北师大版初中数学各年级知识点汇总
(最新版)北师大版初中数学各册章节知识点总结

(最新版)北师大版初中数学各册章节知识点一、七年级数学1.1 第一章常数与代数式本章主要介绍了常数、代数式的概念,以及代数式的基本运算法则。
其中,重点掌握同类项的概念和合并同类项的方法,能够用数学符号正确表示代数式及其运算过程。
1.2 第二章整式的加减本章介绍了整式加减的基本法则和实际应用,重点掌握某些常见整式的加减法则。
在学习整式加减时,需要积极练习,掌握加减法的基本原理,熟悉各种整式的加减运算法则。
1.3 第三章一元一次方程本章主要介绍一元一次方程及其解法,包括方程的定义、方程的解等。
其中,需要掌握方程的基本概念,学会应用代数运算解决实际问题。
1.4 第四章图形的初步认识本章主要介绍平面图形的性质和种类,包括点、线、面图形的定义及其特点。
学生需要掌握平面图形的基本概念和应用,同时也需要理解三视图和等轴测图等图形展开方法。
1.5 第五章角与三角形本章主要介绍角的概念、角的度量、三角形的定义和分类等内容。
要掌握角的概念和相邻角、补角、余角等基本知识,以及三角形的性质和分类等基本概念。
二、八年级数学2.1 第一章整式的乘法本章主要介绍整式乘法的基本法则和实际应用,涉及整式相乘的一般法则和模型法则,以及代数式的因式分解等内容。
需要掌握各种整式乘法法则和方法,尤其是模型法则的应用。
2.2 第二章一元二次方程与因式分解本章主要介绍一元二次方程的定义和解法,以及因式分解的基本原理。
需要掌握二次方程解法和因式分解方法,能够应用数学知识解决实际问题。
2.3 第三章向量的初步认识本章主要介绍向量的定义、加法、减法、数量积等基本概念和运算法则。
要掌握向量的基本性质和应用,学会用向量方法解决实际问题。
2.4 第四章几何变形与相似本章主要介绍几何变形的定义和分类,以及相似三角形的定义和判定方法。
需要掌握几何变形和相似三角形的基本知识和方法,能够应用数学知识解决实际问题。
2.5 第五章勾股定理及其应用本章主要介绍勾股定理及其证明、三角形的面积和周长等内容。
新北师大版七年级数学知识点汇总

新北师大版七年级数学知识点汇总算数和代数1. 整数•正整数、负整数、零•相反数•绝对值及其性质•定义和判断整数的大小关系•整数的加减法、乘法、除法及其混合运算•分数与整数的乘除运算2. 分数•分数的定义及其表示法•分数与整数的互化(化分数为整数,化整数为分数)•分数的简化与约分•分数的加减法、乘法、除法及其混合运算•分数的比较3. 小数•小数的定义•小数和分数的互化•小数的加减乘除及其混合运算•小数的比较•有理数和无理数4. 代数式•代数式的定义及其基本运算(加、减、乘、除)•代数式的合并同类项及其应用•代数式的提公因式及其应用5. 一元一次方程式•一元一次方程式的基本概念,如:方程式、未知数、系数、常数项•一元一次方程式的解法,如:等式两边加减同一数、等式两边乘除同一数、移项变号等•一元一次方程式的解的判定几何1. 图形的分类与性质•点、线、线段、射线、角、平面及其相互关系•平行、垂直、重合、相交、夹角等概念•三角形、四边形、圆等几何图形的定义及其性质2. 三角形•三角形的定义、分类及其性质•三角形内角和定理及其推论•相似三角形及其性质3. 三角形的运用•已知三边或两边及夹角求第三边•已知一边及与其相邻的两个角求另外两边和角•判断三角形的形状和大小•利用相似三角形解决实际问题4. 圆的运用•圆的定义及其性质•圆的相交关系和判定方法•垂直线段的性质及其应用•利用圆解决实际问题统计与概率1. 数据的收集和整理•调查数据的收集方式和数据来源•频数和频数分布表•分组数据的制作及其分析2. 数据的描述和应用•中心倾向的度量,如:平均数、中位数、众数•数据的离散程度度量,如:极差、方差、标准差•相关性分析3. 简单概率•随机事件和样本空间•概率及其性质,如:互斥事件、独立事件、全概率公式、贝叶斯公式•组合数及其计算方法以上是新北师大版七年级数学知识点的汇总,希望对你的学习有所帮助。
北师大七年级数学知识点归纳总结

北师大七年级数学知识点归纳总结一、有理数。
1. 有理数的概念。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如:5是正整数,属于有理数; - 3是负整数,是有理数;0.25是有限小数,可化为(1)/(4),是分数,也是有理数;0.3̇是无限循环小数,可化为(1)/(3),是有理数。
2. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
- 数轴上的点与有理数一一对应(所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数,还可能表示无理数)。
- 例如:在数轴上表示2,就是在原点右边距离原点2个单位长度的点;表示-1.5,就是在原点左边距离原点1.5个单位长度的点。
3. 相反数。
- 只有符号不同的两个数叫做互为相反数。
0的相反数是0。
- 若a与b互为相反数,则a + b=0,反之也成立。
例如:3与-3互为相反数,5+(-5) = 0。
4. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。
例如:| 5| = 5,| - 3|=3。
5. 有理数的大小比较。
- 正数大于0,0大于负数,正数大于负数。
- 两个负数比较大小,绝对值大的反而小。
例如:5>0,0>-2,5>-2;| -3| = 3,| -5| = 5,因为3<5,所以-3>-5。
6. 有理数的加减法。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如:3 + 5=8,(-2)+(-3)=-(2 + 3)=-5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如:5+(-3)=2,(-5)+3=-2。
北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结北师大版初中数学共有七册,分别是七年级上、七年级下、八年级上、八年级下、九年级上、九年级下和九年级卷子。
每册都包含了多个章节,每个章节都有相应的知识点。
下面将对北师大版初中数学各册章节的知识点进行总结。
一、七年级上册1.数学的初步认识数学的基本概念、数学语言和思维方法等。
2.整数的认识正整数、负整数和零的认识、整数的绝对值和相反数、加法和减法运算、整数的乘法和除法运算等。
3.有理数的认识有理数的概念、有理数的比较、有理数的加减法和乘除法运算等。
4.线段的认识线段的起点、终点和长度、线段的比较、线段的加减运算等。
5.分数的认识分数的概念、分数的比较、分数的加减法和乘除法运算、分数的化简和约分等。
6.几何图形平面上的直线、射线、线段和角的概念、平面图形的分类和特征等。
二、七年级下册1.倍数和公倍数倍数的概念、找规律求倍数、公倍数的概念和求法、最小公倍数的概念和求法等。
2.小数的认识小数的概念、小数的读法和写法、小数的四则运算、小数的比较、小数和分数的相互转换等。
3.分数与小数的运算分数和小数的加减法、乘法和除法运算等。
4.百分数百分数的概念、百分数的读法和写法、百分数和分数、小数的相互转换等。
5.比例和比例的应用比例的概念、比例的简便计算、比例的应用等。
6.数据的收集、整理和分析数据的收集方式、数据的整理和分析方法等。
三、八年级上册1.方程与代数式代数式的概念、方程的概念、一元一次方程的解法、方程和代数式的应用等。
2.平面直角坐标系平面直角坐标系的引入、坐标的确定和表示、平面图形的表示和判断等。
3.平行四边形和三角形平行四边形的性质、三角形的性质和分类、等腰三角形和等边三角形等。
4.几何变换平移、旋转和翻转的概念、几何图形的变换规则和性质等。
5.二次根式二次根式的概念和性质、二次根式的运算、二次根式的应用等。
6.立体图形立体图形的基本概念、立体图形的展开图和体积等。
北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结第一册:《初二上册》1.直角三角形:直角三角形的定义、直角三角形的性质、勾股定理。
2.平面图形的表示:点、线、线段、射线、角度、平行线、垂直线、相交线等基本概念。
3.二次根式:二次根式的定义、运算法则。
4.初中平面几何基本定理:垂线定理、等腰三角形的性质、三角形中位线定理、角平分线定理等。
5.多边形:多边形的定义、正多边形、变位积分、多边形的内角和、多边形的外角和。
6.梅涅劳斯定理:梅涅劳斯定理的概念、定理的应用。
第二册:《初二下册》1.线性方程:线性方程的定义、解线性方程的常用方法。
2.三角函数的定义和初步认识:三角函数的定义、正弦函数、余弦函数、正切函数等。
3.平行线与相交线:平行线的性质、平行线之间的角对、相交线之间的角对等。
4.二次函数:二次函数的基本性质、二次函数图像的性质与应用。
5.海伦公式:海伦公式的概念、海伦公式的应用。
第三册:《初三上册》1.集合:集合的概念、集合的运算、集合的表示等。
2.图形的相似:图形相似的概念、相似比、相似三角形的性质等。
3.三角形的性质:三角形的角与边的关系、角边关系等。
4.空间几何基本概念:欧几里得空间几何学的基本概念、空间图形与平面图形的关系等。
5.高中数学预修知识:比例与相似、复数等。
第四册:《初三下册》1.数系的扩充:有理数和无理数的概念、实数的分类等。
2.几何体的计算:几何体的表面积、几何体的体积等。
3.空间几何基本定理:角的平分线、角的辅助线等。
4.三角恒等式:三角函数的反函数、三角函数的周期等。
第五册:《九年级上册》1.一次函数:一次函数的定义、一次函数图像的性质、线性规律等。
2.向量几何:向量的定义、向量的运算、向量的平行和垂直等。
3.数的四则运算:整数、有理数、无理数的四则运算等。
4.二次方程与不等式:二次方程的定义、解二次方程的方法等。
5.三角形的面积:三角形的名字、面积的计算公式等。
第六册:《九年级下册》1.指数与对数:指数、对数和底数的概念、指数与对数的性质等。
2024年北师大版初一数学上册知识点汇总

2024年北师大版初一数学上册知识点汇总2024年北师大版初一数学上册知识点汇总1整式的乘法:①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
2024年北师大版初一数学上册知识点汇总2七年级上册数学知识点总结之有理数及其运算板块:1、整数包含正整数和负整数,分数包含正分数和负分数。
正整数和正分数通称为正数,负整数和负分数通称为负数。
2、正整数、0、负整数、正分数、负分数这样的数称为有理数。
3、绝对值:数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“||”表示。
七年级上册数学知识点总结之整式板块:1、单项式:由数与字母的乘积组成的式子叫做单项式。
2、单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3、整式:单项式与多项式统称整式。
4、同类项:字母相同,并且相同字母的指数也相同的项叫做同类项。
七年级上册数学知识点总结之一元一次方程。
1、含有未知数的等式叫做方程,使方程左右两边的值都相等的未知数的值叫做方程的解。
2、移项:把等式一边的某项变号后移到另一边,叫做移项等。
其实,七年级上册数学知识点总结还包括很多,但是我想,万变不离其宗。
大家平时要注意整理与积累。
配合多加练习。
一些知识要点及时记录在笔记本上,一些错题也要及时整理、复习。
一个个知识点去通过。
我相信只要做个有心人,就可以在数学考试中取得高分。
2024年北师大版初一数学上册知识点汇总31.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:(1)求相同因式积的`运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.2024年北师大版初一数学上册知识点汇总4__内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。
北师大版初中数学知识点总结最新最全

北师大版初中数学知识点总结以下是北师大版初中数学的知识点总结,涵盖了初中阶段的主要数学概念、定理、公式和解题方法。
一、数与代数1.1 有理数•定义:有理数是可以表示为两个整数比值的数,形式为a/b,其中a、b为整数,b不为0。
•分类:正有理数、负有理数、零。
•性质:有理数加减乘除运算遵循交换律、结合律和分配律。
1.2 实数•定义:实数是包含有理数和无理数的数集。
•无理数:不能表示为两个整数比值的数,如π、√2等。
1.3 函数•定义:函数是一种关系,使得一个集合(定义域)中的每个元素对应到另一个集合(值域)中的唯一元素。
•表示方法:解析式、表格、图象。
二、几何2.1 点、线、面•点:没有长度、宽度和高度的物体。
•线:由无数个点连成的直线、射线和线段。
•面:由无数个线段围成的平面图形。
2.2 三角形•定义:由三条边和三个角组成的图形。
•分类:锐角三角形、直角三角形、钝角三角形。
•性质:三角形的内角和为180°,两边之和大于第三边。
2.3 四边形•定义:由四条边和四个角组成的图形。
•分类:矩形、平行四边形、梯形、菱形等。
•性质:四边形的内角和为360°。
2.4 圆•定义:平面上到一个固定点(圆心)距离相等的所有点的集合。
•性质:圆的半径相等,圆心到圆上任意一点的距离等于半径。
2.5 立体几何•定义:研究三维空间中的点、线、面及其相互关系的几何学。
•主要概念:平面、直线、球、锥、柱等。
三、统计与概率3.1 统计•定义:研究数据收集、整理、分析和解释的方法。
•主要内容:图表、平均数、中位数、众数等。
3.2 概率•定义:描述事件发生可能性大小的数学概念。
•计算方法:频率、树状图、列表等。
四、综合应用•定义:将数学知识应用到实际问题中的能力。
•主要类型:几何问题、概率问题、应用题等。
以上就是北师大版初中数学的知识点总结,希望能对您的学习有所帮助。
学习建议1.重视基础:掌握数学基础知识是解决复杂问题的关键。
北师大版初中数学知识点汇总

北师大版初中数学知识点汇总
1.基础运算
-四则运算:加法、减法、乘法、除法
-平方和平方根运算
-分数运算:加法、减法、乘法、除法、比较大小、约分分数-百分数及其运算
2.数与代数
-数的分类:自然数、整数、有理数、无理数
-数的比较与大小关系
-数的因数与倍数
-分类及表示法
-整式与分式
-一次方程与一次方程的解
-二次根式
-二次方程与二次方程的解
3.几何图形
-平面几何图形分类
-线段、射线、直线
-角的分类及度量
-三角形、四边形及其性质
-平行四边形的性质
-直角三角形的性质
-圆的概念、圆心角、弧长、面积等
4.数据与统计
-统计图形的制作与解读
-平均数的计算与应用
-概率与事件
5.解决实际问题
-问题解决方法与策略
-解决实际问题的数学建模
-信息的收集与整理
-问题解决过程的表达与展示
此外,北师大版初中数学教材还涉及到丰富的习题、考点、题型等,以帮助学生深入理解和掌握相关知识。
以上只是一个简要的概述,而实际教材中的内容会更加详细和细致。
学生应按照教材的要求认真学习,勤做习题,通过练习巩固知识,提升解题能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数七年级上册第一章 丰富的图形世界¤1. ¤2.¤3. 球体:由球面围成的(球面是曲面) ¤4. 几何图形是由点、线、面构成的。
①几何体与外界的接触面或我们能看到的外表就是几何体的表面。
几何的表面有平面和曲面; ②面与面相交得到线; ③线与线相交得到点。
※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。
※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。
¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。
¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。
¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。
¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。
※12. 设一个多边形的边数为n(n≥3,且n 为整数),从一个顶点出发的对角线有(n-3)条;可以把n 边形成(n-2)个三角形;这个n 边形共有2)3(-n n 条对角线。
◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。
◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。
¤15. 凸多边形和凹多边形都属于多边形。
有弧或不封闭图形都不是多边形。
第二章 有理数及其运算※※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。
(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。
(0的相反数是0) ※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
¤数轴上两点表示的数,右边的总比左边的大。
正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。
数a 的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;越来越大互为相反数的两数(除0外)的绝对值相等; 任何数的绝对值总是非负数,即|a|≥0※比较两个负数的大小,绝对值大的反而小。
比较两个负数的大小的步骤如下: ①先求出两个数负数的绝对值; ②比较两个绝对值的大小;③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:①对任何有理数a ,都有|a|≥0 ②若|a|=0,则|a|=0,反之亦然 ③若|a|=b ,则a=±b④对任何有理数a,都有|a|=|-a|※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。
②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。
③一个数同0相加,仍得这个数。
※加法的交换律、结合律在有理数运算中同样适用。
¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加; ②符号相同的数,可以先相加; ③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
※有理数减法法则: 减去一个数,等于加上这个数的相反数。
¤有理数减法运算时注意两“变”:①改变运算符号; ②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。
在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号; ②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。
) ※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。
(如:-2与21 、 3553与…等) ※乘法的交换律、结合律、分配律在有理数运算中同样适用。
¤有理数乘法运算步骤:①先确定积的符号; ②求出各因数的绝对值的积。
¤乘积为1的两个有理数互为倒数。
注意: ①零没有倒数②求分数的倒数,就是把分数的分子分母颠倒位置。
一个带分数要先化成假分数。
③正数的倒数是正数,负数的倒数是负数。
※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。
0不可作为除数,否则无意义。
※有理数的乘方※注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数; ③任何数的偶数次幂都是非负数;=⨯⨯⨯⨯a n a a a a 个④1的任何次幂都得1,0的任何次幂都得0; ⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方,再算乘除,最后算加减。
②如果有括号,先算括号里面的。
第三章 字母表示数※代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。
单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。
等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式; ③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:①代数式中出现乘号,通常省略不写,如vt ; ②数字与字母相乘时,数字应写在字母前面,如4a ;③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a ⨯312应写作a 37; ④数字与数字相乘,一般仍用“×”号,即“×”号不省略;⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(a-4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。
⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米 ※代数式的系数:代数式中的数字中的数字因数叫做代数式的系数......。
如3x,4y 的系数分别为3,4。
注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如-ab 的系数是-1。
a 3b 的系数是1 ※代数式的项:代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项 注意:在交待某一项时,应与前面的符号一起交待。
※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。
这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关; ③几个常数项也是同类项。
※合差同类项:把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:①如果两个同类项的系数互为相反数,合并同类项后结果为0; ②不是同类项的不能合并,不能合并的项,在每步运算中都要写上; ③只要不再有同类项,就是最后结果,结果还是代数式。
※根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
※根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
※注意:①去括号时,要连同括号前面的符号一起去掉; ②去括号时,首先要弄清楚括号前是“+”号还是“-”号; ③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章 平面图形及位置关系一. 线段、射线、直线※1. 正确理解直线、射线、线段的概念以及它们的区别:※2. 直线公理:经过两点有且只有一条直线. 二.比较线段的长短※1.线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离. ※2. 比较线段长短的两种方法: ①圆规截取比较法; ②刻度尺度量比较法.※3.用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍. 三.角的度量与表示※1. 角:有公共端点的两条射线组成的图形叫做角; 这个公共端点叫做角的顶点; 这两条射线叫做角的边.※2. 角的表示法:角的符号为“∠”①用三个字母表示,如图1所示∠AOB ②用一个字母表示,如图2所示∠b ③用一个数字表示,如图3所示∠1 ④用希腊字母表示,如图4所示∠β※经过两点有且只有一条直线。
※两点之间的所有连线中,线段最短。
※两点之间线段的长度,叫做这两点之间的距离........。
1º=60’ 1’=60”※角也可以看成是由一条射线绕着它的端点旋转而成的。
如图5所示:※一条射线绕它的端点旋转,当终边和始边成一条直线时,所成的角叫做平角..。
如图6所示: ※终边继续旋转,当它又和始边重合时,所成的角叫做周角..。
如图7所示: ※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.....。
※经过直线外一点,有且只有一条直线与这条直线平行。
※如果两条直线都与第三条直线平行,那么这两条直线互相平行。
※互相垂直的两条直线的交点叫做垂足..。
※平面内,过一点有且只有一条直线与已知直线垂直。
AOB图1b 图2平角 图6B1图3β 4※如图8所示,过点C 作直线AB 的垂线,垂足为O 点,线段CO 的长度叫做点.C .到直线...AB ..的距离...。