一元二次方程竞赛题

合集下载

初中数学竞赛一元二次方程卷(一)及解答

初中数学竞赛一元二次方程卷(一)及解答

一元二次方程卷(一)一、填空:1.方程x 2-丨2x -1丨-4=0的根是________________________.[提示:分2x -1≥0和2x -1<0两种情况讨论.注意:当2x -1≥0时,求出的根必须满足2x -1 ≥0,否则应舍去;同样,当2x -1<0时,求出的根必须满足2x -1<0,否则应舍去]2.当b=______时,方程x 2+bx+1=0和方程x 2-x -b=0有一个公共根.[提示:设公共根为α,代入两个方程得到方程组,解方程组(两方程相减)得b 的值,再验算b 值能否使Δ≥0.]3.已知实数x 、y 满足x 2-2x -4y=5,则x -2y 的最大值是________.[提示:设x -2y= m,消去x,得到关于y 的一元二次方程,再由Δ≥0解得m 的取值范围]4.设x 1、x 2是方程x 2-x -4=0的两根,则x 13+5x 22+10的值为______.[提示:用根的定义和韦达定理.先将x 1和x 2分别代入原方程,并用一次式表示出x 12及x 22,再代入原式.]5.设ΔABC 的一边为1,另两边的长是方程x 2-2x+m=0的两个根x 1和x 2,则m 的取值范围是_________.[提示:由Δ≥0、两边之和大于笫三边、两边之差小于笫三边以及韦达定理列出不等式组]6.已知实数a 、b 、c 满足a 2-a -bc+1=0,2a 2-2bc -b -c+2=0,则a 的取值范围是_______.[提示:先用a 表示出b+c 及bc,则以b 和c 为根的一元二次方程是?,再由Δ≥0解得a 的取值范围]7.要使关于x 的两个方程x 2-5x=a 和x 2-5x=-a 有且只有一个方程有两个不同的实数根,则a 的取值范围是________.8.已知方程组223320x y x y +=⎧⎨+=⎩的两组解是(x 1,y 1)和(x 2,y 2),则x 1y 2+x 2y 1的值是_____. 9.已知关于x 的方程(a -1)x 2+2x -a -1=0的根都是整数,则整数a 的值为__________.10.已知xy+x+y=11,x 2y+xy 2=30,则x 2+y 2的值为_____.[提示:构造以x+y 和xy 为根的方程]二、解下列各题:1.已知关于x 的一元二次方程ax 2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和3,乙由于看错了某一项系数的符号,误求得两根为-1和3,求(2b+3c)∶a 的值.[提示:设甲把a 看成a ’,乙是否看错b 的符号?由韦达定理列出方程,再设法求b a 和c a的值]2.设三个方程x2+4mx+4m2+2m+3=0, x2+(2m+1)x+m2=0, (m-1)x2+2mx+m-1=0中至少有一个方程有实数根,求m的取值范围. [提示:先求三个方程都无实根时m的取值范围]3.实数a取何值时,分式方程222(2)x x x ax x x x--++=--只有一个实数根?4.已知方程ax2+2(2a-1)x+4(a-3)=0 (a为正整数)至少有一个整数根,求a的值.参考答案:一.1. 2. 2;3. 92; 4. 39; 5. 314m <≤; 6. 1a ≥; 7. 2525或44a a ≥≤-; 8. 10;9. 1,2,3,0,-1;10. 26或13.二.1.4.2.31或24m m ≤-≥-; 3.a=72,4,8. 4.(求参法)由原方程得(x+2)2a=2x+12,求得a=2212(2)x x ++, (x ≠-2) (*) 由a 为正整数,有a ≥1, 即2212(2)x x ++≥1, 解得-4≤x ≤2,∴整数x 的一切可能值为-4,-3,-3,-2,-1,0,1, 分别代入(*),得正整数a=1,3,6,10.。

(仅供参考)(奥数班)一元二次方程奥数题

(仅供参考)(奥数班)一元二次方程奥数题
6
的三条边的长,则 m 的值是____4____,此时这个三角形是 等边 三角形。
38. 边长为整数的直角三角形,若其两直角边长是方程 x2 (k 2)x 4k 0 的两根,求 k 的值
并确定直角三角形三边之长.
解:设直角边为 a, b ,( a b )则 a b k 2, ab 4k ,因方程的根为整数,故其判别式为完全平方
思路1:降次;
x 1 1
x3 1
16. 若 x ,则
x3 的值为 4

17. 已知x2 5x 1 0,那么 x
1
x2 x 1
4
18. 若 m n 2 ,则 2m2 4mn 2n2 1 的值为
7
.(降次) .
19. 已知 m2 m 1 0 ,则 m 3 2m 2 2006 2005 (降次)
49. 设 x1,x2 关于 x 的一元二次方程 x2 ax a 2 的两个实数根,则 x1 2x2 x2 2x1 的最大值

。 63
8
8
25.
已知实数x、y满足 4 x4
2 x2
3, y 4 y2
3
,则
4 x4
y 4的值为( A

A. 7 B 1 13 C 7 13
2
2
D.5 (全国初中数学竞赛题)
26. 已知实数 、 满足 2 3 1 0 , 2 3 1 0 ,且 1 ,则 2 3 的值为 10
27.
20.
已知 a2 2004a 1 0 ,则 2a 2
4007a
2004 a2 1
_____
2002
____ (降次)
21.
x2 已知 是方程
x1 4

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)

一元二次方程测试题(含答案)一元二次方程测试题一、填空题:(每题2分共5分)1.将一元二次方程(1-3x)(x+3)=2x2化为一般形式为:2x^2-9x-9=0,二次项系数为2,一次项系数为-9,常数项为-9.2.若m是方程x^2+x-1=0的一个根,代入m+2m+2013得到(m+1)^2+2012的值为。

3.方程2+x-1=0是关于x的一元二次方程,根据一元二次方程的定义,二次项系数为1,一次项系数为1,常数项为-1.所以m的值为1.4.关于x的一元二次方程a-2x+x^2+a-4=0的一个根为x=2,则代入得到a=5.5.代数式4x-2x-5与2x+1的值互为相反数,即4x-2x-5=-(2x+1),解得x=-3/2.代入4y^2+2y+1得到9/2.6.已知2y+y-3的值为2,则代入4y^2+2y+1得到21.7.若方程(m-1)x+m·x=1是关于x的一元二次方程,则根据一元二次方程的定义,二次项系数为m-1+m=2m-1,一次项系数为m,常数项为1.所以m的取值范围为m≠1/2.8.已知关于x的一元二次方程x^2-x-1=0的一个根为x=2,则代入得到另一个根为x=-1.9.已知关于x的一元二次方程x^2+mx-6=0的一个根为2,代入得到另一个根为-3,且m的取值范围为m≠0.10.设x1,x2是方程x^2+bx+b-1=0有两个相等的实数根,则根据一元二次方程的定义,判别式D=b^2-4(b-1)=0,解得b=2或b=-1.但由于有两个相等的实数根,所以b=2.11.已知x=-2是方程x^2-3x+k=0的一个根,代入得到k=-2.12.若2是方程x^2+mx-6=0的一个根,代入得到另一个根为-3,且一元二次方程kx+ax+b=0有两个实数根,则根据一元二次方程的定义,判别式D=a^2-4kb≥0,又因为有两个实数根,所以D>0,即a^2-4kb>0.代入得到k9/4.13.设m、n是一元二次方程x^2+2x-3=0的两个根,则根据一元二次方程的定义,二次项系数为1,一次项系数为2,常数项为-3,根据求根公式得到m+n=-2,mn=-3.代入得到m^2+n^2+4m+4n+4=10.14.一元二次方程(a+1)x^2-ax+a-1=0的一个根为x=1,则代入得到a=1/2.15.若关于x的方程x^2-2x+2=0的两个根互为倒数,则根据一元二次方程的定义,判别式D=8-8a≥0,解得0≤a≤1.代入得到a=1/2.16.关于x的两个方程x^2-2x+3=0和x^2-3x+2=0的公共根为x=1,则代入得到另一个根分别为2和1,正确结论的序号为①和②。

初中数学竞赛:一元二次方程求参数高难度题(三种方法)

初中数学竞赛:一元二次方程求参数高难度题(三种方法)

初中数学竞赛:一元二次方程求参数高难度题(三种方法)设p为质数,且关于x的方程x²+px-1170p=0的一个根为正整数,求p 的值;题目如上,很简洁,那么相对的,难度也会很不简单。

首先根据十字相乘法,将-1170p拆分因数,可得-、3、3、10、13、p,那么要求组合而成的两个因数之和还必须=p,那么我们可以看到除了10和p之外,其他三个数的个位都是3,首先可以排除1170×p这种形式,那么就可以确定不含p的一个因数的个位必定为3、9或7,同时p肯定要比1170小,所以我们可以分情况来讨论,先将负号放在一边,那么:①若其中一个因数为3×3=9,那么另一个则为130p,明显不行;②若其中一个因数为3×13=39,那么另一个则为30p,由于p至少得是2,所以无论p取哪个质数,39和30p的差值都不会是p,也不行;③若其中一个因数为3×10=30,那么另一个则为39p,同②也不行;④若其中一个因数为3×3×10=90,那么另一个则为13p,则需要p乘以13后个位数与p相同,那么p的个位数只能是5,而个位是5的质数只有5,当p=5时,也不行;⑤若其中一个因数为3×3×13=117时,那么另一个为10p,这个更没有合适的p;⑥若其中一个因数位10×13=130时,那么另一个为9p,当p=13时,9p=117,130与117的差值刚好为13=p,所以这个合适;所以最终就能得到p=13;这是一个一个情况罗列出来求解,那么能不能不这么麻烦呢?我们重新看一下1170拆分出来的3、3、10、13、p这五个因数,想要组成的两个因数差值等于p,那么也就是说不含p的那个因数里面含有p-1或者p+1这个因数,而其他部分的因数组成完全相同,那么这样一来,我们就可以将这四个已知的因数先分一下组,有两个因数3,那么假设这两个3分别在两个因数中,那么剩余的10、13、p这三个因数怎么也不可能凑出来差值等于p,为什么呢?因为有三个因数,怎么分呢?所以,剩余三个因数肯定是没法分的,那么也就是说两个3要在同一组当中,那么我们可以将两个3看做一个因数9,现在就变成了四个因数9、10、13、p,需要其中有两个因数相同,那么p肯定是9、10、13中的其中一个,那么别忘了,不相同的两个因数差值必须是1,才能凑出p这个差值,那么我们就可以先选出差值是1的两个因数9和10,也就是说,p就只能和剩下的那个13相等了,将p=13放进去,验证一个因数为130,另一个因数为117,130-117=13=p成立,所以p=13符合;老师用的方法和答案上提供的不同,题后答案如下:x²=p(1170-p),因为p是质数,所以x中肯定含有p这个因数,所以设x=np,那么(np)²=p(1170-p),所以n²p=1170-p,变形为n(n+1)p=9×10×13那么p=13;。

一元二次方程竞赛训练题

一元二次方程竞赛训练题

一元二次方程培优训练命题人:周金林 9.18一:选择题(25分)1.方程k k k x k x (02)13(722=--++-是实数)有两个实根α、β,且0<α<1,1<β<2,那么k 的取值范围是( C )(A )3<k <4;(B )-2<k <-1;(C )3<k <4或-2<k <-1 (D )无解。

2.方程012=--x x 的解是( D )(A )251±; (B )251±- (C )251±或251±-; (D )3.若0x 是一元二次方程)0(02≠=++a c bx ax 的根,则判别式ac b 42-=∆与平方式20)2(b ax M +=的关系是( B )(A)∆>M (B)∆=M (C)∆<M ; (D)不确定. 4.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( C )(A )10≤≤m ; (B )43≥m ; (C )143≤<m ; (D )143≤≤m5.已知b 2-4ac 是一元二次方程ax 2+bx+c=0(a ≠0)的一个实数根,则ab 的取值范围为( B )(A) 18ab ≥ (B) 18ab ≤ (C) 14ab ≥ (D) 14ab ≤二;填空题(25分)1.在Rt ABC 中,斜边AB=5,而直角边BC ,AC 之长是一元二次方程2(21)4(1)0x m x m --+-=的两根,则m 的值是 42.方程01)8)((=---x a x ,有两个整数根,则=a 8 3.已知关于x 的一元二次方程02=++c bx ax 没有实数解.甲由于看错了二次项系数,误求得两根为2和4;乙由于看错了某一项系数的符号,误求得两根为-1和4,那么,=+a cb 32 6 . 4.设21,x x 是二次方程032=-+x x 的两个根,求1942231+-x x 的值 0 5.已知m ,n 是有理数,并且方程02=++n mx x 有一个根是25-,那么m+n 的值是___3___。

一元二次方程测试题含答案

一元二次方程测试题含答案

一元二次方程测试题(时间120分钟满分150分)一、填空题:(每题2分共50分)1.一元二次方程(1-3x )(x +3)=2x2+1 化为一般形式为: ,二次项系数为: ,一次项系数为: ,常数项为: 。

2.若m 是方程x 2+x -1=0的一个根,试求代数式m 3+2m 2+2013的值为 。

3.方程()0132=+++mx x m m是关于x 的一元二次方程,则m 的值为 。

4.关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。

5.若代数式5242--x x 与122+x 的值互为相反数,则x 的值是 。

6.已知322-+y y 的值为2,则1242++y y的值为 。

7.若方程()112=•+-x m x m 是关于x 的一元二次方程,则m 的取值范围是 。

8.已知关于x 的一元二次方程()002≠=++a c bx ax 的系数满足b c a =+,则此方程必有一根为 。

9.已知关于x 的一元二次方程x 2+bx+b ﹣1=0有两个相等的实数根,则b 的值是。

10.设x 1,x 2是方程x2﹣x ﹣2013=0的两实数根,则= 。

11.已知x=﹣2是方程x 2+mx ﹣6=0的一个根,则方程的另一个根是。

12.若,且一元二次方程kx 2+ax+b=0有两个实数根,则k 的取值范围是 。

13.设m 、n 是一元二次方程x 2+3x -7=0的两个根,则m 2+4m +n = 。

14.一元二次方程(a+1)x 2-ax+a 2-1=0的一个根为0,则a= 。

15.若关于x 的方程x2+(a ﹣1)x+a 2=0的两根互为倒数,则a =。

16.关于x 的两个方程x 2﹣x ﹣2=0与有一个解相同,则a = 。

17.已知关于x 的方程x2﹣(a+b )x+ab ﹣1=0,x 1、x 2是此方程的两个实数根,现给出三个结论:①x 1≠x 2;②x 1x 2<ab ;③.则正确结论的序号是 .(填上你认为正确结论的所有序号)18.a 是二次项系数,b 是一次项系数,c 是常数项,且满足1-a +(b -2)2+|a+b+c|=0,满足条件的一元二次方程是 。

一元二次方程100道计算题练习(附答案)

一元二次方程100道计算题练习(附答案)

一元二次方程100 道计算题练习1、(x 4)2 5(x 4)2、(x 1)2 4x3、(x 3)2 (1 2x)24、2x2 10x 35、(x+5)2=166、2(2x-1)-x(1-2x)=07、x2 =64 8、5x2 - 25=0 9、8(3 -x)2 –72=010、3x(x+2)=5(x+2) 11、(1-3y)2+2(3y-1)=0 12、x 2 + 2x + 3=0 13、x 2 + 6x-5=0 14、x 2 -4x+ 3=0 15、x 2 -2x-1 =0 16、2x 2 +3x+1=0 17、3x 2 +2x-1 =0 18、5x 2 -3x+2 =0 19、7x 2 -4x-3 =0 20、-x 2 -x+12 =0 21、x 2 -6x+9 =0122、(3x2)2( 2x3) 223、x 2-3=4x2-2x-4=0 24、x25、3x 2+8 x-3=0(配方法)26、(3x+2)(x+3)=x+14 27、(x+1)(x+8)=-1228、2(x-3) 2=x 2-9 29、-3x 2+22x-24=0 30、(2x-1)2 +3(2x-1)+2=0 31、2x 2-9x+8=0 32、3(x-5)2=x(5-x) 33、(x+2) 2=8x34、(x-2) 2=(2x+3)2 35、7x 2 2x 0 36、4t 2 4t 1 04 x 3 x x 3 0 38、6x 2 31x 35 0 39、2x3121 0 37、 2240、2x 2 23x 65 02补充练习:一、利用因式分解法解下列方程(x-2) 2=(2x-3)2 x 2 4x 0 3x(x 1) 3x 3x2-2 3 x+3=0 58516 0x2 x二、利用开平方法解下列方程1 y 2(2 1) 2 154(x-3)2=25 (3x 2)224三、利用配方法解下列方程x x 3 2 6x 12 02 5 2 2 0 x x 2 7x 10 0四、利用公式法解下列方程-3x 2+22x-24=0 2x(x-3)=x-3.3x2+5(2x+1)=0五、选用适当的方法解下列方程3(x+1) 2-3 (x +1)+2=0 (2x 1)2 9(x 3)2 x 2 2x 302 3 1 0 x x2 x1) ( 1)((x xx13 42)(3x 11)(x 2) 2 x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).应用题:1、某商场销售一批名牌衬衫,平均每天可售出 20 件,每件盈利 40 元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售 2 件,若商场平均每天盈利 1250 元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的 2 倍少 32 平方厘米,求大小两个正方形的边长.43、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E 在AB 上,F 在BC 上,G 在AD 上,若矩形铁板的面积为 5 m2,则矩形的一边EF 长为多少?4、如右图,某小在长 32 米,区规划宽 20 米的矩形场地ABCD 上修建三条同样宽的 3 条小路,使其中两条与AD 平行,一条与AB 平行,其余部分种草,若使草坪的面积为 566 米2,问小路应为多宽?5、某商店经销一种销售成本为每千克 40 元的水产品,据市场分析,若按每千克 50 元销售一个月能售出 500 千克;销售单价每涨 1 元,月销售量就减少 10 千克,商店想在月销售成本不超过 1 万元的情况下,使得月销售利润达到 8000 元,销售单价应定为多少?6.某工厂1998 年初投资100 万元生产某种新产品,1998 年底将获得的利润与年初的投资的和作为1999 年初的投资,到 1999 年底,两年共获利润 56 万元,已知 1999 年的年获利率比 1998 年的年获利率多 10 个百分点,求 1998 年和 1999 年的年获利率各是多少?5思考:1、关于x的一元二次方程2 4 0a 的一个根为0,则a的值为。

《一元二次方程》培优竞赛

《一元二次方程》培优竞赛

《一元二次方程》培优【知识要点】:1、一元二次方程的解法 (1) 法;(2) 法;(3) 法;(4) 法2、一元二次方程的根的判别式一元二次方程ax 2+bx +c = 0(a ≠0)的根的判别式为△= ,当△>0时方程有两个不相等的实根x 1= 和x 2= ;当△=0时有两个相等的实根x 1=x 2= ; 当△<0时根据平方根的意义,负数没有平方根,所以一元二次方程ax 2+bx +c = 0没有实数解.3、一元二次方程的根与系数的关系若一元二次方程方程20 (0)ax bx c a ++=≠的两个根为 即x 1=,x 2那么:12x x += ,12x x = ,此结论称为”韦达定理”,其成立的前提是0∆≥.3.特别地, 以两个数根x 1和x 2为根的一元二次方程是x 2+( x 1+x 2 )x +x 1.x 2 = 0.【精选题型】:1、已知关于x 的一元二次方程2320x x k -+=,根据下列条件,分别求出k 的范围:(1)方程有两个不相等的实数根; (2)方程有两个相等的实数根 (3)方程有实数根; (4)方程无实数根.2 、若12,x x 是方程2220070x x +-=的两个根,试求下列各式的值: (1) 2212x x +; (2)1211x x +; (3) 12(5)(5)x x --; (4) 12||x x -.3、已知关于x 的方程22(2)04m x m x ---=.(1)求证:无论m 取什么实数时,这个方程总有两个相异实数根;(2)若这个方程的两个实数根x 1,x 2满足x 2=x 1+2,求m 的值及相应的x 1,x 2.4、已知关于x 的方程mx 2—(2m+1)x+2=0.(1)求证:无论m 取何实数时,原方程总有实数根;(2)若原方程有两个实数根x 1和x 2,当52221=+x x 时求m 的值(3)若原方程有两个实数根,能否存在一个根大于2,另一个根小于2 ?若存在,请求出m 的取值范围;若不存在,请说明理由.【拓展练习】:1.若12,x x 是方程22630x x -+=的两个根,则1211x x +的值为( )A .2 B .2-C .12 D .922.若t 是一元二次方程20 ax bx c ++=的根,则判别式24b ac ∆=-和完全平方式2(2)M at b =+的关系是( )A .M ∆=B .M ∆>C .M ∆<D .大小关系不能确定3.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )A . m <14 B 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程竞赛题解题
一. 升次
例1.(2006年海南初赛)已知a,b 是一元二次方程 的两个根,则代数式 的值等于_________.
二.降次
例2.(江苏第8届数学竞赛)已知α,β是方程 的两根,求 的值。

三.配偶 例3.(2001年黄冈中考)已知α,β是方程 的两个实数根,求 的值.
四.减元
例4.(2005年湖州市“期望杯”数学竞赛题)设 是一元二次方程 的两根,则 等于( ) B.8
五.正难则反
例5.若下列三个关于的方程: 至少有一个方程有实数根,求实数m 的取值范围.
六.巧用ab+a+b+1和ab-a-b+1的因式分解
例6.(第17届江苏初中数学竞赛题)求满足如下条件的所有k 值:使关于x 的方程 的根都是整数。

七.巧用结论“当a+b+c=0时,一元二次方程 必有一根是1” 例7.(第18届江苏初中数学竞赛题) 若关于x 的方程 的根是正整数,则整数r 的值可以是____________.
八.反客为主
例8.(1998年香港数学竞赛题)求所有正整数a,使得方程 仅有整数根.
x 2-x-1=0
3a 2+2b 2-3a-2b x 1,x 2x 2+x-3=0
x 13-4x 22+19(1) x 2-2(m-1)x+m 2=0(2) x 2-2(m+1)x+m(m+3)=0
(3) x 2+2mx+m 2-2m+4=0
kx 2+(k+1)x+(k-1)=0ax 2+bx+c=0rx 2-(2r+7)x+(r+7)=0x 2-ax+4a=0
α2+3β2+4β x 2+2x-7=0 x 2-x-1=0 α4+3β
其他:
例题1:已知βα,是方程0122=-+x x 的两根,则1053++βα的值为______(12年河南)
例题3:设b a b b a a ≠=+=+且31,3122则代数式2211b a +
的值为( )(08年全国联赛) D.11
变式:已知实数y x ,满足4424244,3,324y x
y y x x +=+=-则的值为( )(08联赛) 例题4:如果关于x 的方程02934322=+-++k k kx x 的两实根为21,x x 则20152
2014
1
x x 的值为________。

(12年全国联赛改编题)
例题5:(2010年数学联赛)已知实数y x ,满足方程组=+⎩⎨⎧=+=+22331
19y x y x y x 则__________。

1、(上海市竞赛)已知整数p 、q 满足2010=+q p ,且关于x 的一元二次方程0672=++q px x 的根均为正整数,则p=__________。

3.设方程02=++q px x 的两根为b a ,且有,,...,2221n n n b a l b a l b a l +=+=+=则当3
≥n 时,21--++n n n ql pl l 的值为( )。

4.方程)0(022≠=-+a a x a x 有( )个实数根。

5、若实数y x ,满足16
545,1634333333333=+++=+++y x y x 则x+y=___________。

6、已知关于x 的一元二次方程04)462()86(2222=-+--++-k x k k x k k 的两个根
都是整数.求实数k 的值.
7. 求方程组33333x y z x y z ++=⎧⎨++=⎩的所有整数解.(全国联赛)。

相关文档
最新文档