭圆方程,由判别式大于0求出k的范围,利用根与系数关系得到A与B的横坐标的和与积,讨论O与A(或B)为直角顶点两种情况,O为直角顶点时,直接由列式求解k的值,若A(或B)为直角顶点时,由斜率之积等于﹣1求出OA的斜率,由两直线联立解出A点(或B)点坐标,代入椭圆方程求得k的值.解答:解:(Ⅰ)因为焦点与短轴的端点都在圆x2+y2=1上,∴c=1,b=1,∴a2=b2+c2=1+1=2.则椭圆方程为:;(Ⅱ)由已知直线AB的斜率存在,设直线AB的方程为y=k(x﹣2).联立,得(1+k2)x2﹣8k2x+8k2﹣2=0.由△=64k4﹣4(1+k2)(8k2﹣2)>0,得.所以k.设A(x1,y1),B(x2,y2).则.若O为直角顶点,则,即x1x2+y1y2=0.y1y2=k(x1﹣2)k(x2﹣2).所以上式可整理得:.解得k=.满足k.若A或B为直角顶点,不妨设A为直角顶点,,则A满足,解得代入椭圆方程得k4+2k2﹣1=0.解得k=.满足k.综上,k=或k=时三角形OAB为直角三角形.点评:本题考查了椭圆的标准方程,考查了直线和圆锥曲线的关系,考查了分类讨论的数学思想方法哈数学转化思想方法,训练了平面向量在解题中的应用,考查了学生的计算能力,是难题.11.已知椭圆E的右焦点F(1,0),右准线l:x=4,离心率e=.(1)求椭圆E的方程;(2)设A是椭圆E的左顶点,一经过右焦点F的直线与椭圆E相交于P、Q两点(P、Q与A不重合),直线AP、AQ分别与右准线l相交于点M、N,求证:直线PN、直线QM与x轴相交于同一点.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:圆锥曲线中的最值与范围问题.分析:(1)设椭圆E的标准方程为(a>b>0).由题意可得c=1,利用离心率公式及a2=b2+c2,即可.(2)设P(x1,y1),Q(x2,y2),由于直线l的斜率不为0,可设直线l的方程为my=x﹣1,与椭圆方程联立得到根与系数的关系.利用点斜式分别写出直线AP、AQ的方程即可得出点M,N的坐标.只要证明k BM﹣k QB为0,即可得到三点Q,B,M共线,即直线QM与x轴相交于右顶点B.同理直线PN与x轴相交于右顶点B,所以直线PN、直线QM与x轴相交于同一点B.解答:解:(1)设椭圆E的标准方程为(a>b>0).由题意可得,解得.∴椭圆E的标准方程为.(2)设P(x1,y1),Q(x2,y2),由于直线l的斜率不为0,可设直线l的方程为my=x﹣1.联立.消去x得到(3m2+4)y2+6my﹣9=0.∴,.直线AP的方程为,令x=4,得到y=,∴M.直线AQ的方程为:,令x=4,得到,∴N.∴k BM﹣k QB=﹣==,其分子=3y1(my2+1﹣2)﹣y2(my1+1+2)=2my1y2﹣3(y1+y2)==0,∴k BM﹣k QB=0,即k BM=k QB,∴三点Q,B,M共线,即直线QM与x轴相交于右顶点B.同理直线PN与x轴相交于右顶点B,所以直线PN、直线QM与x轴相交于同一点B.点评:本题中考查了椭圆的方程及其性质、直线与椭圆相交问题转化为一元二次方程的根与系数的关系、利用斜率相等证明三点共线等基础知识与基本技能,考查了分析问题和解决问题的能力、推理能力和计算能力.12.椭圆C:的离心率为e=,点A是椭圆上的一点,且点A到椭圆C两焦点的距离之和为4.(1)求椭圆C的方程;(2)若P(m,n)(m>0,n>0)为椭圆C上一动点,直线L:mx+4ny﹣4=0与圆C′:x2+y2=4相交于A、B两点,求三角形OAB面积的最大值及此时直线L的方程.考点:椭圆的标准方程;直线与圆的位置关系.专题:计算题.分析:(1)依题意可求得a=2,再利用其离心率e===可求得b,从而可求得椭圆C的方程;(2)设圆心O到直线L的距离为d,可求得d=,结合n∈(0,1],可求得d的范围;利用基本不等式可求得S△OAB最大值为2,继而可得n,m的值,从而可求得直线L的方程.解答:解:(1)由椭圆定义知2a=4,∴a=2,又e===得b=1,∴所求椭圆方程为+y2=1.(2)设圆心O到直线L的距离为d,则d=,又有+n2=1,所以d==,又n∈(0,1],∴d∈[1,2),S△OAB=|AB|•d=•d=≤=2(当d2=4﹣d2即d=时S△OAB最大),∴S△OAB最大值为2,d=⇒=,n>0,∴n=,m2=4﹣4n2=,又m>0,∴m=.所以直线L的方程为x+y﹣12=0,即x+y﹣3=0.点评:本题考查椭圆的标准方程,考查直线与圆的位置关系,突出考查基本不等式的应用,考查分析、运算的能力,属于难题.13.已知椭圆C的中心在原点,对称轴为坐标轴,焦点在x轴上,右焦点F到其左顶点A的距离为3,到右顶点B 的距离为1.(I)求椭圆C的标准方程;(Ⅱ)P是椭圆C上不同于A,B的任意一点,直线AP,BP分别与直线x=3相交于点M,N,直线BM与椭圆C 相交于异于点B的另一点Q.(i)求的值;(ii)求证:A,Q,N三点共线.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)设椭圆C的标准方程为(a>b>0),利用右焦点F到其左顶点A的距离为3,到右顶点B的距离为1,建立方程,求出几何量,即可求椭圆C的标准方程;(Ⅱ)(i)设出直线AP,BP的方程,求出M,N的坐标,利用向量的数量积公式,结合P在椭圆上,即可求的值;(ii)设出直线MB,AN的方程,求出交点坐标,验证在椭圆上,即可证明A,Q,N三点共线.解答:(I)解:设椭圆C的标准方程为(a>b>0)∵右焦点F到其左顶点A的距离为3,到右顶点B的距离为1,∴,∴a=2,c=1∴b2=a2﹣c2=3∴椭圆C的标准方程为;(Ⅱ)设P(x0,y0)(﹣2<x0<2),则直线AP:,联立直线AP与直线x=3,可得M(3,);直线BP:,联立直线AP与直线x=3,可得N(3,),(i)解:∵F(1,0),∴∴=4+∵∴∴=4+=;(ii)证明:直线MB的方程为y=(x﹣2),直线AN的方程为y=(x﹣2)联立直线MB,NA,可得交点坐标为(,)∵∴∴直线MB,NA的交点在椭圆上,∴A,Q,N三点共线.点评:本题考查椭圆的标准方程,考查向量知识的运用,考查直线的方程,考查交点坐标的求解,考查学生的计算能力,综合性强.14.已知椭圆E的中心在坐标原点,焦点在x轴上,短轴长与焦距相等,直线x+y﹣1=0与E相交于A,B两点,与x轴相交于C点,且.(Ⅰ)求椭圆E的方程;(Ⅱ)如果椭圆E上存在两点M,N关于直线l:y=4x+m对称,求实数m的取值范围.考点:椭圆的标准方程;直线与圆锥曲线的综合问题.专题:综合题;转化思想;待定系数法.分析:(Ⅰ)根据短轴与焦距相等得到b与c相等,且a等于b,则b2=c2,a2=2c2设出椭圆的标准方程,设出已知直线与E的交点A与B的坐标,然后把直线方程代入到设出的椭圆方程中,消去y得到关于x的一元二次方程,利用韦达定理得到两个之和和两根之积的关系式,同时利用求出C的坐标,和设出的A和B的坐标,由得到A与B横坐标之间的关系式,三者联立即可求出A与B的横坐标及c的值,把c的值代入所设的椭圆方程即可得到椭圆E的方程;(Ⅱ)设出椭圆E上两点M与N的坐标,把设出的两点坐标分别代入到(Ⅰ)求出的椭圆方程得到两个关系式并设出MN的中点坐标,把两个关系式相减并利用中点坐标公式化简即可得到MN中点横纵坐标之间的关系式,然后根据M与N关于直线l对称得到MN的中点在直线l上,把MN的中点坐标代入直线l的方程又得到中点横纵坐标之间的关系式,两个关系式联立即可求出横纵坐标关于m的中点坐标,然后根据中点在椭圆内部,所以把中点坐标代入椭圆方程后其值小于1,列出关于m的不等式,求出不等式的解集即可得到m的取值范围.解答:解:(Ⅰ)设所求的椭圆E的方程为(c>0),A(x1,y1)、B(x2,y2),将y=x+1代入椭圆得3x2﹣4x+2﹣2c2=0,∵,又C(1,0),∴,∴,∴所求的椭圆E的方程为;(Ⅱ)设M(x1,y1)、N(x2,y2),则,,又设MN的中点为(x0,y0),则以上两式相减得:,⇒,又点(x0,y0)在椭圆内,∴,即,化简得:9m2﹣8<0,因式分解得:(3m+2)(3m﹣2)<0,解得:.点评:此题考查学生会求直线与曲线的交点坐标,掌握椭圆的简单性质,会利用待定系数法求椭圆的标准方程,掌握一点在椭圆的内部所满足的条件,灵活运用中点坐标公式及对称知识解决实际问题,是一道综合题.15.已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的图过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.考点:直线与圆锥曲线的综合问题;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)由已知椭圆C上的点到焦点距离的最大值为3,最小值为1,可得:a+c=3,a﹣c=1,从而可求椭圆的标准方程;(2)直线与椭圆方程联立,利用以AB为直径的圆过椭圆的右顶点D(2,0),结合根的判别式和根与系数的关系求解,即可求得结论.解答:(1)解:由题意设椭圆的标准方程为,由已知椭圆C上的点到焦点距离的最大值为3,最小值为1,可得:a+c=3,a﹣c=1,∴a=2,c=1∴b2=a2﹣c2=3∴椭圆的标准方程为;(2)证明:设A(x1,y1),B(x2,y2)联立,消去y可得(3+4k2)x2+8mkx+4(m2﹣3)=0,则又因为以AB为直径的圆过椭圆的右顶点D(2,0),∴k AD k BD=﹣1,即∴y1y2+x1x2﹣2(x1+x2)+4=0,∴∴7m2+16mk+4k2=0解得:,且均满足3+4k2﹣m2>0当m1=﹣2k时,l的方程y=k(x﹣2),直线过点(2,0),与已知矛盾;当时,l的方程为,直线过定点所以,直线l过定点,定点坐标为点评:本题考查椭圆的性质及应用,考查直线与椭圆的位置关系,考查韦达定理的运用,综合性强,属于中档题.。
高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.2.已知椭圆:的离心率为,一条准线.(1)求椭圆的方程;(2)设为坐标原点,是上的点,为椭圆的右焦点,过点作的垂线与以为直径的圆交于两点.①若=,求圆的方程;②若是上的动点,求证:点在定圆上,并求该定圆的方程.【答案】(1);(2)或;(3)点在定圆上【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)根据圆的圆心坐标和半径求圆的标准方程.(3)直线和圆相交,根据半径,弦长的一半,圆心距求弦长,圆的弦长的常用求法:(1)几何法:求圆的半径,弦心距,弦长,则(2)代数方法:运用根与系数的关系及弦长公式.(4)与圆有关的探索问题:第一步:假设符合条件的结论存在;第二步:从假设出发,利用直线与圆的位置关系求解;第三步,确定符合要求的结论存在或不存在;第四步:给出明确结果;第五步:反思回顾,查看关键点.试题解析:解:(1)由题意可知:,解得,所以椭圆的方程为由①知:,设,则圆的方程:直线的方程:所以圆的方程:或②证明:设,由①知,化简得消去得:所以点在定圆上.【考点】(1)椭圆的标准方程;(2)圆的标准方程;(3)与圆有关的探索问题.3.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。
【考点】(1)椭圆、双曲线离心率的求法;(2)椭圆、双曲线中的三者关系。
高中数学选修2-1课时作业23:2.2.2 第2课时 直线与椭圆的位置关系(一)

第2课时 直线与椭圆的位置关系(一)一、选择题1.若点P (a,1)在椭圆x 22+y 23=1的外部,则a 的取值范围为() A.⎝⎛⎭⎫-233,233B.⎝⎛⎭⎫-∞,-233∪⎝⎛⎭⎫233,+∞C.⎝⎛⎭⎫43,+∞D.⎝⎛⎭⎫-∞,-43考点题点 [答案] B [解析] 因为点P 在椭圆x 22+y 23=1的外部,所以a 22+123>1,解得a >233或a <-233,故选B.2.直线y =x +1与椭圆x 25+y 24=1的位置关系是( )A .相交B .相切C .相离D .无法判断考点题点[答案] A[解析] 方法一 直线过点(0,1),而0+14<1,即点(0,1)在椭圆内部,所以可推断直线与椭圆相交.方法二 联立直线与椭圆的方程,得⎩⎪⎨⎪⎧y =x +1,x 25+y 24=1,消去y 得9x 2+10x -15=0, Δ=100-4×9×(-15)=640>0,所以直线与椭圆相交.3.直线y =k (x -2)+1与椭圆x 216+y 29=1的位置关系是( ) A .相离B .相交C .相切D .无法判断 考点 直线与椭圆的位置关系题点 直线与椭圆的公共点个数问题[答案] B[解析] 直线y =k (x -2)+1过定点P (2,1),将P (2,1)代入椭圆方程,得416+19<1, 所以P (2,1)在椭圆内部,故直线与椭圆相交.4.椭圆x 24+y 2=1的两个焦点为F 1,F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|为( ) A.32B.3C.72D .4 [答案] C[解析] ∵|PF 1|+|PF 2|=4,|PF 1|=b 2a =12, ∴|PF 2|=4-12=72. 5.直线y =x +2与椭圆x 2m +y 23=1有两个公共点,则m 的取值范围是( ) A .m >1B .m ≥1C .m >3D .m >1且m ≠3[答案] D[解析] 由⎩⎪⎨⎪⎧ y =x +2,x 2m +y 23=1,得(3+m )x 2+4mx +m =0, ∴Δ>0,即16m 2-4m (3+m )>0,∴m >1且m <0,又∵m >0且m ≠3,∴m >1且m ≠3.6.椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为22,若直线y =kx 与椭圆的一个交点的横坐标x 0=b ,则k 的值为( ) A.22B .±22C.12D .±12考点 直线与椭圆的位置关系题点 直线与椭圆相交的其他问题[答案] B[解析] 根据椭圆的离心率为22,得ca =22.由x 0=b ,得y 20=b 2⎝⎛⎭⎫1-b 2a 2=b2c 2a 2,所以y 0=±bca ,∴k =y 0x 0=±c a =±22.7.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是() A .m >1 B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5[答案] D[解析] 方法一 由于直线y =kx +1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<1m ≤1且m ≠5,故m ≥1且m ≠5.方法二 由⎩⎪⎨⎪⎧ y =kx +1,mx 2+5y 2-5m =0,消去y 整理得(5k 2+m )x 2+10kx +5(1-m )=0.由题意知Δ=100k 2-20(1-m )(5k 2+m )≥0对一切k ∈R 恒成立,即5mk 2+m 2-m ≥0对一切k ∈R 恒成立,由于m >0且m ≠5,∴m ≥1且m ≠5.8.以F 1(-1,0),F 2(1,0)为焦点且与直线x -y +3=0有公共点的椭圆中,离心率最大的椭圆方程是( )A.x 220+y 219=1 B.x 29+y 28=1 C.x 25+y 24=1 D.x 23+y 22=1 考点 直线与椭圆的位置关系题点 直线与椭圆的公共点个数问题[答案] C[解析] 由题意设椭圆方程为x 2b 2+1+y 2b 2=1, ⎩⎨⎧ x 2b 2+1+y 2b 2=1,x -y +3=0,得(2b 2+1)x 2+6(b 2+1)x +8b 2+9-b 4=0,由Δ≥0得b 2≥4,所以b 2的最小值为4,由e =1-b 2b 2+1=1b 2+1, 则b 2=4时,e 取最大值,故选C.二、填空题9.已知以F 1(-2,0),F 2(2,0)为焦点的椭圆与直线x +3y +4=0有且仅有一个公共点,则椭圆的长轴长为____________________________.考点 直线与椭圆的位置关系题点 直线与椭圆的公共点个数问题[答案] 27 [解析] 由题意可设椭圆的方程为x 2a 2+y 2a 2-4=1(a >2), 与直线方程x +3y +4=0联立,得4(a 2-3)y 2+83(a 2-4)y +(16-a 2)(a 2-4)=0,由Δ=0,得a =7,所以椭圆的长轴长为27.10.若直线mx +ny =4与圆x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数为________.考点 直线与椭圆的位置关系题点 直线与椭圆的公共点个数问题[答案] 2[解析] 因为直线mx +ny =4与圆x 2+y 2=4没有交点, 所以|-4|m 2+n 2>2,所以m 2+n 2<4, 即点P (m ,n )在以原点为圆心,以2为半径的圆内(不包含边界),故过点P (m ,n )的直线与椭圆x 29+y 24=1有两个交点. 11.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,椭圆C 与过原点的直线相交于A ,B 两点,连接AF ,BF ,若|AB |=10,|AF |=6,cos ∠ABF =45,则椭圆C 的离心率e =________. [答案] 57[解析] 设椭圆的右焦点为F 1,在△ABF 中,由余弦定理可解得|BF |=8,所以△ABF 为直角三角形,且∠AFB =90°,又因为斜边AB 的中点为O ,所以|OF |=c =5,连接AF 1,因为A ,B 关于原点对称,所以|BF |=|AF 1|=8,所以2a =14,a =7,所以离心率e =57. 三、解答题12.如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,右顶点,上顶点分别为A ,B ,且|AB |=52|BF |.(1)求椭圆C 的离心率;(2)若斜率为2的直线l 过点(0,2),且l 交椭圆C 于P ,Q 两点,OP ⊥OQ ,求直线l 的方程及椭圆C 的方程.解 (1)由已知|AB |=52|BF |, 即a 2+b 2=52a , 4a 2+4b 2=5a 2,4a 2+4(a 2-c 2)=5a 2,∴e =c a =32. (2)由(1)知a 2=4b 2,∴椭圆C :x 24b 2+y 2b2=1. 设P (x 1,y 1),Q (x 2,y 2),直线l 的方程为y -2=2(x -0),即2x -y +2=0.由⎩⎪⎨⎪⎧2x -y +2=0,x 24b 2+y 2b 2=1消去y , 得x 2+4(2x +2)2-4b 2=0,即17x 2+32x +16-4b 2=0.Δ=322+16×17(b 2-4)>0,解得b >21717. x 1+x 2=-3217,x 1x 2=16-4b 217.∵OP ⊥OQ ,∴OP →·OQ →=0,即x 1x 2+y 1y 2=0,x 1x 2+(2x 1+2)(2x 2+2)=0,5x 1x 2+4(x 1+x 2)+4=0.从而5(16-4b 2)17-12817+4=0, 解得b =1,满足b >21717. ∴椭圆C 的方程为x 24+y 2=1. 13.设F 1,F 2分别是椭圆E :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |.(1)若|AB |=4,△ABF 2的周长为16,求|AF 2|;(2)若cos ∠AF 2B =35,求椭圆E 的离心率. 考点题点解 (1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3,|F 1B |=1.因为△ABF 2的周长为16,所以由椭圆定义可得4a =16,|AF 1|+|AF 2|=2a =8,故|AF 2|=8-3=5.(2)设|F 1B |=k ,则k >0且|AF 1|=3k ,|AB |=4k .由椭圆定义可得|AF 2|=2a -3k ,|BF 2|=2a -k .在△ABF 2中,由余弦定理可得|AB |2=|AF 2|2+|BF 2|2-2|AF 2|·|BF 2|cos ∠AF 2B ,即(4k )2=(2a -3k )2+(2a -k )2-65(2a -3k )(2a -k ). 化简可得(a +k )(a -3k )=0,而a +k >0,故a =3k .于是有|AF 2|=3k =|AF 1|,|BF 2|=5k .因此|BF 2|2=|F 2A |2+|AB |2,可得F 1A ⊥F 2A ,故△AF 1F 2为等腰直角三角形.从而c =22a ,所以椭圆E 的离心率e =c a =22.14.已知P (x 0,y 0)是椭圆C :x 24+y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若PF 1→·PF 2→<0,则x 0的取值范围是( )A.⎝⎛⎭⎫-263,263 B.⎝⎛⎭⎫-233,233 C.⎝⎛⎭⎫-33,33 D.⎝⎛⎭⎫-63,63 考点题点 [答案] A[解析] 由F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=(-3-x 0)(3-x 0)+y 20=x 20+y 20-3<0,① 由x 204+y 20=1,即y 20=1-x 204,② ②代入①可得,34x 20-2<0, 即-263<x 0<263. 15.已知椭圆x 2+y 24=1,直线l :2x +y +2=0,点P 是椭圆上一点,则使得点P 到直线l 的距离为55的点P 的个数为( ) A .0B .1C .2D .3[答案] C[解析] 设直线l ′:2x +y +n =0与椭圆相切,联立,得⎩⎪⎨⎪⎧2x +y +n =0,x 2+y 24=1,整理得8x 2+4nx +n 2-4=0, 则该方程有且只有一个解,由Δ=16n 2-4×8(n 2-4)=0,得n =22或n =-22,∴l ′的方程为2x +y +22=0或2x +y -22=0,易知直线2x +y +22=0与直线l 的距离为22-25<55, 直线2x +y -22=0与直线l 的距离为2+225>55, ∴在直线l 的右侧有两个符合条件的P 点,在直线l 的左侧不存在符合条件的P 点, ∴符合条件的点P 有2个.故选C.。
直线和椭圆练习题10道大题

直线和椭圆位置关系1.已知椭圆,点,分别是椭圆的左焦点、左顶点,过点的直线22:143x y M +=1F C M 1F (不与轴重合)交于两点.l x M ,A B (Ⅰ)求的离心率及短轴长;M (Ⅱ)是否存在直线,使得点在以线段为直径的圆上,若存在,求出直线的l B AC l 方程;若不存在,说明理由.2.已知椭圆的中心在原点,焦点在轴上,短轴长为.C x 2(Ⅰ)求椭圆的方程;C (Ⅱ)设是椭圆长轴上的一个动点,过作斜率为的直线交椭圆于,两点,P C P 12l C A B 求证:为定值.22||||PB PA +3. 已知椭圆C :的右焦点为F ,右顶点为A ,离心率为e ,点满2211612x y +=(,0)(4)P m m >足条件.||||FA e AP =(Ⅰ)求m 的值;(Ⅱ)设过点F 的直线l 与椭圆C 相交于M ,N 两点,记和的面积分别PMF ∆PNF ∆为,,求证:.1S 2S 12||||S PM S PN = 4.已知椭圆过点.过椭圆右顶点的两2222:1(0)x y C a b a b+=>>A 条斜率乘积为的直线分别交椭圆于两点.14-C ,M N (Ⅰ)求椭圆的标准方程;C (Ⅱ)直线是否过定点?若过定点,求出点的坐标;若不过,请说明理由.MN D D D5. 已知椭圆的离心率为,且过点.)0(12222>>=+b a by a x 23(01)B ,(Ⅰ)求椭圆的标准方程;(Ⅱ)直线交椭圆于P 、Q 两点,若点B 始终在以PQ 为直径的圆内,求实)2(:+=x k y l 数的取值范围.k6. (2012北京,19).已知曲线C:()()()22528m x m y m R -+-=∈ (I ) 若曲线是焦点在轴上的椭圆,求的取值范围;C x m (II )设,曲线与y 轴的交点为(点位于点的上方),直线 4m =C ,A B A B与曲线交于不同的两点,直线与直线交于点.4y kx =+C ,M N 1y =BM G求证:三点共线.,,A G N7.在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y C a b a b +=>>的离心率e =,且椭圆C 上的点到(0,2)Q 的距离的最大值为3;(1)求椭圆C 的方程;(2)已知直线l 过椭圆的左焦点并与椭圆C 交于A 、B 两点,求三角形OAB 面积的最大值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与椭圆的位置关系练习(2)1. 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为( ) A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A .2. 若直线)(1R k kx y ∈+=与椭圆1522=+my x 恒有公共点,求实数m 的取值范围解法一:由⎪⎩⎪⎨⎧=++=15122m y x kx y 可得05510)5(22=-+++m kx x m k ,0152≥--=∆∴k m 即1152≥+≥k m51≠≥∴m m 且解法二:直线恒过一定点)1,0(当5<m 时,椭圆焦点在x 轴上,短半轴长m b =,要使直线与椭圆恒有交点则1≥m 即51<≤m当5>m 时,椭圆焦点在y 轴上,长半轴长5=a 可保证直线与椭圆恒有交点即5>m 综述:51≠≥m m 且解法三:直线恒过一定点)1,0(要使直线与椭圆恒有交点,即要保证定点)1,0(在椭圆内部115022≤+m即1≥m3. 已知椭圆1422=+y x 及直线m x y +=. (1)当m 为何值时,直线与椭圆有公共点(2)若直线被椭圆截得的弦长为5102,求直线的方程.3. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得()1422=++m x x ,即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221mx x -=+,51221-=m x x . 根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m .解得0=m .方程为x y =.4. 已知椭圆11222=+y x 的左右焦点分别为F 1,F 2,若过点P (0,-2)及F 1的直线交椭圆于A,B 两点,求⊿ABF 2的面积 4. 解法一:由题可知:直线AB l 方程为022=++y x由⎪⎩⎪⎨⎧=+--=1122222y xx y 可得04492=-+y y ,91044)(2122121=-+=-y y y y y y 9104212121=-=∴∆y y F F S 解法二:2F 到直线AB 的距离554=h 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,又92101212=-+=x x k AB910421==∴∆h AB S 解法三:令),(),,(2211y x B y x A 则11ex a AF +=,21ex a BF +=其中22,2==e a 2F 到直线AB 的距离554=h 由⎪⎩⎪⎨⎧=+--=1122222y x x y 可得061692=++x x ,9210)(222121=++=+++=x x e a ex a ex a AB 910421==∴∆h AB S [评述]在利用弦长公式212212111y y kx x k AB -+=-+=(k 为直线斜率)或焦(左)半径公式)(22212121x x e a ex a ex a PF PF AB ++=+++=+=时,应结合韦达定理解5. 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.5. 分析:可以利用弦长公式]4))[(1(1212212212x x x x k x x k AB -++=-+=求得,也可以利用椭圆定义及余弦定理,还可以利用焦点半径来求.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y .由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB .6. 已知中心在原点,长轴在x 轴上的椭圆的两准线间的距离为23,若椭圆被直线x+y+1=0截得的弦的中点的横坐标是32-,求椭圆的方程6. 解法一:令椭圆方程为)(122n m ny mx <=+,),(),,(2211y x B y x A 由题得:32221-=+x x ,31221-=+y y由⎩⎨⎧=+--=1122ny mx x y 可得012)(2=-+++n nx x n m ,m n n m n x x 234221=-=+-=+即 又3222=c a 即2221131n m m -= 34,32==∴n m 椭圆方程为1343222=+y x 解法二:令椭圆方程为)(122n m ny mx <=+,),(),,(2211y x B y x A 由题得:32221-=+x x ,31221-=+y y 由⎩⎨⎧=+=+1122222121ny mx ny mx 作差得)()(21212121y y x x y y x x n m+--=+- m n 2=∴又3222=c a 即2221131n m m -= 34,32==∴n m 椭圆方程为1343222=+y x7. 已知长方形ABCD, AB=22,BC=1.以AB 的中点O 为原点建立如图8所示的平面直角坐标系xoy . (Ⅰ)求以A 、B 为焦点,且过C 、D 两点的椭圆的标准方程;(Ⅱ)过点P(0,2)的直线l 交(Ⅰ)中椭圆于M,N 两点,是否存在直线l ,使得以弦MNOB存在,说明理由.7. [解析] (Ⅰ)由题意可得点A,B,C 的坐标分别为()()()1,2,0,2,0,2-.设椭圆的标准方程是()012222>>=+b a by a x .()()()()()2240122012222222>=-+-+-+--=+=BC AC a 则2=∴a224222=-=-=∴c a b .∴椭圆的标准方程是.12422=+y x(Ⅱ)由题意直线的斜率存在,可设直线l 的方程为()02≠+=k kx y . 设M,N 两点的坐标分别为()().,,,2211y x y x联立方程:⎩⎨⎧=++=42222y x kx y 消去y 整理得,()0482122=+++kx x k 有221221214,218kx x k k x x +=+-=+ 若以MN 为直径的圆恰好过原点,则OM ⊥,所以02121=+y y x x , 所以,()()0222121=+++kx kx x x ,即()()042121212=++++x x k x x k所以,()0421********22=++-++k k k k 即,0214822=+-kk 得.2,22±==k k所以直线l 的方程为22+=x y ,或22+-=x y .所以存在过P(0,2)的直线l :22+±=x y 使得以弦MN 为直径的圆恰好过原点.8. 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程8.解设椭圆方程为mx 2+ny 2=1(m >0,n >0),P (x 1,y 1),Q (x 2,y 2)由⎩⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0, Δ=4n 2-4(m +n )(n -1)>0,即m +n -mn >0,由OP ⊥OQ ,所以x 1x 2+y 1y 2=0,即2x 1x 2+(x 1+x 2)+1=0, ∴n m nn m n --+-2)1(2+1=0,∴m +n =2①又2)210()(4=+-+n m mn n m 2,将m +n =2,代入得m ·n =43②由①、②式得m =21,n =23或m =23,n =21故椭圆方程为22x +23y 2=1或23x 2+21y 2=1 9. 椭圆12222=+by a x (a >b >)0与直线1=+y x 交于P 、Q 两点,且OQ OP ⊥,其中O 为坐标原点.(1)求2211ba +的值; (2)若椭圆的离心率e 满足33≤e ≤22,求椭圆长轴的取值范围.9. (1)设),(),,(2211y x P y x P ,由OP ⊥ OQ ⇔ x 1 x 2 + y 1 y 2 = 0 ① 01)(2,1,121212211=++--=-=x x x x x y x y 代入上式得: 又将代入x y -=112222=+b y a x 0)1(2)(222222=-+-+⇒b a x a x b a ,,2,022221ba a x x +=+∴>∆ 222221)1(ba b a x x +-=代入①化简得21122=+ba . (2) ,3221211311222222222≤≤⇒≤-≤∴-==a b ab a b ac e 又由(1)知12222-=a a b26252345321212122≤≤⇒≤≤⇒≤-≤∴a a a ,∴长轴 2a ∈ [6,5].10.设直线l 过点P (0,3),和椭圆x y 22941+=顺次交于A 、B 两点,若AP PB λ=试求的取值范围.10 。
解:当直线l 垂直于x 轴时,可求得15λ=-;当l 与x 轴不垂直时,设())(,,2211y x B y x A ,,直线l 的方程为:3+=kx y ,代入椭圆方程,消去y 得()045544922=+++kx x k解之得 .4959627222,1+-±-=k k k x1因为椭圆关于y 轴对称,点P 在y 轴上,所以只需考虑0>k 的情形.当0>k 时,4959627221+-+-=k k k x ,4959627222+---=k k k x ,所以12xx λ=-=5929592922-+-+-k k k k =59291812-+-k k k =25929181k -+-.由 ()049180)54(22≥+--=∆k k , 解得 952≥k , 所以 51592918112-<-+-≤-k ,综上 115λ-≤≤-.11.已知椭圆的一个焦点为F1(0,-),对应的准线方程为y =,且离心率e 满足:24,,33e 成等差数列。