2014-2015学年江苏省南通市启东中学高二(上)期末数学试卷解析
2014-2015年江苏省南通市启东中学高二(下)期中数学试卷(理科)和答案

2014-2015学年江苏省南通市启东中学高二(下)期中数学试卷(理科)一.填空题:本大题共14小题,每小题5分,共70分.1.(5分)设复数z满足i(z﹣4)=3+2i(i是虚数单位),则z的虚部为.2.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为.3.(5分)命题“∃x∈[0,3],使x2﹣2x+m≤0”是假命题,则实数m的取值范围为.4.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.5.(5分)函数y=xlnx的单调减区间为.6.(5分)在平面直角坐标系xOy中,直线y=x+b是曲线y=lnx的切线,则实数b的值是.7.(5分)已知双曲线C:=1(a,b>0)的焦距是10,点P(3,4)在C的渐近线上,则双曲线C的标准方程是.8.(5分)设函数f(x)=x2﹣lnx.则零点个数为个.9.(5分)过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为.10.(5分)已知A(x1,y l),B(x2,y2)是圆O:x2+y2=2上两点,且∠AOB =120°,则x1x2+y1y2=.11.(5分)设a>0,函数,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,则a的取值范围为.12.(5分)已知圆C:x2+y2+2x﹣4y+3=0,设点A(0,a)(a>0),若圆C上存在点M,使MA=MO,则a的取值范围.13.(5分)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x﹣3|.若函数的所有极大值点均落在同一条直线上,则c=.14.(5分)如图,已知椭圆的中心在坐标原点,焦点F1、F2在x轴上,A1,A2为左右顶点,焦距为2,左准线l与x轴的交点为M,|MA2|:|A1F1|=6:1.若点P在直线l上运动,且离心率e<,则tan∠F1PF2的最大值为.二、解答题:本大题共6小题,共90分..解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知p:实数x满足x2﹣4ax+3a2<0,其中a>0;q:实数x满足2<x≤3.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.16.(14分)如图是一个半圆形湖面景点的示意图,已知AB为直径,且AB=2km,O为圆心,C为圆周上靠近A的一点,D为圆周上靠近B的一点,且CD∥AB,现在准备从A经过C到D建造一条观光路线,其中A到C是圆弧,C 到D是线段CD,设∠AOC=xrad,观光路线总长为ykm.(1)求y关于x的函数解析式,并指出该函数的定义域;(2)求观光路线总长的最大值.17.(14分)已知圆C过点p(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.(1)求圆C的方程.(2)过点P作两条相异直线分别与圆C相交于A,B,且直线P A和直线PB的倾斜角互补,O为坐标原点,求证:直线OP与直线AB平行.18.(16分)已知函数f(x)=lnx﹣ax2+x,a∈R.(1)若a=2,求函数f(x)的单调递减区间;(2)若关于x的不等式f(x)≤ax﹣1恒成立,求整数a的最小值.19.(16分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,其焦点与椭圆上最近点的距离为2﹣.(1)求椭圆的方程;(2)若A,B分别是椭圆的左右顶点,动点M满足•=0,且MA交椭圆于点P.①求•的值;②设PB与以PM为直径的圆的另一交点为Q,求证:直线MQ过定点.20.(16分)已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.附加题:矩阵与变换21.已知矩阵M=,N=,且MN=.(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.极坐标系与参数方程22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),椭圆C的方程为+y2=1,试在椭圆C上求一点P,使得P到直线l的距离最小.空间立体几何23.如图,直三棱柱ABC﹣A1B1C1中,底面是等腰直角三角形,AB=BC=,BB1=3,D为A1C1的中点,F在线段AA1上.(1)AF为何值时,CF⊥平面B1DF?(2)设AF=1,求平面B1CF与平面ABC所成的锐二面角的余弦值.曲线与方程24.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l 过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.2014-2015学年江苏省南通市启东中学高二(下)期中数学试卷(理科)参考答案与试题解析一.填空题:本大题共14小题,每小题5分,共70分.1.(5分)设复数z满足i(z﹣4)=3+2i(i是虚数单位),则z的虚部为﹣3.【解答】解:∵i(z﹣4)=3+2i(i是虚数单位),∴z=+4=+4=6﹣3i,其虚部为﹣3.故答案为:﹣3.2.(5分)执行如图所示的程序框图,如果输入a=1,b=2,则输出的a的值为32.【解答】解:模拟执行程序,可得a=1,b=2不满足条件a>31,a=2不满足条件a>31,a=4不满足条件a>31,a=8不满足条件a>31,a=16不满足条件a>31,a=32满足条件a>31,退出循环,输出a的值为32.故答案为:32.3.(5分)命题“∃x∈[0,3],使x2﹣2x+m≤0”是假命题,则实数m的取值范围为(1,+∞)..【解答】解:∵命题“∃x∈[0,3]时,满足不等式x2﹣2x+m≤0是假命题,∴命题“∀x∈[0,3]时,满足不等式x2﹣2x+m>0”是真命题,∴m>﹣x2+2x在[0,3]上恒成立,令f(x)=﹣x2+2x,x∈[0,3],∴f(x)max=f(1)=1,∴m>1.故答案为:(1,+∞).4.(5分)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.【解答】解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.5.(5分)函数y=xlnx的单调减区间为(0,).【解答】解:y′=1+lnx,令,又因为函数y=xlnx的定义域为(0,+∞)所以函数y=xlnx的单调减区间为故答案为:6.(5分)在平面直角坐标系xOy中,直线y=x+b是曲线y=lnx的切线,则实数b的值是﹣1.【解答】解:设切点为(x0,lnx0),由y=lnx,得y′=,∵直线y=x+b是曲线y=lnx的切线,∴=1,即x0=1,∴lnx0=ln1=0,把切点(1,0)代入y=x+b,得0=1+b,即b=﹣1.故答案为:﹣1.7.(5分)已知双曲线C:=1(a,b>0)的焦距是10,点P(3,4)在C的渐近线上,则双曲线C的标准方程是=1.【解答】解:∵双曲线C:=1(a,b>0)的焦距是10,点P(3,4)在C的渐近线上,∴,解得a=9,b=16,∴双曲线C的方程为:=1.故答案为:=1.8.(5分)设函数f(x)=x2﹣lnx.则零点个数为0个.【解答】解:函数f(x)=x2﹣lnx的定义域为(0,+∞),f′(x)=2x﹣=;故x∈(0,)时,f′(x)<0;x∈(,+∞)时,f′(x)>0;故f(x)≥f()=﹣ln>0;故函数f(x)=x2﹣lnx没有零点;故答案为:0.9.(5分)过椭圆+=1(a>b>0)的左焦点F1作x轴的垂线交椭圆于点P,F2为右焦点,若∠F1PF2=60°,则椭圆的离心率为.【解答】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故答案为:.10.(5分)已知A(x1,y l),B(x2,y2)是圆O:x2+y2=2上两点,且∠AOB =120°,则x1x2+y1y2=﹣1.【解答】解:由题意,x1x2+y1y2=∵A(x1,y l),B(x2,y2)是圆O:x2+y2=2上两点,且∠AOB=120°,∴===﹣1故答案为:﹣1.11.(5分)设a>0,函数,若对任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,则a的取值范围为[e﹣2,+∞).【解答】解:求导函数,可得g′(x)=1﹣,x∈[1,e],g′(x)≥0,∴g(x)max=g(e)=e﹣1,令f'(x)=0,∵a>0,x=±当0<a<1,f(x)在[1,e]上单调增,∴f(x)min=f(1)=1+a≥e﹣1,∴a≥e﹣2;当1≤a≤e2,f(x)在[1,]上单调减,f(x)在[,e]上单调增,∴f(x)min=f()=≥e﹣1 恒成立;当a>e2时f(x)在[1,e]上单调减,∴f(x)min=f(e)=e+≥e﹣1 恒成立综上a≥e﹣2故答案为:[e﹣2,+∞)12.(5分)已知圆C:x2+y2+2x﹣4y+3=0,设点A(0,a)(a>0),若圆C上存在点M,使MA=MO,则a的取值范围≤a≤4+.【解答】解:圆C:x2+y2+2x﹣4y+3=0,即圆C:(x+1)2+(y﹣2)2=2,表示以C(﹣1,2)为圆心、半径等于的圆.设M(x0,y0),则由MA=MO,A(0,a),O(0,0),可得(x0﹣0)2+(y0﹣a)2=2(x02+y02),即3x02+3y02+2ay0﹣a2=0,即x02+(y0+a)2 =2a2.则M在以(0,﹣a)为圆心,r=a为半径的圆上.又点M在圆C上,则这两个圆有交点,即圆心之间的距离d满足:|r﹣|≤d ≤r+,即|a﹣|≤≤a+,即,求得≤a≤4+,故答案为:.13.(5分)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1﹣|x﹣3|.若函数的所有极大值点均落在同一条直线上,则c=1或2.【解答】解:∵当2≤x≤4时,f(x)=1﹣|x﹣3|.当1≤x<2时,2≤2x<4,则,此时当x=时,函数取极大值当2≤x≤4时,f(x)=1﹣|x﹣3|;此时当x=3时,函数取极大值1当4<x≤8时,2<≤4,则,此时当x=6时,函数取极大值c∵函数的所有极大值点均落在同一条直线上,即点共线,∴解得c=1或2.故答案:1或214.(5分)如图,已知椭圆的中心在坐标原点,焦点F1、F2在x轴上,A1,A2为左右顶点,焦距为2,左准线l与x轴的交点为M,|MA2|:|A1F1|=6:1.若点P在直线l上运动,且离心率e<,则tan∠F1PF2的最大值为.【解答】解:由焦距为2,则c=1,左准线l与x轴的交点为M,|MA2|:|A1F1|=6:1,则6(a﹣c)=a+,代入c=1,解得,a=2或3,由于离心率e<,则a>2c=2,则a=3.则l:x=﹣9,设P(﹣9,y),(y>0),则MF1|=8,|MF2|=10,则tan∠F1PF2=tan(∠F2PM﹣∠F1PM)===≤=.当且仅当y=即y=4时,取得最大值.故答案为:.二、解答题:本大题共6小题,共90分..解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知p:实数x满足x2﹣4ax+3a2<0,其中a>0;q:实数x满足2<x≤3.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若p是q的必要不充分条件,求实数a的取值范围.【解答】解:(1)p:由原不等式得,(x﹣3a)(x﹣a)<0,∵a>0为,所以a <x<3a;当a=1时,得到1<x<3;q:实数x满足2<x≤3;若p∧q为真,则p真且q真,∴实数x的取值范围是:(2,3);(2)p是q的必要不充分条件,即由p得不到q,而由q能得到p;∴,解得1≤a≤2;∴实数a的取值范围是[1,2].16.(14分)如图是一个半圆形湖面景点的示意图,已知AB为直径,且AB=2km,O为圆心,C为圆周上靠近A的一点,D为圆周上靠近B的一点,且CD∥AB,现在准备从A经过C到D建造一条观光路线,其中A到C是圆弧,C 到D是线段CD,设∠AOC=xrad,观光路线总长为ykm.(1)求y关于x的函数解析式,并指出该函数的定义域;(2)求观光路线总长的最大值.【解答】解:(1)由题意得,y=1•x+1•sin(﹣x)×2=x+2sin(﹣x),(0<x<);函数的定义域为{x|0<x<};(2)y′=1﹣2cos(﹣x),令y′=0解得,x=,故当x=时,观光路线总长最大,最大值为+2×=+(km).17.(14分)已知圆C过点p(1,1),且与圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.(1)求圆C的方程.(2)过点P作两条相异直线分别与圆C相交于A,B,且直线P A和直线PB的倾斜角互补,O为坐标原点,求证:直线OP与直线AB平行.【解答】解:(1)由题意可得点C和点M(﹣2,﹣2)关于直线x+y+2=0对称,且圆C和圆M的半径相等,都等于r.设C(m,n),由•(﹣1)=﹣1,且++2=0,求得,故原C的方程为x2+y2=r2.再把点P(1,1)代入圆C的方程,求得r=,故圆的方程为x2+y2=2.(2)证明:过点P作两条相异直线分别与圆C相交于A,B,且直线P A和直线PB的倾斜角互补,O为坐标原点,则得直线OP和AB平行,理由如下:由题意知,直线P A和直线PB的斜率存在,且互为相反数,故可设P A:y﹣1=k(x﹣1),PB:y﹣1=﹣k(x﹣1).由,得(1+k2)x2+2k(1﹣k)x+(1﹣k)2﹣2=0,因为P的横坐标x=1一定是该方程的解,故可得x A=.同理,所以x B=.由于AB的斜率k AB====1=k OP(OP的斜率),所以,直线AB和OP一定平行.18.(16分)已知函数f(x)=lnx﹣ax2+x,a∈R.(1)若a=2,求函数f(x)的单调递减区间;(2)若关于x的不等式f(x)≤ax﹣1恒成立,求整数a的最小值.【解答】解:(1)若a=2,则f(x)=lnx﹣x2+x,x>0,f′(x)=﹣2x+1=,f′(x)<0可得2x2﹣x﹣1>0,又x>0,解得x>1,即有f(x)的减区间为(1,+∞);(2)f(x)≤ax﹣1恒成立,可得lnx﹣ax2+x≤ax﹣1恒成立,等价为a≥在x>0恒成立.令g(x)=,只需a≥g(x)max,g′(x)=,令g′(x)=0,可得﹣x﹣lnx=0,设h(x)=﹣x﹣lnx,h′(x)=﹣﹣<0,h(x)在(0,+∞)递减,设h(x)=0的根为x0,当x∈(0,x0),g′(x)>0,当x∈(x0,+∞)时,g′(x)<0,g(x)在x∈(0,x0)递增,在x∈(x0,+∞)递减,即有g(x)max=g(x0)===,由h()=ln2﹣>0,h(1)=﹣<0,则<x0<1,此时1<<2,即g(x)max∈(1,2),即a≥2,则有整数a的最小值为2.19.(16分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)的离心率为,其焦点与椭圆上最近点的距离为2﹣.(1)求椭圆的方程;(2)若A,B分别是椭圆的左右顶点,动点M满足•=0,且MA交椭圆于点P.①求•的值;②设PB与以PM为直径的圆的另一交点为Q,求证:直线MQ过定点.【解答】(1)解:由已知可得,解得.∴b2=a2﹣c2=2,则椭圆方程为;(2)①解:由•=0,得MB⊥AB,可设M(2,t),P(x0,y0).直线MA:,代入,得.由,得,从而,∴•=;②证明:依题意,,由MQ⊥PB,得,则MQ的方程为:y﹣t=(x﹣2),即y=,∴直线MQ过原点O(0,0).20.(16分)已知函数f(x)=e x,g(x)=mx+n.(1)设h(x)=f(x)﹣g(x).①若函数h(x)在x=0处的切线过点(1,0),求m+n的值;②当n=0时,若函数h(x)在(﹣1,+∞)上没有零点,求m的取值范围;(2)设函数r(x)=+,且n=4m(m>0),求证:当x≥0时,r(x)≥1.【解答】解:(1)①h(x)=f(x)﹣g(x)=e x﹣mx﹣n.则h(0)=1﹣n,函数的导数h′(x)=e x﹣m,则h′(0)=1﹣m,则函数在x=0处的切线方程为y﹣(1﹣n)=(1﹣m)x,∵切线过点(1,0),∴﹣(1﹣n)=1﹣m,即m+n=2.②当n=0时,h(x)=f(x)﹣g(x)=e x﹣mx.若函数h(x)在(﹣1,+∞)上没有零点,即e x﹣mx=0在(﹣1,+∞)上无解,若x=0,则方程无解,满足条件,若x≠0,则方程等价为m=,设g(x)=,则函数的导数g′(x)=,若﹣1<x<0,则g′(x)<0,此时函数单调递减,则g(x)<g(﹣1)=﹣e ﹣1,若x>0,由g′(x)>0得x>1,由g′(x)<0,得0<x<1,即当x=1时,函数取得极小值,同时也是最小值,此时g(x)≥g(1)=e,综上g(x)≥e或g(x)<﹣e﹣1,若方程m=无解,则﹣e﹣1≤m<e.(2)∵n=4m(m>0),∴函数r(x)=+=+=+,则函数的导数r′(x)=﹣+=,设h(x)=16e x﹣(x+4)2,则h′(x)=16e x﹣2(x+4)=16e x﹣2x﹣8,[h′(x)]′=16e x﹣2,当x≥0时,[h′(x)]′=16e x﹣2>0,则h′(x)为增函数,即h′(x)>h′(0)=16﹣8=8>0,即h(x)为增函数,∴h(x)≥h(0)=16﹣16=0,即r′(x)≥0,即函数r(x)在[0,+∞)上单调递增,故r(x)≥r(0)=,故当x≥0时,r(x)≥1成立.附加题:矩阵与变换21.已知矩阵M=,N=,且MN=.(Ⅰ)求实数a,b,c,d的值;(Ⅱ)求直线y=3x在矩阵M所对应的线性变换下的像的方程.【解答】解:(Ⅰ)由题设得,解得;(Ⅱ)因为矩阵M所对应的线性变换将直线变成直线(或点),所以可取直线y=3x上的两(0,0),(1,3),由=,=得点(0,0),(1,3)在矩阵M所对应的线性变换下的像是(0,0),(﹣2,2),从而直线y=3x在矩阵M所对应的线性变换下的像的方程为y=﹣x.极坐标系与参数方程22.在平面直角坐标系xOy中,直线l的参数方程为(t为参数),椭圆C的方程为+y2=1,试在椭圆C上求一点P,使得P到直线l的距离最小.【解答】解:根据直线l的参数方程为(t为参数),得其普通方程为:x+2y=4,设P(2cosθ,sinθ),∴P到l的距离为d==≥=,当且仅当sin(θ+)=1,即θ=2kπ+时等号成立.此时,sinθ=cosθ=,∴P(,).空间立体几何23.如图,直三棱柱ABC﹣A1B1C1中,底面是等腰直角三角形,AB=BC=,BB1=3,D为A1C1的中点,F在线段AA1上.(1)AF为何值时,CF⊥平面B1DF?(2)设AF=1,求平面B1CF与平面ABC所成的锐二面角的余弦值.【解答】解:(1)因为直三棱柱ABC﹣A1B1C1中,BB1⊥面ABC,∠ABC=.以B点为原点,BA、BC、BB1分别为x、y、z轴建立如图所示空间直角坐标系.因为AC=2,∠ABC=90°,所以AB=BC=,从而B(0,0,0),A,C,B1(0,0,3),A1,C1,D,所以,设AF=x,则F(,0,x),.,所以.要使CF⊥平面B1DF,只需CF⊥B1F.由=2+x(x﹣3)=0,得x=1或x=2,故当AF=1或2时,CF⊥平面B1DF.(5分)(2)由(1)知平面ABC的法向量为n1=(0,0,1).设平面B1CF的法向量为n=(x,y,z),则由得令z=1得,所以平面B1CF与平面ABC所成的锐二面角的余弦值.曲线与方程24.在平面直角坐标系xOy中,已知抛物线y2=2px(p>0)的准线方程为x=﹣,过点M(0,﹣2)作抛物线的切线MA,切点为A(异于点O).直线l 过点M与抛物线交于两点B,C,与直线OA交于点N.(1)求抛物线的方程;(2)试问:的值是否为定值?若是,求出定值;若不是,说明理由.【解答】解:(1)由题设知,,即,所以抛物线的方程为y2=x;(2)因为函数的导函数为,设A(x0,y0),则直线MA的方程为,因为点M(0,﹣2)在直线MA上,所以﹣2﹣y0=﹣•(﹣x0).联立,解得A(16,﹣4),所以直线OA的方程为.设直线BC方程为y=kx﹣2,由,得k2x2﹣(4k+1)x+4=0,所以.由,得.所以,故的为定值2.。
江苏省启东中学2015届高三上学期第一次月考数学(理)试题含解析

江苏省启东中学2014-2015学年度第一学期第一次月考高三数学(理)试卷【试卷综析】本试卷是高三文科理试卷,考查学生解决实际问题的综合能力,是份较好的试卷.以基础知识和基本能力为载体突出考查考纲要求的基本能力,重视学生科学素养的考查.试题重点考查:集合、命题,函数模型不等式、复数、向量、导数函数的应用、三角函数的性质、三角恒等变换与解三角形等,是一份非常好的试卷。
一.填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应..... 位置上.... 【题文】1.已知全集}7,5,3,1{},5,4,2{},7,6,5,4,3,2,1{===B A U ,则=⋂)(B C A U ▲ .【知识点】集合及其运算A1 【答案解析】{2,4,5} ∵全集U={1,2,3,4,5,6.7},B={1,3,5,7}, ∴∁U B={2,4,6},又A={2,4,5},则A ∩(∁U B )={2,4,5}.故答案为:{2,4,5} 【思路点拨】找出全集U 中不属于B 的元素,确定出B 的补集,找出A 与B 补集的公共元素,即可确定出所求的集合.【题文】2.若命题“R x ∈∃,有02≤--m mx x ”是假命题,则实数m 的取值范围是 ▲ .【知识点】命题及其关系A2 【答案解析】[-4,0] ∵命题“∃x ∈R ,有x 2-mx-m <0”是假命题,⇔“∀x ∈R ,有x 2-mx-m ≥0”是真命题.令f (x )=x 2-mx-m ,则必有△=m 2-4m ≤0,解得-4≤m ≤0. 故答案为:[-4,0].【思路点拨】令f (x )=x 2-mx-m ,利用“∃x ∈R ,有x 2-mx-m <0”是假命题⇔△=m 2-4m ≤0,解出即可.【题文】3.已知βα,的终边在第一象限,则“βα>”是“βαsin sin >”的 ▲ 条件.【知识点】充分条件、必要条件A2故答案为:既不必要也不充分条件. 【思路点拨】根据三件函数的定义和关系式,结合充分条件和必要条件的定义进行判断.【题文】4.已知)(x f 的定义域是]4,0[,则)1()1(-++x f x f 的定义域为 ▲ .【知识点】函数及其表示B1【答案解析】[1,3] ∵f (x )的定义域是[0,4],∴f (x+1)+f (x-1)的定义域为不等式组014014x x ≤+≤⎧⎨≤-≤⎩的解集,解得:1≤x ≤3. 故答案为:[1,3]. 【思路点拨】由题意可列不等式组014014x x ≤+≤⎧⎨≤-≤⎩,解之即可.【题文】5.已知角α终边上一点P 的坐标是)3cos 2,3sin 2(-,则=αsin ▲ .【知识点】角的概念及任意角的三角函数C1∴|OP|= 【题文】6.已知曲线33:x x y S -=及点)2,2(P ,则过点P 可向曲线S 引切线,其切线共有▲ 条.【知识点】导数的应用B12【答案解析】3 ∵y=3x-x 3,∴y'=f'(x )=3-3x 2,∵P (2,2)不在曲线S 上, ∴设切点为M (a ,b ),则b=3a-a 3,f'(a )=3-3a 2则切线方程为y-(3a-a 3)=(3-3a 2)(x-a ),∵P (2,2)在切线上,∴2-(3a-a 3)=(3-3a 2)(2-a ),即2a 3-6a 2+4=0, ∴a 3-3a 2+2=0,即a 3-a 2-2a 2+2=0,∴(a-1)(a 2-2a-2)=0,解得a=1或a=1±∴切线的条数为3条,故答案为3. 【思路点拨】求函数的导数,设切点为M (a ,b ),利用导数的几何意义,求切线方程,利用点P (2,2)在切线上,求出切线条数即可.【题文】7.化简:=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπ ▲ .【知识点】同角三角函数的基本关系式与诱导公式C2【答案解析】=-----++)3sin()3cos()23sin()2cos()tan(αππαπααπαπtan cos cos (cos )sin ∂∂∂-∂∂=-1 【思路点拨】利用三角函数诱导公式同角三角函数基本关系。
精品解析【全国百强校首发】江苏省启东中学2015-2016学年高二上学期期末考试数学试题解析(解析版)

f (14) 17 ;记 f1(n) f (n) , f2 (n) f ( f1(n)) ,…, fk 1(n) f ( fk (n)) , k N * ,
则 f2016 (8)
.
【答案】 8
考点:归纳推理,周期数列.
14.
设点
A1 ,
A2 分别
为椭圆
C
:
x2 a2
y2 b2 1(a
b
0) 的左右顶点,若在椭圆
.
1 2i
【答案】 i
考点:复数的运算. 3. 女子国际象棋世界冠军中国江苏选手侯逸凡与某计算机进行人机对抗赛,若侯逸凡
获胜的概率为 0. 65,人机和棋的概率为 0.25 ,那么侯逸凡不输的概率为 ________.
【答案】 0.9 【解析】
试题分析:“侯逸凡不输”包含“侯逸凡获胜”与“人机和棋”两个互斥事件,因此
1 所以 k1>- 2.
8k1 (2 k1- 1)
又 x1+ x2=
3+ 4k21
16k21-16k1- 8
, x1x2=
3+
4
k
2 1
,
因为 P→A·→PB= P→M2,
考点:椭圆的标准方程,直线与椭圆的位置关系.
【名师点睛】直线 l 与圆锥曲线相交于两点 A, B 时,一般都设 A( x1, y1), B( x2 , y2) ,直 线方程为 y kx b ,把直线方程代入圆锥曲线方程得 x 的一元二次方程,由韦达定理
C上
存在异于点 A1, A2 的点 P ,使得 PO PA2 ,其中 O 为坐标原点,则椭圆 C 的离心率
的取值范围是
.
【答案】 (
2 ,1)
2
【解析】
2015年7月01日江苏省南通中学2014~2015学年度高二下学期期末考试文科数学试题及参考答案解析

(第3题图)江苏省南通中学2014—2015学年度第二学期期末考试高二文科数学试题一、填空题:本大题共14小题,每小题5分,共70分。
不需要写出解答过程,请把答案直接填空在答题卡相应位置上......... 1.已知集合A ={1,3,9},B ={1,5,9},则A ⋂B = ▲ . {}9,1 2.已知复数z 满足i z i 51)1(+-=+,则=z ▲ .i 32+3.某时段内共有100辆汽车经过某一雷达测速区域,将测得的汽车时速绘制成如图所示的频率分布直方图.根据图形推断,该时段时速不超过50km/h 的汽车辆数为 ▲ . 234.口袋中有形状和大小完全相同的四个球,球的编号分别为1,2,3,4,若从袋中随机抽取两个球,则取出的两个球的编号之和大于5的概率为 ▲ .315.执行下边的程序框图,若输入的N 是3,则输出p 的值是 ▲ . 136.“21<<x ”是“2<x ”成立的 ▲ (填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)条件. 充分不必要7.我们知道,以正三角形的三边中点为顶点的三角形与原三角形的面积之比是1:4,类比该命题得,以正四面体的四个面的中心为顶点的四面体与原正四面体的体积之比为 ▲ .1:278.设实数x 、y 满足⎪⎩⎪⎨⎧≤≥-+≥-30402x y x y x ,则u =x y 的取值范围是 ▲ . ⎥⎦⎤⎢⎣⎡2,319.曲线x x y +=ln 3在点(1,1)处的切线方程为 ▲ . 34-=x y10.已知函数)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递减,则不等式)4()3(2f x x f <-的解集为 ▲ . ()4,1-11.若,1()3,1ax f x x x a x ⎧≥⎪=⎨⎪-+<⎩是R 上的单调减函数,则实数a 的取值范围为 ▲ .[12,+∞)12.若0,0>>b a ,且函数224)(23+--=bx ax x x f 在x =1处有极值,则ab 的最大值为 ▲ . 9 13.已知x y +∈R ,,满足411x y-=,不等式()2230x y a a -+-≥恒成立,则实数a 的取值范围是 ▲ . 解:x y +∈R ,,()414551y x x y x y x y xy y ⎛⎫⎛⎫∴-=--=-+-= ⎪ ⎪⎝⎭⎝⎭≤, 当且仅当441 1.y xx y x y⎧=⎪⎪⎨⎪-=⎪⎩,即21.x y =⎧⎨=⎩,解得1x y -≤.令t x y =-,则1t ≤,不等式2230t a a ⋅+-≥在(1]t ∈-∞,时恒成立.当0a ≥时,显然不成立;当0a <时,2230ta a +-≥恒成立,即()2min230t a a ⋅+-≥,所以2230a a +-≥,解得32a -≤,则实数a 的取值范围是32⎛⎤-∞ ⎥⎝⎦,-.14.已知函数⎪⎩⎪⎨⎧>++-≤-=0,340,)2()(22x x x x e x x x f x,k x f x g 3)()(-=,若函数)(x g 恰有两个不同的零点,则实数k 的取值范围为 ▲ .⎭⎬⎫⎩⎨⎧+-23222,0)37,1(e 二、解答题:本大题共6小题,共90分。
江苏省南通市启东中学高二数学下学期第二次质检试卷 文(含解析)

2014-2015学年江苏省南通市启东中学高二(下)第二次质检数学试卷(文科)一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.已知集合M={x|x<1},N={x|lg(2x+1)>0},则M∩N=.2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为.3.执行如图的流程图,得到的结果是.4.将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数中至少有一个是奇数的概率为.5.函数y=sinα(sinα﹣cosα)(α∈)的最大值为.6.设,则a,b,c按从小到大顺序排列依次为.7.已知函数若f(f(0))=4a,则实数a= .8.函数y=2x+log2x﹣6的零点所在的区间是(,),则正整数k的值为.9.已知△ABC是等边三角形,有一点D满足+=,且||=,那么•= .10.在△ABC中,角A,B,C的对边分别为a,b,c,若tanA=7tanB,=3,则c= .11.已知是(﹣∞,+∞)上的减函数,则a的取值范围是.12.已知函数f(x)=3sin(ωx﹣)(ω>0)和g(x)=3cos(2x+φ)的图象的对称中心完全相同,若x∈,则f(x)的取值范围是.13.定义在R上的函数f(x)满足f(x+6)=f(x).当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)= .14.已知函数f(x)=,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.已知关于x的一元二次方程x2+2ax+b2=0,满足a≥0且b≥0.(1)若a是从0、1、2三个数中任取的一个数,b是从0、1两个数中任取的一个数,求上述方程有实根的概率.(2)若a=1,b是从区间任取的一个数,求上述方程有实根的概率.16.已知△ABC的三边长分别为a、b、c,且满足B=2A.(1)若,求cosC的值;(2)若b2=2ac,求cosA的值.17.已知函数f(x)=﹣x2+(a+4)x+2+b,log2f(1)=3,且g(x)=f(x)﹣2x为偶函数.(1)求函数f(x)的解析式;(2)若函数f(x)在区间)的最大值为.考点:三角函数的最值.专题:三角函数的求值.分析:利用倍角公式、两角和差公式可得:函数y=+,由于α∈,可得∈,因此取得最小值﹣1,y取得最大值.解答:解:函数y=sinα(sinα﹣cosα)==﹣sin2α=+,∵α∈,∴∈,∴∈,∴当2=﹣,即α=时,取得最小值﹣1,y取得最大值.故答案为:.点评:本题考查了倍角公式、两角和差公式、三角函数的单调性,考查了推理能力与计算能力,属于中档题.6.设,则a,b,c按从小到大顺序排列依次为b<c<a .考点:对数值大小的比较.专题:函数的性质及应用.分析:根据指数幂和对数的性质进行判断范围即可.解答:解:50.5>1,0<0.75<1,log0.32<0,即a>1,b<0,0<c<1,∴b<c<a,故答案为:b<c<a点评:本题主要考查指数幂和对数值的大小比较,比较基础.7.已知函数若f(f(0))=4a,则实数a= 2 .考点:函数与方程的综合运用.专题:计算题.分析:给出的是分段函数,根据所给变量的范围确定选用具体的解析式,从而得方程,故可解.解答:解:由题意,f(0)=20+1=2,∴f(2)=4+2a=4a,∴a=2故答案为2.点评:本题的考点是函数与方程的综合运用,主要考查分段函数的定义,考查求函数值,有一定的综合性8.函数y=2x+log2x﹣6的零点所在的区间是(,),则正整数k的值为 4 .考点:函数零点的判定定理.专题:函数的性质及应用.分析:根据函数零点的判定定理,即可求得结论解答:解:∵函数f(x)=log2x+2x﹣6,∴f′(x)=2+>0,∴函数f(x)在(0,+∞)单调递增,∵f()=﹣4<0,f(3)=log23>0,∴f()•f(3)<0,且函数f(x)=log2x+2x﹣6在区间(,3)上是连续的,故函数f(x)=log2x+2x﹣6的零点所在的区间为(,3),∴,解得:3<k<5,∴k=4,故答案为:4.点评:本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.9.已知△ABC是等边三角形,有一点D满足+=,且||=,那么•= 3 .考点:平面向量数量积的运算.专题:平面向量及应用.分析:由已知画出图形,得到各向量的关系,求出等边三角形的边长,利用数量积公式解答.解答:解:由已知得到如图因为△ABC是等边三角形,有一点D满足+=,且||=,所以EF∥CD,并且EF=,所以BE=,AC=2,所以AD=,•=||||cosD===3;故答案为:3.点评:本题考查了平面向量的三角形法则以及数量积公式的运用,属于基础题.10.在△ABC中,角A,B,C的对边分别为a,b,c,若tanA=7tanB,=3,则c= 4 .考点:正弦定理;余弦定理.专题:计算题;解三角形.分析:,利用tanA=7tanB求得sinAcosB与cosAsinB的关系式,进而利用正弦定理和余弦定理转化成边的问题,化简求得a,b和c的关系式,然后根据已知条件可直接求得c.解答:解:∵tanA=7tanB,∴=7•.∴sinAcosB=7sinBcosA,∴a•=7•b•,整理得8a2﹣8b2=6c2,①∵=3,②①②联立求得c=4,故答案为:4点评:本题主要考查了正弦定理的应用,解题的关键是利用正弦定理和余弦定理完成边角问题的转化.11.已知是(﹣∞,+∞)上的减函数,则a的取值范围是,则f(x)的取值范围是.考点:余弦函数的对称性;正弦函数的对称性.专题:计算题.分析:根据这两个函数的周期相同,求出ω值,即得函数f(x)的解析式,根据x∈,求出3sin(ωx﹣)的范围.解答:解:由题意得,这两个函数的周期相同,∴,∴ω=2.函数f(x)=3sin(ωx﹣)=3sin(2x﹣).∵x∈,∴﹣≤2x﹣≤,∴﹣≤sin(2x﹣)≤1,﹣≤3sin(ωx﹣)≤3,故f(x)的取值范围是,故答案为.点评:本题考查正弦函数、余弦函数的对称性,求正弦函数的值域,判断这两个函数的周期相同是解题的突破口.13.定义在R上的函数f(x)满足f(x+6)=f(x).当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,当﹣1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2012)= 338 .考点:函数的周期性.专题:函数的性质及应用.分析:由已知可得f(1)=1,f(2)=2,f(3)=﹣1,f(4)=0,f(5)=﹣1,f(6)=0,根据函数的周期性可得:f(1)+f(2)+f(3)+…+f(2 012)=335×+f(1)+f(2),代入可得答案.解答:解:∵当﹣3≤x<﹣1时,f(x)=﹣(x+2)2,∴f(﹣3)=﹣1,f(﹣2)=0,∵当﹣1≤x<3时,f(x)=x,∴f(﹣1)=﹣1,f(0)=0,f(1)=1,f(2)=2,又∵f(x+6)=f(x).故f(3)=﹣1,f(4)=0,f(5)=﹣1,f(6)=0,又∵2012=335×6+2,故f(1)+f(2)+f(3)+…+f(2 012)=335×+f(1)+f(2)=335+1+2=338,故答案为:338点评:本题考查的知识点是函数的周期性,数列求和,按周期分组求和是解答的关键.14.已知函数f(x)=,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是a<4 .考点:二次函数的性质.专题:函数的性质及应用.分析:当<1,即a<2时,由二次函数的图象和性质,易得满足条件;当≥1,即a≥2时,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则函数f(x)=,不为单调函数,即﹣1+a>2a﹣5,综合讨论结果可得答案.解答:解:当<1,即a<2时,由二次函数的图象和性质,可知:存在x1,x2∈(﹣∞,1]且x1≠x2,使得f(x1)=f(x2)成立,当≥1,即a≥2时,若存在x1,x2∈R且x1≠x2,使得f(x1)=f(x2)成立,则﹣1+a>2a﹣5,解得:a<4,∴2≤a<4,综上所述:实数a的取值范围是a<4,故答案为:a<4点评:本题考查的知识点是二次函数的图象和性质,分段函数的图象和性质,正确理解分段函数的单调性,是解答的关键.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.已知关于x的一元二次方程x2+2ax+b2=0,满足a≥0且b≥0.(1)若a是从0、1、2三个数中任取的一个数,b是从0、1两个数中任取的一个数,求上述方程有实根的概率.(2)若a=1,b是从区间任取的一个数,求上述方程有实根的概率.考点:几何概型;列举法计算基本事件数及事件发生的概率.专题:概率与统计.分析:(1)是古典概型,可以列举出所有的满足条件的事件,根据古典概型概率公式得到结果.(2)是几何概型,求出方程有实根的等价条件,利用几何概型的概率公式进行求解.解答:解:(1)设若a是从0、1、2三个数中任取的一个数,b是从0、1两个数中任取的一个数,则有3×2=6种结果,事件A为“方程a2+2ax+b2=0有实根”.若方程x2+2ax+b2=0有实根,则判别式△=4a2﹣4b2≥0,即a2﹣b2≥0,∵a≥0且b≥0.∴等价为a≥b.包含基本事件共5个:(0,0),(1,0),(1,1),(2,0),(2,1),其中第一个数表示a的取值,第二个数表示b的取值.∴事件A发生的概率为P=.(2)若a=1,则方程x2+2ax+b2=0有实根,则判别式△=4﹣4b2≥0,即b2≤1,解得﹣1≤b≤1,∵0≤b≤3,∴0≤b≤1,则对应的概率P=.点评:本题主要考查概率的计算,要求熟练古典概型和几何概型的概率的计算,考查学生的运算和推理能力.16.已知△ABC的三边长分别为a、b、c,且满足B=2A.(1)若,求cosC的值;(2)若b2=2ac,求cosA的值.考点:余弦定理;正弦定理.专题:解三角形.分析:(1)利用二倍角公式及正弦定理可得b=2acosA,又,从而解得cosA=,可解得B,C的值,即可得解cosC的值.(2)由(1)可得:b=2acosA,又b2=2ac,即可解得cosA=,利用余弦定理可求b2+c2=a2,由勾股定理可求A,从而得解.解答:解:(1)∵B=2A.∴sinB=sin2A=2sinAcosA,∵,sinA>0,∴可得b=2acosA,又,∴=2cosA,解得cosA=,A=,B=,C=∴cosC=0.(2)由(1)可得:b=2acosA,又b2=2ac,∴解得:cosA==.整理可得:b2+c2=a2,故由勾股定理可得:A=,cosA=0.点评:本题主要考查了二倍角公式、三角形内角和定理及正弦定理、勾股定理的应用,属于基本知识的考查.17.已知函数f(x)=﹣x2+(a+4)x+2+b,log2f(1)=3,且g(x)=f(x)﹣2x为偶函数.(1)求函数f(x)的解析式;(2)若函数f(x)在区间﹣=﹣=.由题设可得,(1+x1)>0,(1+x2)>0,2(x2﹣x1)>0,∴>0,即t(x1)>t(x2),故函数t(x)在定义域(﹣1,1)上是减函数.根据复合函数的单调性可得f(x)=lgt(x)=log2在定义域(﹣1,1)上是减函数.(2)∵函数f(x)=2﹣3log2x,g(x)=log2x.∴函数==1﹣log2x+|1﹣2log2x|=,故M(x)在(0,]上为减函数,在(,+∞)上为增函数,故当x=时,M(x)取最小值.点评:本题主要考查函数的奇偶性的定义和判断方法,函数的单调性的判断和证明,复合函数的单调性,属于中档题.19.如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域OAB内建两个圆形花坛,该扇形的圆心角为变量2θ(0<2θ<π),其中半径较大的花坛⊙P内切于该扇形,半径较小的花坛⊙Q与⊙P外切,且与OA、OB相切.(1)求半径较大的花坛⊙P的半径(用θ表示);(2)求半径较小的花坛⊙Q的半径的最大值.考点:三角函数的最值;三角函数中的恒等变换应用.专题:三角函数的图像与性质.分析:(1)设⊙P切OA于M,⊙Q切OA于N,记⊙P、⊙Q的半径分别为r P、r Q.可得|OP|=80﹣r P,由此求得r P的解析式.(2)由|PQ|=r P+r Q,求得r Q=(0<θ<).令t=1+sinθ∈(1,2),求得r Q=80(﹣1﹣+),再利用二次函数的性质求得它的最大值.解答:解:(1)设⊙P切OA于M,连PM,⊙Q切OA于N,连QN,记⊙P、⊙Q的半径分别为r P、r Q.∵⊙P与⊙O内切,∴|OP|=80﹣r P,∴+r P=80,∴r P=(0<θ<).(2)∵|PQ|=r P+r Q∴|OP|﹣|OQ|=﹣=r P+r Q,∴r Q=(0<θ<).令t=1+sinθ∈(1,2),∴r Q=80•=80(﹣1﹣+),令m=∈(,1),r Q=80(﹣2m2+3m﹣1),∴m=时,有最大值10.点评:本题主要考查直线和圆的位置关系,三角恒等变换,正弦函数的定义域和值域,求三角函数的最值,属于基础题.20.定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.(1)试求f(0)的值;(2)判断f(x)的单调性并证明你的结论;(3)设A={(x,y)|f(x2)•f(y2)>f(1)},若A∩B=∅,试确定a的取值范围.(4)试举出一个满足条件的函数f(x).考点:抽象函数及其应用;交集及其运算;函数单调性的判断与证明.专题:函数的性质及应用.分析:(1)在恒等式中,令m=1,n=0,代入即可得到f(0)的值;(2)任取x1,x2∈R,且x1<x2,利用恒等式将f(x2)﹣f(x1)变形,再利用当x>0时,0<f(x)<1,确定f(x2)﹣f(x1)的符号,利用函数单调性的定义,即可证明函数的单调性;(3)利用恒等式,将f(x2)•f(y2)>f(1)等价转化为x2+y2<1,将转化为ax﹣y+=0,从而将A∩B=∅问题转化为直线与圆面没有公共点问题,利用直线到圆心的距离大于半径,列出不等关系,求解即可求得a的取值范围;(4)根据题设的条件从所学的基本初等函数中,判断选择一个函数即可.解答:解:(1)∵对任意实数m,n,总有f(m+n)=f(m)•f(n),∴令m=1,n=0,则有f(1)=f(1)f(0),∵当x>0时,0<f(x)<1,∴f(1)≠0,∴f(0)=1;(2)任取x1,x2∈R,且x1<x2,∵对任意实数m,n,总有f(m+n)=f(m)•f(n),∴令m+n=x2,m=x1,则有f(x2)=f(x1)f(x2﹣x1),∴f(x2)﹣f(x1)=f(x1)f(x2﹣x1)﹣f(x1)=f(x1),∵x2﹣x1>0,∴1>f(x2﹣x1)>0,为确定f(x2)﹣f(x1)的正负,只需考虑f(x1)的正负即可,∵f(m+n)=f(m)•f(n),∴令m=x,n=﹣x,则f(x)•f(﹣x)=1,∵x>0时,0<f(x)<1,∴当x<0时,,又f(0)=1,综上可知,对于任意x1∈R,均有f(x1)>0,∴f(x2)﹣f(x1)=f(x1)<0,∴f(x2)<f(x1),∴函数f(x)在R上单调递减;(3)∵对任意实数m,n,总有f(m+n)=f(m)•f(n),∴f(x2)•f(y2)=f(x2+y2),∴不等式f(x2)•f(y2)>f(1),即f(x2+y2)>f(1),∵函数f(x)在R上单调递减,∴x2+y2<1,∴A={(x,y)|f(x2)•f(y2)>f(1)}表示圆面x2+y2<1内的点,∵f(ax﹣y+)=1,且f(0)=1,∴,即,∴表示直线ax﹣y+=0上的点,∵A∩B=∅,∴直线与圆面x2+y2<1无公共点,∴圆心(0,0)到直线ax﹣y+=0的距离为d=,解得﹣1≤a≤1,∴a的取值范围为﹣1≤a≤1;(4).点评:本题主要考查了利用赋值法求解抽象函数的函数值,考查了函数单调性的判断与证明,注意一般单调性的证明选用定义法证明,证明的步骤是:设值,作差,化简,定号,下结论.属于函数知识的综合应用.属于中档题.。
高二数学-南通市启东中学2014-2015学年高二上学期第一次月考数学试卷

2014-2015学年江苏省南通市启东中学高二(上)第一次月考数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.命题p:∀x∈R,方程x3+x+1=0的否定是.2.已知椭圆=1上一点P到一个焦点的距离为8,则点P到另一焦点的距离是.3.命题“若α是锐角,则sinα>0”的否命题是.4.【文科】若双曲线的渐近线方程为y=±3x,一个焦点是,则双曲线的方程是.5.以点(1,2)为圆心,与直线4x+3y﹣35=0相切的圆的方程是.6.设F1、F2是双曲线的两个焦点,是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于.7.若圆锥曲线=1的焦距为2,则k= .8.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是.9.椭圆C的中心在原点,焦点F1,F2在x轴上,离心率为,过F1的直线L交C于A,B 两点,且△ABF2的周长为16,那么C的方程为.10.将一个半径为R的蓝球放在地面上,被阳光斜照留下的影子是椭圆.若阳光与地面成60°角,则椭圆的离心率为.11.若直线ax+by=1与圆x2+y2=1相切,则实数ab的最大值与最小值之差为.12.已知命题p:≤﹣1,命题q:x2﹣x<a2﹣a,且¬q的一个充分不必要条件是¬p,则实数a的取值范围是.13.已知⊙O:x2+y2=4的两条弦AB,CD互相垂直,且交于点M(1,),则AB+CD的最大值为.14.已知直线y=kx+3与曲线x2+y2﹣2xcosα+2(1+sinα)(1﹣y)=0有且只有一个公共点,则实数k的值为.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是假命题,求实数a的取值范围.16.(已知集合A={x|2﹣a≤x≤2+a},B={x|4x2+12x﹣7≤0},若“x∈A”是“x∈B”的必要条件,求实数a的取值范围.17.(已知实数x,y满足(x﹣2)2+(y﹣1)2=1.(1)求k=的最大值;(2)若x+y+m≥0恒成立,求实数m的范围.18.已知点P(4,4),圆C:(x﹣m)2+y2=5(m<3)与椭圆E:有一个公共点A(3,1),F1,F2分别是椭圆的左右焦点,直线PF1与圆C相切.(1)求m的值;(2)求椭圆E的方程.19.已知圆C:x2+y2﹣2x﹣4y﹣12=0和点A(3,0),直线l过点A与圆交于P,Q两点.(1)若以PQ为直径的圆的面积最大,求直线l的方程;(2)若以PQ为直径的圆过原点,求直线l的方程.20.如图,已知椭圆E1:=1(a>b>0)的左右顶点分别为A,A',圆E2:x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.(1)证明:k BA•k BA′=﹣;(2)若k1=1时,B恰好为线段AC的中点,且a=3,试求椭圆的方程;(3)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.2014-2015学年江苏省南通市启东中学高二(上)第一次月考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上.1.命题p:∀x∈R,方程x3+x+1=0的否定是∃x∈R,方程x3+x+1≠0 .考点:命题的否定.专题:简易逻辑.分析:直接利用全称命题的否定是特称命题,写出结果即可.解答:解:因为全称命题的否定是特称命题,所以命题p:∀x∈R,方程x3+x+1=0的否定是:∃x∈R,方程x3+x+1≠0.故答案为:∃x∈R,方程x3+x+1≠0.点评:本题考查命题的否定,全称命题与特称命题的否定关系,基本知识的考查.2.已知椭圆=1上一点P到一个焦点的距离为8,则点P到另一焦点的距离是12 .考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由椭圆方程找出a的值,根据椭圆的定义可知椭圆上的点到两焦点的距离之和为常数2a,把a的值代入即可求出常数的值得到P到两焦点的距离之和,由P到一个焦点的距离为8,求出P到另一焦点的距离即可.解答:解:由椭圆=1,得a=10,则2a=20,且点P到椭圆一焦点的距离为8,由定义得点P到另一焦点的距离为2a﹣8=20﹣8=12.故答案为:12.点评:此题考查学生掌握椭圆的定义及简单的性质,是一道中档题.3.命题“若α是锐角,则sinα>0”的否命题是若α不是锐角,则 sinα≤0 .考点:四种命题间的逆否关系.专题:探究型.分析:根据否命题与原命题之间的关系求解即可.解答:解:根据否命题的定义可知,命题“若α是锐角,则sinα>0”的否命题是:若α不是锐角,则 sinα≤0.故答案为:若α不是锐角,则 sinα≤0.点评:本题主要考查四种命题之间的关系,比较基础.4.【文科】若双曲线的渐近线方程为y=±3x,一个焦点是,则双曲线的方程是.考点:双曲线的标准方程.专题:圆锥曲线的定义、性质与方程.分析:由题意,设双曲线方程为(a>0,b>0),根据双曲线的渐近线方程为y=±3x,一个焦点是,列出方程组,求出a,b,即可得出双曲线的方程.解答:解:由题意,设双曲线方程为(a>0,b>0),∵双曲线的渐近线方程为y=±3x,一个焦点是,∴,∴a=3,b=1,∴双曲线的方程是.故答案为:.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.5.以点(1,2)为圆心,与直线4x+3y﹣35=0相切的圆的方程是(x﹣1)2+(y﹣2)2=25 .考点:圆的标准方程;直线与圆的位置关系.专题:计算题.分析:先求圆心到直线4x+3y﹣35=0的距离,再求出半径,即可由圆的标准方程求得圆的方程.解答:解:以点(1,2)为圆心,与直线4x+3y﹣35=0相切,圆心到直线的距离等于半径,即:所求圆的标准方程:(x﹣1)2+(y﹣2)2=25故答案为:(x﹣1)2+(y﹣2)2=25点评:本题考查圆的标准方程,直线与圆相切,是基础题.6.设F1、F2是双曲线的两个焦点,是双曲线上的一点,且3|PF1|=4|PF2|,则△PF1F2的面积等于24 .考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:先由双曲线的方程求出|F1F2|=10,再由3|PF1|=4|PF2|,求出|PF1|=8,|PF2|=6,由此能求出△PF1F2的面积.解答:解:双曲线的两个焦点F1(﹣5,0),F2(5,0),|F1F2|=10,由3|PF1|=4|PF2|,设|PF2|=x,则|PF1|=x,由双曲线的性质知x﹣x=2,解得x=6.∴|PF1|=8,|PF2|=6,∵|F1F2|=10,∴∠F1PF2=90°,∴△PF1F2的面积=×8×6=24.故答案为:24.点评:本题考查双曲线的性质和应用,考查三角形面积的计算,属于基础题.7.若圆锥曲线=1的焦距为2,则k= 2或4 .考点:双曲线的简单性质;椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:首先把圆锥曲线进行分类(1)圆锥曲线是焦点在x轴上的椭圆(2)圆锥曲线是焦点在y轴上的椭(3)圆锥曲线是焦点在x轴上的双曲线(4)圆锥曲线是焦点在y轴上的双曲线,通过讨论求的结果.解答:解:圆锥曲线=1(1)圆锥曲线是焦点在x轴上的椭圆时,5﹣k>k﹣1解得:k<3令a2=5﹣k,b2=k﹣1 焦距为2即c2=25﹣k=k﹣1+2解得k=2(2)圆锥曲线是焦点在y轴上的椭圆时,5﹣k<k﹣1解得:k>3令a2=k﹣1,b2=5﹣k 焦距为2即c2=2k﹣1=5﹣k+2解得:k=4(3)圆锥曲线是焦点在x轴上的双曲线时,即k<1令a2=5﹣k,b2=1﹣k焦距为2即c2=25﹣k+1﹣k=2解得:k=3(舍去)(4)圆锥曲线是焦点在y轴上的双曲线时即k>5令a2=k﹣1,b2=k﹣5焦距为2即c2=2k﹣1+k﹣5=2解得k=4(舍去)故答案为:2或4点评:本题考查的知识点:圆锥曲线的讨论问题:椭圆方程的两种形式,双曲线方程的两种形式,通过运算求结果.8.已知动圆M与圆C1:(x+3)2+y2=9外切且与圆C2:(x﹣3)2+y2=1内切,则动圆圆心M的轨迹方程是﹣=1(x≥2).考点:直线与圆的位置关系.专题:直线与圆.分析:找出两圆圆心坐标与半径,设设动圆圆心M(x,y),半径为r,根据动圆M与圆C1外切且与圆C2内切,即可确定出M轨迹方程.解答:解:由圆C1:(x+3)2+y2=9,圆心C1(﹣3,0),半径r1=3,圆C2:(x﹣3)2+y2=1,圆心C2(3,0),r2=1,设动圆圆心M(x,y),半径为r,根据题意得:,整理得:|MC1|﹣|MC2|=4,则动点M轨迹为双曲线,a=2,b=,c=3,其方程为﹣=1(x≥2).故答案为:﹣=1(x≥2)点评:此题考查了直线与圆的位置关系,以及动点轨迹方程,熟练掌握双曲线定义是解本题的关键.9.椭圆C的中心在原点,焦点F1,F2在x轴上,离心率为,过F1的直线L交C于A,B两点,且△ABF2的周长为16,那么C的方程为.考点:椭圆的简单性质.专题:计算题.分析:根据椭圆的定义证出△ABF2的周长为4a=16,得出a=4,结合离心率为解出b值,即可得到所求椭圆C的方程.解答:解:设椭圆的方程为(a>b>0)∵离心率为,∴,得…①又∵过F1的直线L交C于A,B两点,且△ABF2的周长为16,∴根据椭圆的定义,得|AB|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=16由此得到a=4,代入①得b=.可得椭圆C的方程为故答案为:点评:本题给出满足条件的椭圆,求椭圆的方程.着重考查了椭圆的定义与标准方程、简单几何性质等知识,属于基础题.10.将一个半径为R的蓝球放在地面上,被阳光斜照留下的影子是椭圆.若阳光与地面成60°角,则椭圆的离心率为.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:首先要弄懂椭圆产生的原理,根据原理来解决三角形的边角关系,利用离心率公式求的结果.解答:解:如图由于太阳光线是平行光线,得到的图形为:AB代表椭圆长轴的长,椭圆的短轴不变化,AC 为球的直径2R则:利用直角三角形的边角关系求得:AB=,即a=,b=R利用椭圆中a2=b2+c2解得c=则:e=故答案为:点评:本题考查的知识点:椭圆产生的原理,a、b、c的关系式,求椭圆的离心率.11.若直线ax+by=1与圆x2+y2=1相切,则实数ab的最大值与最小值之差为 1 .考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:先用原点到直线的距离等于半径,得到a、b的关系,再用基本不等式确定ab的范围,即可求得实数ab的最大值与最小值之差.解答:解:∵直线ax+by=1与圆x2+y2=1相切,∴a2+b2=1,∵a2+b2≥2|ab|∴2|ab|≤1,∴﹣≤ab≤,∴实数ab的最大值与最小值之差为1.故答案为:1.点评:本题考查直线与圆的位置关系,基本不等式,此式a2+b2≥2|ab|是易出错点,属于中档题.12.已知命题p:≤﹣1,命题q:x2﹣x<a2﹣a,且¬q的一个充分不必要条件是¬p,则实数a的取值范围是(﹣∞,﹣3)∪(4,+∞).考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:命题p:≤﹣1,转化为一元二次不等式,解得﹣3≤x<1.由于¬q的一个充分不必要条件是¬p,可得p是q充分不必要条件,及命题q:x2﹣x<a2﹣a,可得a2﹣a>(x2﹣x)max,x∈[﹣3,1).再利用二次函数的单调性即可解出.解答:解:命题p:≤﹣1,化为,即(x﹣1)(x+3)≤0,且x﹣1≠0,解得﹣3≤x<1;∵¬q的一个充分不必要条件是¬p,∴p是q充分不必要条件.∵命题q:x2﹣x<a2﹣a,∴a2﹣a>(x2﹣x)max,x∈[﹣3,1).令f(x)=x2﹣x=≤f(﹣3)=12,∴a2﹣a>12,解得a>4或a<﹣3.∴实数a的取值范围是(﹣∞,﹣3)∪(4,+∞).故答案为:(﹣∞,﹣3)∪(4,+∞).点评:本题考查了一元二次不等式的解法、二次函数的单调性、简易逻辑的判定,考查了恒成立问题的等价转化方法,考查了推理能力与计算能力,属于中档题.13.已知⊙O:x2+y2=4的两条弦AB,CD互相垂直,且交于点M(1,),则AB+CD的最大值为2.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:由于直线AB、CD均过M点,故可以考虑设两个直线的方程为点斜式方程,但由于点斜式方程不能表示斜率不存在的情况,故要先讨论斜率不存在和斜率为0的情况,然后利用弦长公式,及基本不等式进行求解.解答:解:当AB的斜率为0或不存在时,可求得AB+CD=2()当AB的斜率存在且不为0时,设直线AB的方程为y﹣=k(x﹣1),直线CD的方程为y﹣=﹣(x﹣1),由弦长公式可得:AB2=4•,CD2=,∴AB2+CD2=20∴(AB+CD)2=AB2+CD2+2AB×CD≤2(AB2+CD2)=40故AB+CD≤2,即AB+CD的最大值为2.故答案为:2.点评:本题考查直线与圆的位置关系,直线方程的应用,基本不等式的应用,点到直线的距离公式,考查转化思想与计算能力.14.已知直线y=kx+3与曲线x2+y2﹣2xcosα+2(1+sinα)(1﹣y)=0有且只有一个公共点,则实数k的值为.考点:直线与圆的位置关系.专题:计算题;直线与圆.分析:先确定x2+(y﹣1)2=1,再利用直线y=kx+3与曲线x2+y2﹣2xcosα+2(1+sinα)(1﹣y)=0有且只有一个公共点,可得=1,即可求出实数k的值.解答:解:曲线x2+y2﹣2xcosα+2(1+sinα)(1﹣y)=0可化为(x﹣cosα)2+(y﹣1﹣sinα)2=0,∴x=cosα,y=1+sinα,∴x2+(y﹣1)2=1∵直线y=kx+3与曲线x2+y2﹣2xcosα+2(1+sinα)(1﹣y)=0有且只有一个公共点,∴=1,∴k=.故答案为:.点评:本题考查圆的方程,考查直线与圆的位置关系,考查学生分析解决问题的能力,属于中档题.二、解答题:本大题共6小题,共90分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.已知命题p:“∀x∈[0,1],a≥e x”,命题q:“∃x∈R,x2+4x+a=0”,若命题“p∧q”是假命题,求实数a的取值范围.考点:复合命题的真假.专题:综合题;简易逻辑.分析:由题意,p:“∀x∈[0,1],a≥e x”,转化为a≥(e x)max即可,求出参数的范围,q:“∃x∈R,x2+4x+a=0”,说明方程有根,转化为△=16﹣4a≥0,解出参数的范围,由于“p ∧q”是假命题包括的情况较多,故先求其为真命题的范围,再求解,较简单解答:解:命题p:“∀x∈[0,1],a≥e x”,即a≥(e x)max即可,即a≥e命题q:“∃x∈R,x2+4x+a=0”,即△=16﹣4a≥0成立,即a≤4若命题“p∧q”是真命题,则有e≤a≤4,故“p∧q”是假命题时a的范围是<e或a>4点评:本题考查复合命题真假,函数最值特称命题等知识,综合性较强,解答时要注意将命题“p∧q”是假命题,转化为求使得p∧q为真命题时参数范围的补集,这是正难则反技巧的运用16.(已知集合A={x|2﹣a≤x≤2+a},B={x|4x2+12x﹣7≤0},若“x∈A”是“x∈B”的必要条件,求实数a的取值范围.考点:必要条件、充分条件与充要条件的判断.专题:集合;简易逻辑.分析:求集合A,B的等价条件,根据必要条件的定义建立条件关系即可得到结论.解答:解:B={x|4x2+12x﹣7≤0}={x|(2x+7)(2x﹣1)≤0}={x|﹣},∵“x∈A”是“x∈B”的必要条件,∴B⊆A,即,则,解得a≥,即实数a的取值范围是[,+∞).点评:本题主要考查充分条件和必要条件的应用,根据集合关系是解决本题的关键.17.(已知实数x,y满足(x﹣2)2+(y﹣1)2=1.(1)求k=的最大值;(2)若x+y+m≥0恒成立,求实数m的范围.考点:直线与圆的位置关系.专题:综合题;直线与圆.分析:(1)利用圆心到直线的距离d==1,求出k,即可得出k=的最大值;(2)x+y+m≥0,即要﹣m小于等于x+y恒成立,即﹣m小于等于x+y的最小值,由x与y 满足的关系式为圆心为(2,1),半径为1的圆,可设x=2+cosα,y=1+sinα,代入x+y,利用两角和与差的正弦函数公式化为一个角的正弦函数,根据正弦函数的值域可得出x+y 的最小值,即可得到实数c的取值范围.解答:解:(1)k=即kx﹣y﹣1=0,由圆心到直线的距离d==1,可得k=,∴k=的最大值为;(2)∵实数x,y满足(x﹣2)2+(y﹣1)2=1,∴设x=2+cosα,y=1+sinα,则x+y=2+cosα+1+sinα=sin(α+)+3,∵﹣1≤sin(α+)≤1,∴sin(α+)+3的最小值为3﹣,根据题意得:﹣m≤3﹣,即m≥﹣3.点评:本题考查斜率的意义,考查直线与圆的位置关系,考查学生的计算能力,属于中档题.18.已知点P(4,4),圆C:(x﹣m)2+y2=5(m<3)与椭圆E:有一个公共点A(3,1),F1,F2分别是椭圆的左右焦点,直线PF1与圆C相切.(1)求m的值;(2)求椭圆E的方程.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:综合题;圆锥曲线的定义、性质与方程.分析:(1)把点A坐标代入圆C方程及m<3即可求得m值;(2)直线PF1的斜率为k,代入点斜式可得直线PF1的方程,根据直线PF1与圆C相切得关于k的方程,解出k,然后按k值进行讨论,求出直线PF1与x轴交点横坐标可得c值,由椭圆定义可得a,进而求出b;解答:解:(1)点A(3,1)代入圆C方程,得(3﹣m)2+1=5,∵m<3,∴m=1,;(2)设直线PF1的斜率为k,则PF1:y=k(x﹣4)+4,即kx﹣y﹣4k+4=0,因为直线PF1与圆C相切,所以=,解得k=,或k=.当k=时,直线PF1与x轴交点横坐标为,不合题意,舍去.当k=时,直线PF1与x轴交点横坐标为﹣4,所以c=4,F1(﹣4,0),F2(4,0),所以2a=+=6,a=3,a2=18,b2=2,所以椭圆E的方程为.点评:本题考查圆的方程、椭圆方程、直线方程及其位置关系,考查学生分析解决问题的能力.19.已知圆C:x2+y2﹣2x﹣4y﹣12=0和点A(3,0),直线l过点A与圆交于P,Q两点.(1)若以PQ为直径的圆的面积最大,求直线l的方程;(2)若以PQ为直径的圆过原点,求直线l的方程.考点:直线与圆的位置关系.专题:综合题;直线与圆.分析:(1)以PQ为直径的圆的面积最大,则直线l过圆心,即可求直线l的方程;(2)若以PQ为直径的圆过原点,利用圆系方程,即可求直线l的方程.解答:解:(1)圆C:x2+y2﹣2x﹣4y﹣12=0可化为圆C:(x﹣1)2+(y﹣2)2=17,圆心为(1,2),∵以PQ为直径的圆的面积最大,∴直线l过点(1,2),∵直线l过A(3,0),∴直线l的方程为x+y﹣3=0;(2)设直线l的方程为y=k(x﹣3),以PQ为直径的圆的方程为x2+y2﹣2x﹣4y﹣12+λ(kx ﹣y﹣3k)=0(0,0)代入圆,整理可得﹣12﹣3λk=0,①圆心坐标为(1﹣,2+),代入y=k(x﹣3),可得2+=k(1﹣﹣3),②由①②可得λ=﹣1,k=4,∴直线l的方程为y=4(x﹣3).点评:本题考查直线方程,考查直线与圆的位置关系,考查圆系方程,正确运用圆系方程,减少计算量.20.如图,已知椭圆E1:=1(a>b>0)的左右顶点分别为A,A',圆E2:x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.(1)证明:k BA•k BA′=﹣;(2)若k1=1时,B恰好为线段AC的中点,且a=3,试求椭圆的方程;(3)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)设点B的坐标满足椭圆方程,表示出k BA、,求出乘积即可;(2)当k1=1时,点C在y轴上,由中点坐标公式得出点B的坐标,代入椭圆的方程得到a,b的关系,求出椭圆的方程;(3)直线BD过定点(a,0),设P点(a,0),B,证明k AD•k PB=﹣1,得PD⊥AD,即三点P,B,D共线,得出BD过定点P(a,0).解答:解:(1)设点B(x0,y0),则+=1,∴=(1﹣)b2=;=,=,∴k∴k•===﹣;(2)当k1=1时,点C在y轴上,且C(0,a),∴点B(﹣,);又∵点B在椭圆上,∴+=1,化简得a2=3b2,又∵a=3,∴b2=3;∴椭圆的方程为+=1;(3)直线BD过定点(a,0),证明如下:设P(a,0),B(x0,y0),则+=1(a>b>0);∴k AD•k PB=•k1•k PB=••=•=•(﹣)=﹣1,∴PB⊥AD;又PD⊥AD,∴三点P,B,D共线,即直线BD过定点P(a,0).点评:本题考查了椭圆与圆的有关性质、定理的应用问题,也考查了直线与圆、直线与椭圆的应用问题,考查了分析问题和解决问题的能力以及推理能力运算能力,是综合题.。
2014春江苏南通高二数学期末复习一含答案苏教版

12014春江苏南通高二数学期末复习一(含答案苏教版)一、填空题 1.若x∈A,则1x ∈A ,就称A 是“伙伴关系集合”,集合M =11,0,,2,32⎧⎫-⎨⎬⎩⎭的所有非空子集中具有伙伴关系的集合的个数是________.2.命题“若a b >,则22ac bc >(,a b ∈R )”否命题的真假性为 (从“真”、“假”中选填一个).3.若22(4)(32)x x x i -+++是纯虚数,则实数x 的值是__ ___ . 4.在平面中,△ABC 的角C 的内角平分线CE 分△ABC 面积所成的比AEC BECSACSBC=.将这个结论类比到空间:在三棱锥A -BCD 中,平面DEC 平分二面角A -CD -B 且与AB 交于E ,则类比的结论为A CDEB CDEV V --=________.5.已知函数()x x x x e e f x e e ---=+,若1()2f a =-,则()f a -= .6.函数22log (1)y x x =-+-的定义域为___________. 7.函数f(x)=13x 3-x 2+ax -5在区间[-1,2]上不单调,则实数a 的取值范围是______. 8.已知函数f(x)=为奇函数,则f()= 。
9.方程x 2+(2m -1)x +4-2m =0的一根大于2,一根小于2,那么实数m 的取值范围是__________.10.已知函数()f x 是定义在R 上的奇函数,且当0x ≤时,2()3f x x x =--,则不等式(1)4f x x ->-+的解集是 .11.设函数()f x 满足:2132()()f x f x x -=,则函数()f x 在区间1[,1]2上的最小值为. 12.设是定义在R 上且周期为2的函数,在区间上,其中.若,则的值为 .13.设函数()32()f x x bx cx x =++∈R ,若()()()g x f x f x '=-是奇函数,则b +c 的2值为14.已知函数2()()ln f x ax x x x =+-在[1,)+∞上单调递增,则实数a 的取值范围是 ;二、解答题15.设p :函数(1)1y a x =-+在(,)x ∈-∞+∞内单调递减;q :曲线21y x ax =++与x 轴交于不同的两点.(1)若p 为真且q 为真,求a 的取值范围;(2)若p 与q 中一个为真一个为假,求a 的取值范围.16.已知复数213(3)2z a i a =+-+,22(31)z a i =++(a R ∈,i 是虚数单位). (1)若复数12z z -在复平面上对应点落在第一象限,求实数a 的取值范围;(2)若虚数1z 是实系数一元二次方程260x x m -+=的根,求实数m 值.317.已知函数错误!未找到引用源。
【精品】江苏省南通市启东高二上册期末数学试卷(有答案)

江苏省南通市启东高二(上)期末数学试卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)复数,其中i为虚数单位,则的虚部是.2.(5分)命题“∃∈R,2﹣2≤0”的否定是.3.(5分)执行如图所示的伪代码,若输出的y值为1,则输入的值为.4.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是.5.(5分)抛物线2=4y的焦点到准线的距离为.6.(5分)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出56人,其中从高一年级学生中抽出20人,则从高二年级学生中抽取的人数为.7.(5分)观察下列各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,这些等式反映了自然数间的某种规律,设n表示自然数,用关于n的等式表示为.8.(5分)离心率为2且与椭圆+=1有共同焦点的双曲线方程是.9.(5分)将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和不小于9的概率是.10.(5分)已知命题p:“∀∈[1,2],2﹣a≥0”;命题q:“∃∈R,2+2a+2﹣a=0”,若命题“p ∧q”是真命题,则实数a的取值范围是.11.(5分)在平面直角坐标系Oy中,直线m﹣y﹣3m﹣2=0(m∈R)被圆(﹣2)2+(y+1)2=4截得的所有弦中弦长的最小值为.12.(5分)已知点A的坐标是(1,1),F1是椭圆32+4y2﹣12=0的左焦点,点P在椭圆上移动,则|PA|+2|PF1|的最小值.13.(5分)已知圆和两点,(m>0),若圆C上存在点P,使得∠APB=60°,则实数m的取值范围是.14.(5分)如图,已知椭圆(a>b>0)的左、右焦点为F1、F2,P是椭圆上一点,M在PF1上,且满足,PO⊥F2M,O为坐标原点.椭圆离心率e的取值范围.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知为复数,+2i和均为实数,其中i是虚数单位.(1)求复数和||;(2)若在第四象限,求实数m的取值范围.16.(14分)已知命题p:∀∈R,t2++t≤0.(1)若p为真命题,求实数t的取值范围;(2)命题q:∃∈[2,16],tlog2+1≥0,当p∨q为真命题且p∧q为假命题时,求实数t的取值范围.17.(14分)已知椭圆C的方程为+=1.(1)求的取值范围;(2)若椭圆C的离心率e=,求的值.18.(16分)已知圆O:2+y2=4,两个定点A(a,2),B(m,1),其中a∈R,m>0.P为圆O上任意一点,且(λ为常数).(1)求常数λ的值;(2)过点E(a,t)作直线l与圆C:2+y2=m交于M,N两点,若M点恰好是线段NE的中点,求实数t的取值范围.19.(16分)(1)找出一个等比数列{a n},使得1,,4为其中的三项,并指出分别是{a n}的第几项;(2)证明:为无理数;(3)证明:1,,4不可能为同一等差数列中的三项.20.(16分)已知椭圆C:左焦点F,左顶点A,椭圆上一点B满足BF⊥轴,且点B在轴下方,BA连线与左准线l交于点P,过点P任意引一直线与椭圆交于C、D,连结AD、BC交于点Q,若实数λ1,λ2满足:=λ1,=λ2.(1)求λ1•λ2的值;(2)求证:点Q在一定直线上.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵M=,其中a∈R,若点P(1,﹣2)在矩阵M的变换下得到点P′(﹣4,0)(1)求实数a的值;(2)求矩阵M的特征值及其对应的特征向量.[选修4-4:坐标系与参数方程](本小题满分20分)22.已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆M上的点到直线的距离的最小值.23.(10分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.24.(10分)在平面直角坐标系Oy中,直线l:=﹣1,点T(3,0),动点P满足PS⊥l,垂足为S,且•=0,设动点P的轨迹为曲线C.(1)求曲线C的方程;(2)设Q是曲线C上异于点P的另一点,且直线PQ过点(1,0),线段PQ的中点为M,直线l与轴的交点为N.求证:向量与共线.参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.(5分)复数,其中i为虚数单位,则的虚部是﹣.【解答】解:复数=﹣=﹣=﹣﹣i,则的虚部=﹣.故答案为:.2.(5分)命题“∃∈R,2﹣2≤0”的否定是∀∈R,2﹣2>0.【解答】解:因为特称命题的否定是全称命题,所以,命题“∃∈R,2﹣2≤0”的否定是:∀∈R,2﹣2>0.故答案为:∀∈R,2﹣2>0.3.(5分)执行如图所示的伪代码,若输出的y值为1,则输入的值为﹣1.【解答】解:由程序语句知:算法的功能是求f()=的值,当≥0时,y=2+1=1,解得=﹣1,不合题意,舍去;当<0时,y=2﹣2=1,解得=±1,应取=﹣1;综上,的值为﹣1.故答案为:﹣1.4.(5分)已知一组数据4.8,4.9,5.2,5.5,5.6,则该组数据的方差是0.1.【解答】解:数据4.8,4.9,5.2,5.5,5.6的平均数为:=×(4.8+4.9+5.2+5.5+5.6)=5.2,∴该组数据的方差为:S2=×[(4.8﹣5.2)2+(4.9﹣5.2)2+(5.2﹣5.2)2+(5.5﹣5.2)2+(5.6﹣5.2)2]=0.1.故答案为:0.1.5.(5分)抛物线2=4y的焦点到准线的距离为2.【解答】解:抛物线2=4y的焦点到准线的距离为:p=2.故答案为:2.6.(5分)某校高一年级有学生400人,高二年级有学生360人,现采用分层抽样的方法从全校学生中抽出56人,其中从高一年级学生中抽出20人,则从高二年级学生中抽取的人数为18.【解答】解:设从高二年级学生中抽出人,由题意得=,解得=18,故答案为:187.(5分)观察下列各式9﹣1=8,16﹣4=12,25﹣9=16,36﹣16=20…,这些等式反映了自然数间的某种规律,设n表示自然数,用关于n的等式表示为(n+2)2﹣n2=4(n+1)(n∈N∗).【解答】解:观察下列各式9﹣1=32﹣12=8=4×(1+1),16﹣4=42﹣22=12=4×(1+2),25﹣9=52﹣32=16=4×(1+3),36﹣16=62﹣42=20=4×(1+4),,…,分析等式两边数的变化规律,我们可以推断(n+2)2﹣n2=4(n+1)(n∈N∗)故答案为:(n+2)2﹣n2=4(n+1)(n∈N∗)8.(5分)离心率为2且与椭圆+=1有共同焦点的双曲线方程是﹣=1.【解答】解:根据题意,椭圆+=1的焦点为(±4,0),又由双曲线与椭圆有共同焦点,则双曲线的焦点在轴上,且c=4,设其方程为﹣=1,又由双曲线的离心率e=2,即e==2,则a=2,b2=c2﹣a2=16﹣4=12,则双曲线的方程为:﹣=1;故答案为:﹣=1.9.(5分)将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和不小于9的概率是.【解答】解:将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,基本事件总数n=6×6=36,出现向上的点数之和不小于9包含的基本事件有:(3,6),(6,3),(4,5),(5,4),(4,6),(6,4),(5,5),(5,6),(6,5),(6,6),共有10个,∴出现向上的点数之和不小于9的概率:p=.故答案为:.10.(5分)已知命题p:“∀∈[1,2],2﹣a≥0”;命题q:“∃∈R,2+2a+2﹣a=0”,若命题“p ∧q”是真命题,则实数a的取值范围是a≤﹣2,或a=1.【解答】解:若命题p:“∀∈[1,2],2﹣a≥0”为真;则1﹣a≥0,解得:a≤1,若命题q:“∃∈R,2+2a+2﹣a=0”为真,则△=4a2﹣4(2﹣a)≥0,解得:a≤﹣2,或a≥1,若命题“p∧q”是真命题,则a≤﹣2,或a=1,故答案为:a≤﹣2,或a=111.(5分)在平面直角坐标系Oy中,直线m﹣y﹣3m﹣2=0(m∈R)被圆(﹣2)2+(y+1)2=4截得的所有弦中弦长的最小值为.【解答】解:直线m﹣y﹣3m﹣2=0过定点I(3,﹣2),圆(﹣2)2+(y+1)2=4的圆心坐标C(2,﹣1),半径为r=2.如图,∵|CI|=,∴直线m﹣y﹣3m﹣2=0被圆(﹣2)2+(y+1)2=4截得的所有弦中弦长的最小值为.故答案为:.12.(5分)已知点A的坐标是(1,1),F1是椭圆32+4y2﹣12=0的左焦点,点P在椭圆上移动,则|PA|+2|PF1|的最小值5.【解答】解:由椭圆32+4y2﹣12=0作出椭圆如图,由a2=4,b2=3,得c2=1,c=1,∴=,由椭圆的第二定义可得,椭圆上的点到左焦点的距离|PF1|与到左准线的距离的比值为e=,∴2|PF1|为椭圆上的点到左准线的距离,过A作AB⊥左准线l与B,交椭圆于P,则P点为使|PA|+2|PF1|最小的点,最小值为A到l的距离,等于1+=1+4=5.故答案为:5.13.(5分)已知圆和两点,(m>0),若圆C上存在点P,使得∠APB=60°,则实数m的取值范围是{m|} .【解答】解:如图,当D(0,3m)时,∠ADB=60°,故满足条件的点P必在以A、B、D三点所确定的圆周上,∴该圆圆心为M(0,m),要使圆C上存在点P,由两圆必有交点,即|r M﹣r C|≤|MC|≤|r M+r C|,如图,∴|r M﹣r C|2≤|MC|2≤|r M+r C|2,∴(2m﹣2)2≤(3)2+(m﹣5)2≤(2m+2)2,由m>0,解得2.故答案为:{m|}.14.(5分)如图,已知椭圆(a>b>0)的左、右焦点为F1、F2,P是椭圆上一点,M在PF1上,且满足,PO⊥F2M,O为坐标原点.椭圆离心率e的取值范围(,1).【解答】解:设P(0,y0),M(M,y M),∵,∴=(0+c,y0)=(M+c,y M)∴M(0﹣c,y0),=(0﹣c,y0),∵PO⊥F2M,=(0,y0)∴(0﹣c)0+y02=0即02+y02=2c0,联立方程得:,消去y0得:c202﹣2a2c0+a2(a2﹣c2)=0,解得:0=或0=,∵﹣a<0<a,∴0=∈(0,a),∴0<a2﹣ac<ac解得:e>,综上,椭圆离心率e的取值范围为(,1).故答案为:(,1).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)已知为复数,+2i和均为实数,其中i是虚数单位.(1)求复数和||;(2)若在第四象限,求实数m的取值范围.【解答】解:(1)设=a+bi(a,b∈R),则+2i=a+(b+2)i,由+2i为实数,得b+2=0,则b=﹣2.由=为实数,得,则a=4,∴=4﹣2i,则;(2)由=4+3m+(m2﹣4)i在第四象限,得,解得.16.(14分)已知命题p:∀∈R,t2++t≤0.(1)若p为真命题,求实数t的取值范围;(2)命题q:∃∈[2,16],tlog2+1≥0,当p∨q为真命题且p∧q为假命题时,求实数t的取值范围.【解答】解:(1)∵∀∈R,t2++t≤0,∴t<0且△=1﹣4t2≤0,解得∴p为真命题时,.…(6分)(2)∃∈[2,16],tlog2+1≥0⇒∃∈[2,16],有解.又∈[2,16]时,,∴t≥﹣1.…(8分)∵p∨q为真命题且p∧q为假命题时,∴p真q假或p假q真,当p假q真,有解得;当p真q假,有解得t<﹣1;∴p∨q为真命题且p∧q为假命题时,t<﹣1或.…(14分)17.(14分)已知椭圆C的方程为+=1.(1)求的取值范围;(2)若椭圆C的离心率e=,求的值.【解答】解:(1)∵方程为+=1表示椭圆,则,解得∈(1,5)∪(5,9)…(6分)(未去5扣2分)(2)①当9﹣>﹣1时,依题意可知a=,b=,∴c=,∵=,∴,∴=2;②当9﹣<﹣1时,依题意可知b=,a=,∴c=,∵=,∴,∴=8;∴的值为2或8.(一种情况(4分)共8分)18.(16分)已知圆O:2+y2=4,两个定点A(a,2),B(m,1),其中a∈R,m>0.P为圆O上任意一点,且(λ为常数).(1)求常数λ的值;(2)过点E(a,t)作直线l与圆C:2+y2=m交于M,N两点,若M点恰好是线段NE的中点,求实数t的取值范围.【解答】解:(1)设点P(,y),2+y2=4,,,因为,所以(﹣a)2+(y﹣2)2=λ2[(﹣m)2+(y﹣1)2],化简得2a+4y﹣a2﹣8=λ2(2m+2y﹣m2﹣5),因为P为圆O上任意一点,所以,又m>0,λ>0,解得,所以常数.…(8分)(2)设M(0,y0),M是线段NE的中点,N(20﹣2,2y0﹣t),又M,N在圆C上,即关于,y的方程组有解,化简得有解,即直线n:8+4ty﹣t2﹣7=0与圆C:2+y2=1有交点,则,化简得:t4﹣2t2﹣15≤0,解得.…(16分)19.(16分)(1)找出一个等比数列{a n},使得1,,4为其中的三项,并指出分别是{a n}的第几项;(2)证明:为无理数;(3)证明:1,,4不可能为同一等差数列中的三项.【解答】解:(1)取一个等比数列{a n}:首项为1、公比为,则,…2分则令=4,解得n=5,所以a 1=1,,a5=4.…4分(2)证明:假设是有理数,则存在互质整数h、,使得,…5分则h2=22,所以h为偶数,…7分设h=2t,t为整数,则2=2t2,所以也为偶数,则h、有公约数2,这与h、互质相矛盾,…9分所以假设不成立,所以是有理数.…10分(3)证明:假设1,,4是同一等差数列中的三项,且分别为第n、m、p项且n、m、p互不相等,…11分设公差为d,显然d≠0,则,消去d得,,…13分由n、m、p都为整数,所以为有理数,由(2)得是无理数,所以等式不可能成立,…15分所以假设不成立,即1,,4不可能为同一等差数列中的三项.…16分.20.(16分)已知椭圆C:左焦点F,左顶点A,椭圆上一点B满足BF⊥轴,且点B在轴下方,BA连线与左准线l交于点P,过点P任意引一直线与椭圆交于C、D,连结AD、BC交于点Q,若实数λ1,λ2满足:=λ1,=λ2.(1)求λ1•λ2的值;(2)求证:点Q在一定直线上.【解答】解:(1)由椭圆C:,得a2=16,b2=12,∴,则F(﹣2,0),由BF⊥轴,不妨设B(﹣2,﹣3),∵A(﹣4,0),∴直线AB:y=﹣(+4),又左准线l:=﹣8,∴P(﹣8,6),又=λ1,∴,得,由=λ2,得,得,又,∴,∵,由系数相等得,得;(2)证明:设点C(1,y1),D(2,y2),Q(0,y0),由=λ1,得(1+2,y1+3)=λ1(0﹣1,y0﹣y1),得,,代入椭圆方程:,得:,显然λ1≠0,∴,同理得:,又由(1),∴,整理得:0+y0+2=0,即点Q在定直线﹣y+2=0上.[选修4-2:矩阵与变换](本小题满分10分)21.(10分)已知矩阵M=,其中a∈R,若点P(1,﹣2)在矩阵M的变换下得到点P′(﹣4,0)(1)求实数a的值;(2)求矩阵M的特征值及其对应的特征向量.【解答】解:(1)由=,∴2﹣2a=﹣4⇒a=3.(2)由(1)知M=,则矩阵M的特征多项式为令f(λ)=0,得矩阵M的特征值为﹣1与4.当λ=﹣1时,∴矩阵M的属于特征值﹣1的一个特征向量为;当λ=4时,∴矩阵M的属于特征值4的一个特征向量为.[选修4-4:坐标系与参数方程](本小题满分20分)22.已知直线的极坐标方程为,圆M的参数方程为(其中θ为参数).(Ⅰ)将直线的极坐标方程化为直角坐标方程;(Ⅱ)求圆M上的点到直线的距离的最小值.【解答】解:(Ⅰ)以极点为原点,极轴为轴正半轴建立直角坐标系.(1分)∵∴,∴ρsinθ+ρcosθ=1.(2分)∴该直线的直角坐标方程为:+y﹣1=0.(3分)(Ⅱ)圆M的普通方程为:2+(y+2)2=4(4分)圆心M(0,﹣2)到直线+y﹣1=0的距离.(5分)所以圆M上的点到直线的距离的最小值为.(7分)23.(10分)如图,正方形ABCD的中心为O,四边形OBEF为矩形,平面OBEF⊥平面ABCD,点G为AB的中点,AB=BE=2.(1)求证:EG∥平面ADF;(2)求二面角O﹣EF﹣C的正弦值;(3)设H为线段AF上的点,且AH=HF,求直线BH和平面CEF所成角的正弦值.【解答】(1)证明:取AD的中点I,连接FI,∵矩形OBEF,∴EF∥OB,EF=OB,∵G,I是中点,∴GI∥BD,GI=BD.∵O是正方形ABCD的中心,∴OB=BD.∴EF∥GI,EF=GI,∴四边形EFIG是平行四边形,∴EG∥FI,∵EG⊄平面ADF,FI⊂平面ADF,∴EG∥平面ADF;(2)解:建立如图所示的坐标系O﹣y,则B(0,﹣,0),C(,0,0),E(0,﹣,2),F(0,0,2),设平面CEF的法向量为=(,y,),则,取=(,0,1)∵OC⊥平面OEF,∴平面OEF的法向量为=(1,0,0),∵|cos<,>|=∴二面角O﹣EF﹣C的正弦值为=;(3)解:AH=HF,∴==(,0,).设H(a,b,c),则=(a+,b,c)=(,0,).∴a=﹣,b=0,c=,∴=(﹣,,),∴直线BH和平面CEF所成角的正弦值=|cos<,>|==.24.(10分)在平面直角坐标系Oy中,直线l:=﹣1,点T(3,0),动点P满足PS⊥l,垂足为S,且•=0,设动点P的轨迹为曲线C.(1)求曲线C的方程;(2)设Q是曲线C上异于点P的另一点,且直线PQ过点(1,0),线段PQ的中点为M,直线l与轴的交点为N.求证:向量与共线.【解答】解:(1)设P(0,y0),则S(﹣1,y0),∴=(0,y0)•(4,﹣y0)=4=0,∴.∴曲线C:y2=4.证明:(2)设Q(1,y1),则,y2=4,p=2,焦点F(1,0),N(﹣1,0),∵PQ过F,∴01=﹣=1,,∴,,∴=,=,∴=()=(),=(1+1,y1)=(),假设=成立,∴,解得,∴,∴向量与共线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年江苏省南通市启东中学高二(上)期末数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)(2012•江苏模拟)命题p:∀x∈R,x2+1>0的否定是.2.(5分)(2013•南通三模)设复数z满足(3+4i)z+5=0(i是虚数单位),则复数z的模为.3.(5分)(2014秋•启东市校级期末)“直线l∥平面α”是“直线l⊄平面α”成立的条件(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个).4.(5分)(2014秋•启东市校级期末)抛物线y=ax2的焦点坐标为.5.(5分)(2013秋•仪征市期末)函数y=+2lnx的单调减区间为.6.(5分)(2014•镇江一模)已知双曲线﹣=1的离心率为,则实数m的值为.7.(5分)(2012•陕西)观察下列不等式:,,…照此规律,第五个不等式为.8.(5分)(2014秋•启东市校级期末)若“任意x∈R,不等式|x﹣1|﹣|x+1|>a”为假命题,则实数a的取值范围为.9.(5分)(2013秋•金台区期末)以直线3x﹣4y+12=0夹在两坐标轴间的线段为直径的圆的方程为.10.(5分)(2014秋•启东市校级期末)在Rt△ABC中,AC⊥BC,AC=a,BC=b,则△ABC 的外接圆半径r=;类比到空间,若三棱锥S﹣ABC的三条侧棱SA、SB、SC两两互相垂直,且长度分别为a、b、c,则三棱锥S﹣ABC的外接球的半径R=.11.(5分)(2014秋•启东市校级期末)若直线l与曲线C满足下列两个条件:(ⅰ)直线l 在点P(x0,y0)处与曲线C相切;(ⅱ)曲线C在点P附近位于直线l的两侧,则称直线l 在点P处“切过”曲线C.下列命题正确的是.①直线l:x=﹣1在点P(﹣1,0)处“切过”曲线C:y=(x+1)2;②直线l:y=0在点P(0,0)处“切过”曲线C:y=x3;③直线l:y=x﹣1在点P(1,0)处“切过”曲线C:y=lnx;④直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx;⑤直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx.12.(5分)(2010•绍兴县校级模拟)若曲线C:x2+y2+2ax﹣4ay+5a2﹣4=0上所有的点均在第二象限内,则a的取值范围为.13.(5分)(2014秋•启东市校级期末)已知命题:“若数列{a n}为等差数列,且a m=a,a n=b (m<n,m,n∈N*),则a m+n=”.现已知数列{b n}(b n>0,n∈N*)为等比数列,且b m=a,b n=b(m<n,m,n∈N*),若类比上述结论,则可得到b m+n=.14.(5分)(2014秋•启东市校级期末)假设实数m,n满足m2+n2=1,且f(x)=ax+msinx+ncosx 的图象上存在两条切线互相垂直,则实数a的取值构成的集合为.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(14分)(2010•淳安县校级模拟)已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.16.(14分)(2014秋•启东市校级期末)如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,BC∥AD且2BC=AD,∠PBC=90°,∠PBA≠90°.(1)求证:平面PBC⊥平面PAB;(2)若平面PAB∩平面PCD=l,求证:直线l不平行于平面ABCD.(用反证法证明)17.(14分)(2014秋•启东市校级期末)圆O1的方程为x2+(y+1)2=4,圆O2的圆心O2(2,1).(1)若圆O2与圆O1外切,求圆O2的方程;(2)若圆O2与圆O1交于A、B两点,且|AB|=2.求圆O2的方程.18.(16分)(2008•天心区校级模拟)已知函数f(x)=x3+ax2+b的图象在点p(1,0)处(即p为切点)的切线与直线3x+y=0平行.(1)求常数a、b的值;(2)求函数f(x)在区间[0,t](t>0)上的最小值和最大值.19.(16分)(2013•眉山二模)设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2,O为坐标原点:(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.20.(16分)(2010•广东模拟)已知函数f(x)=lnx+﹣kx(k为常数)(1)试讨论f(x)的单调性;(2)若f(x)存在极值,求f(x)的零点个数.四、(附加题)试卷21.(2014秋•启东市校级期末)(1)求函数f(x)=cos2(ax+b)的导函数;(2)证明:若函数f(x)可导且为周期函数,则f′(x)也为周期函数.22.(2014秋•启东市校级期末)设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若AB=1,求点P的轨迹方程.23.(2014秋•启东市校级期末)如图△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,.(1)求点A到平面MBC的距离;(2)求平面ACM与平面BCD所成二面角的正弦值.24.(2014秋•启东市校级期末)当x∈(1,+∞)时,用数学归纳法证明:∀n∈N*,e x﹣1>.(n!=1•2•3•…•(n﹣1)n)2014-2015学年江苏省南通市启东中学高二(上)期末数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)(2012•江苏模拟)命题p:∀x∈R,x2+1>0的否定是∃x∈R,x2+1≤0.考点:命题的否定.专题:规律型.分析:本题中的命题是一个全称命题,其否定是一个特称命题,由规则写出否定命题即可解答:解:∵命题“∀x∈R,x2+1>0”∴命题“∀x∈R,x2+1>0”的否定是“∃x∈R,x2+1≤0”故答案为:∃x∈R,x2+1≤0.点评:本题考查命题的否定,解题的关键是掌握并理解全称命题否定的书写方法,其规则是全称命题的否定是特称命题,书写时注意量词的变化.2.(5分)(2013•南通三模)设复数z满足(3+4i)z+5=0(i是虚数单位),则复数z的模为1.考点:复数求模.专题:计算题.分析:直接移项已知方程,两边求模,化简即可.解答:解:因为复数z满足(3+4i)z+5=0,所以(3+4i)z=﹣5,两边求模可得:|(3+4i)||z|=5,所以|z|=1.故答案为:1.点评:本题考查复数的模的求法,复数积的模等于复数模的积,考查计算能力.3.(5分)(2014秋•启东市校级期末)“直线l∥平面α”是“直线l⊄平面α”成立的充分不必要条件(在“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选填一个).考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:根据线面平行的定义以及充分条件和必要条件的定义进行判断即可.解答:解:若直线l∥平面α,则直线l⊄平面α成立,若直线l⊄平面α,则直线l∥平面α或l与平面α相交,故“直线l∥平面α”是“直线l⊄平面α”成立的充分不必要条件,故答案为:充分不必要点评:本题主要考查充分条件和必要条件的判断,根据线面平行的定义是解决本题的关键.4.(5分)(2014秋•启东市校级期末)抛物线y=ax2的焦点坐标为(0,).考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:先把抛物线方程整理成标准方程,进而根据抛物线的性质可得焦点坐标.解答:解:当a>0时,整理抛物线方程得x2=y,即p=,由抛物线x2=2py(p>0)的焦点为(0,),所求焦点坐标为(0,).当a<0时,同样可得.故答案为:(0,).点评:本题主要考查了抛物线的标准方程、抛物线的性质,属基础题.5.(5分)(2013秋•仪征市期末)函数y=+2lnx的单调减区间为(0,].考点:利用导数研究函数的单调性.专题:计算题.分析:先利用导数运算公式计算函数的导函数y′,再解不等式y′<0,即可解得函数的单调递减区间解答:解:∵=(x>0)由y′>0,得x>,由y′<0,得0<x<,∴函数的单调减区间为(0,]故答案为(0,]点评:本题主要考查了导数的运算和导数在函数单调性中的应用,利用导数求函数单调区间的方法,解题时注意函数的定义域,避免出错6.(5分)(2014•镇江一模)已知双曲线﹣=1的离心率为,则实数m的值为4.考点:双曲线的简单性质.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线﹣=1的离心率为,可得,即可求出实数m的值.解答:解:∵双曲线﹣=1的离心率为,∴,∴m=4.故答案为:4.点评:本题考查双曲线的简单性质,考查离心率,考查学生的计算能力,属于基础题.7.(5分)(2012•陕西)观察下列不等式:,,…照此规律,第五个不等式为1+++++<.考点:归纳推理.专题:探究型.分析:由题设中所给的三个不等式归纳出它们的共性:左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方,右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,得出第n个不等式,即可得到通式,再令n=5,即可得出第五个不等式解答:解:由已知中的不等式1+,1++,…得出左边式子是连续正整数平方的倒数和,最后一个数的分母是不等式序号n+1的平方右边分式中的分子与不等式序号n的关系是2n+1,分母是不等式的序号n+1,故可以归纳出第n个不等式是1+…+<,(n≥2),所以第五个不等式为1+++++<故答案为:1+++++<点评:本题考查归纳推理,解题的关键是根据所给的三个不等式得出它们的共性,由此得出通式,本题考查了归纳推理考察的典型题,具有一般性8.(5分)(2014秋•启东市校级期末)若“任意x∈R,不等式|x﹣1|﹣|x+1|>a”为假命题,则实数a的取值范围为[﹣2,+∞).考点:绝对值不等式的解法.专题:计算题;不等式的解法及应用;简易逻辑.分析:利用已知判断出否命题为真命题,构造函数,利用绝对值的几何意义求出函数的最小值,令最小值不大于a,即可得到a的范围.解答:解:由于“任意x∈R,不等式|x﹣1|﹣|x+1|>a”为假命题,则命题“存在x∈R,不等式|x﹣1|﹣|x+1|≤a”为真命题.令y=|x﹣1|﹣|x+1|,y表示数轴上的点x到数﹣1及1的距离之差,所以y的最小值为﹣2,∴a≥﹣2.故答案为:[﹣2,+∞).点评:本题考查命题p与命题¬p真假相反,考查绝对值的几何意义,考查不等式恒成立常转化为求函数的最值.9.(5分)(2013秋•金台区期末)以直线3x﹣4y+12=0夹在两坐标轴间的线段为直径的圆的方程为(x+2)2+(y﹣)2=.考点:圆的标准方程.专题:计算题;直线与圆.分析:根据直线3x﹣4y+12=0方程求出它与x轴、y轴交点A、B的坐标,从而得到AB中点为C(﹣2,),即为所求圆的圆心.再用两点的距离公式,算出半径r=|AB|=,最后根据圆的标准方程列式即可得到所求圆的方程.解答:解:∵对直线3x﹣4y+12=0令x=0,得y=3;令y=0,得x=﹣4∴直线3x﹣4y+12=0交x轴于A(﹣4,0),交y轴于B(0,3)∵所求的圆以AB为直径∴该圆以AB中点C为圆心,半径长为|AB|∵AB中点C坐标为(,),即C(﹣2,)|AB|==∴圆C的方程为(x+2)2+(y﹣)2=,即(x+2)2+(y﹣)2=故答案为:(x+2)2+(y﹣)2=点评:本题给出已知直线,求以直线被两坐标轴截得线段为直径的圆方程,着重考查了中点坐标公式、圆的标准方程和两点间的距离公式等知识,属于基础题.10.(5分)(2014秋•启东市校级期末)在Rt△ABC中,AC⊥BC,AC=a,BC=b,则△ABC的外接圆半径r=;类比到空间,若三棱锥S﹣ABC的三条侧棱SA、SB、SC两两互相垂直,且长度分别为a、b、c,则三棱锥S﹣ABC的外接球的半径R=.考点:球的体积和表面积.专题:计算题;空间位置关系与距离;推理和证明;球.分析:直角三角形外接圆半径为斜边长的一半,由类比推理可知若三棱锥的三条侧棱两两互相垂直且长度分别为a,b,c,将三棱锥补成一个长方体,其外接球的半径R为长方体对角线长的一半.解答:解:若三棱锥三条侧棱两两垂直,侧棱长分别为a,b,c,可补成一个长方体,体对角线长为,∵体对角线就是外接球的直径,∴棱锥的外接球半径R=.故答案为:.点评:本题考查球与内接三棱锥的位置关系,考查球的半径的求法,考查类比思想的运用,属于基础题.11.(5分)(2014秋•启东市校级期末)若直线l与曲线C满足下列两个条件:(ⅰ)直线l在点P(x0,y0)处与曲线C相切;(ⅱ)曲线C在点P附近位于直线l的两侧,则称直线l在点P处“切过”曲线C.下列命题正确的是②④⑤.①直线l:x=﹣1在点P(﹣1,0)处“切过”曲线C:y=(x+1)2;②直线l:y=0在点P(0,0)处“切过”曲线C:y=x3;③直线l:y=x﹣1在点P(1,0)处“切过”曲线C:y=lnx;④直线l:y=x在点P(0,0)处“切过”曲线C:y=sinx;⑤直线l:y=x在点P(0,0)处“切过”曲线C:y=tanx.考点:利用导数研究曲线上某点切线方程.专题:新定义;导数的概念及应用.分析:分别求出每一个命题中曲线C的导数,得到曲线在点P处的导数值,求出曲线在点P处的切线方程,再由曲线在点P两侧的函数值与对应直线上点的值的大小判断是否满足(ii),则正确的选项可求.解答:解:对于①,由y=(x+1)2,得y′=2(x+1),则y′|x=﹣1=0,而直线l:x=﹣1的斜率不存在,在点P(﹣1,0)处不与曲线C相切,故①错误;对于②,由y=x3,得y′=3x2,则y′|x=0=0,直线y=0是过点P(0,0)的曲线C的切线,又当x>0时y>0,当x<0时y<0,满足曲线C在P(0,0)附近位于直线y=0两侧,故②正确;对于③,由y=lnx,得y′=,则y′|x=1=1,曲线在P(1,0)处的切线为y=x﹣1,由g(x)=x﹣1﹣lnx,得g′(x)=1﹣,当x∈(0,1)时,g′(x)<0,当x∈(1,+∞)时,g′(x)>0.则g(x)在(0,+∞)上有极小值也是最小值,为g(1)=0.即y=x﹣1恒在y=lnx的上方,不满足曲线C在点P附近位于直线l的两侧,故③错误;对于④,由y=sinx,得y′=cosx,则y′|x=0=1,直线y=x是过点P(0,0)的曲线的切线,又x∈(﹣,0)时x<sinx,x∈(0,)时x>sinx,满足曲线C在P(0,0)附近位于直线y=x两侧,故④正确;对于⑤,y=tanx的导数为y′=sec2x,则y′|x=0=1,直线y=x是过点P(0,0)的曲线的切线,又x∈(﹣,0)时x>tanx,x∈(0,)时x<tanx,满足曲线C在P(0,0)附近位于直线y=x两侧,故⑤正确.故答案为:②④⑤.点评:本题考查了利用导数研究过曲线上某点处的切线方程,综合考查导数的应用:求单调区间和极值、最值,同时考查新定义的理解,属于中档题和易错题.12.(5分)(2010•绍兴县校级模拟)若曲线C:x2+y2+2ax﹣4ay+5a2﹣4=0上所有的点均在第二象限内,则a的取值范围为(2,+∞).考点:圆方程的综合应用.专题:计算题.分析:由已知中曲线C的方程x2+y2+2ax﹣4ay+5a2﹣4=0,我们易求出圆的标准方程,进而确定圆的圆心为(﹣a,2a),圆的半径为2,然后根据曲线C:x2+y2+2ax﹣4ay+5a2﹣4=0上所有的点均在第二象限内,易构造出关于a的不等式组,解不等式组,即可得到a的取值范围.解答:解:由已知圆的方程为x2+y2+2ax﹣4ay+5a2﹣4=0则圆的标准方程为:(x+a)2+(y﹣2a)2=4故圆的圆心为(﹣a,2a),圆的半径为2若曲线C:x2+y2+2ax﹣4ay+5a2﹣4=0上所有的点均在第二象限内,则a>0,且|﹣a|>2解得a>2故a的取值范围为(2,+∞)故答案为:(2,+∞)点评:本题考查的知识点是圆的方程的综合应用,其中根据曲线C:x2+y2+2ax﹣4ay+5a2﹣4=0上所有的点均在第二象限内,构造出满足条件的不等式组,是解答本题的关键.13.(5分)(2014秋•启东市校级期末)已知命题:“若数列{a n}为等差数列,且a m=a,a n=b(m<n,m,n∈N*),则a m+n=”.现已知数列{b n}(b n>0,n∈N*)为等比数列,且b m=a,b n=b(m<n,m,n∈N*),若类比上述结论,则可得到b m+n=.考点:类比推理.专题:探究型;推理和证明.分析:首先根据等差数列和等比数列的性质进行类比,等差数列中的bn﹣am可以类比等比数列中的,等差数列中的可以类比等比数列中的,很快就能得到答案.解答:解:等差数列中的bn和am可以类比等比数列中的b n和a m,等差数列中的bn﹣am可以类比等比数列中的,等差数列中的可以类比等比数列中的.故b m+n=,故答案为点评:本题主要考查类比推理的知识点,解答本题的关键是熟练掌握等差数列和等比数列的性质,根据等差数列的所得到的结论,推导出等比数列的结论,本题比较简单.14.(5分)(2014秋•启东市校级期末)假设实数m,n满足m2+n2=1,且f(x)=ax+msinx+ncosx的图象上存在两条切线互相垂直,则实数a的取值构成的集合为{0}.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用;三角函数的图像与性质;直线与圆.分析:先利用辅助角公式和m2+n2=1将函数f(x)化简为f(x)=ax+sin(x+φ),求出f′(x),根据f(x)的图象上存在两条切线垂直,不妨设在x=b与x=c处的切线互相垂直,则由导数的几何意义,分别求出两条切线的斜率k1=f′(b)=a+cos(b+φ),k2=f′(c)=a+cos(c+φ),则[a+cos(b+φ)][a+cos(c+φ)]=﹣1,化简为关于a的一元二次方程要有实数根,从而得到△≥0,再利用三角函数的有界性,即可得到cos(b+φ)=1,cos(c+φ)=﹣1或者cos(b+φ)=﹣1,cos(c+φ)=1,代入到[a+cos(b+φ)][a+cos(c+φ)]=﹣1,即可求出a=0.解答:解:∵f(x)=ax+msinx+ncosx∴f(x)=ax+sin(x+φ),∵m2+n2=1,∴f(x)=ax+sin(x+φ),∴f′(x)=a+cos(x+φ),∵f(x)=ax+msinx+ncosx的图象上存在两条切线垂直,设在x=b与x=c处的切线互相垂直,则k1=f′(b)=a+cos(b+φ),k2=f′(c)=a+cos(c+φ),∴k1•k2=﹣1,即[a+cos(b+φ)][a+cos(c+φ)]=﹣1,∴关于a的二次方程a2+[cos(b+φ)+cos(c+φ)]a+cos(b+φ)cos(c+φ)+1=0有实数根,∴△=[cos(b+φ)+cos(c+φ)]2﹣4×[cos(b+φ)cos(c+φ)+1]=[cos(b+φ)﹣cos(c+φ)]2﹣4≥0,又∵﹣2≤cos(b+φ)﹣cos(c+φ)≤2,∴[cos(b+φ)﹣cos(c+φ)]2≤4,即[cos(b+φ)﹣cos(c+φ)]2﹣4≤0,∴[cos(b+φ)﹣cos(c+φ)]2﹣4=0∴cos(b+φ)=1,cos(c+φ)=﹣1或者cos(b+φ)=﹣1,cos(c+φ)=1,∵[a+cos(b+φ)][a+cos(c+φ)]=﹣1,∴a2﹣1=﹣1,∴a=0,故答案为:{0}.点评:本题考查了利用导数研究曲线上某点切线方程,两直线垂直的条件.导数的几何意义即在某点处的导数即该点处切线的斜率,解题时要注意运用切点在曲线上和切点在切线上.属于中档题.二、解答题:(本大题共6小题,共90分.解答应写出文字说明,证明过程或演算步骤.)15.(14分)(2010•淳安县校级模拟)已知p:|1﹣|≤2,q:x2﹣2x+1﹣m2≤0(m>0).若“非p”是“非q”的必要而不充分条件,求实数m的取值范围.考点:必要条件、充分条件与充要条件的判断;一元二次不等式的解法;绝对值不等式的解法.分析:思路一:“按题索骥”﹣﹣解不等式,求否命题,再根据充要条件的集合表示进行求解;思路二:本题也可以根据四种命题间的关系进行等价转换,然后再根据充要条件的集合表示进行求解.解答:解:解法一:由p:|1﹣|≤2,解得﹣2≤x≤10,∴“非p”:A={x|x>10或x<﹣2}、(3分)由q:x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)∴“非q”:B={x|x>1+m或x<1﹣m,m>0=(6分)由“非p”是“非q”的必要而不充分条件可知:B⊆A.解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.(12分)解法二:由“非p”是“非q”的必要而不充分条件.即“非q”⇒“非p”,但“非p”“非q”,可以等价转换为它的逆否命题:“p⇒q,但q p”.即p是q的充分而不必要条件.由|1﹣|≤2,解得﹣2≤x≤10,∴p={x|﹣2≤x≤10}由x2﹣2x+1﹣m2≤0,解得1﹣m≤x≤1+m(m>0)∴q={x|1﹣m≤x≤1+m,m>0}由p是q的充分而不必要条件可知:p⊆q⇔解得m≥9.∴满足条件的m的取值范围为{m|m≥9}.点评:本题考查了绝对值不等式与一元二次不等式的解法,又考了命题间的关系的理解;两个知识点的简单结合构成了一道难度不太大但是要么得分不高,要么因为这道题导致整张卷子答不完,所以对于此类问题要平时加强计算能力的培养.16.(14分)(2014秋•启东市校级期末)如图,在四棱锥P﹣ABCD中,平面PAB⊥平面ABCD,BC∥AD且2BC=AD,∠PBC=90°,∠PBA≠90°.(1)求证:平面PBC⊥平面PAB;(2)若平面PAB∩平面PCD=l,求证:直线l不平行于平面ABCD.(用反证法证明)考点:平面与平面垂直的判定;直线与平面平行的判定.专题:空间位置关系与距离.分析:(1)自P作PH⊥AB于H,由平面PAB⊥平面ABCD,可得PH⊥平面ABCD.于是BC⊥PH.又BC⊥PB,可得BC⊥平面PAB,即可证明平面PBC⊥平面PAB;(2)利用反证法,证明AB∥CD,即四边形ABCD为平行四边形,得到矛盾即可得到结论.解答:(1)证明:自P作PH⊥AB于H,因为平面PAB⊥平面ABCD,且平面PAB∩平面ABCD=AB,PH⊂平面PAB,所以PH⊥平面ABCD.因为BC⊂平面ABCD,所以BC⊥PH.因为∠PBC=90°,所以BC⊥PB,而∠PBA≠90°,于是点H与B不重合,即PB∩PH=P.因为PB,PH⊂平面PAB,所以BC⊥平面PAB.因为BC⊂平面PBC,故平面PBC⊥平面PAB;(2)不平行,反证法:假设直线l平行于平面ABCD,由于l⊂平面PCD,且平面PCD∩平面ABCD=CD,∴l∥CD,同理可得l∥AB,即AB∥CD,∵BC∥AD,∴四边形ABCD为梯形,则AD=BC,与2BC=AD矛盾,故假设不成立,即直线l不平行于平面ABCD.点评:本题主要考查面面垂直和线面平行的判定,要求熟练掌握相应的判定定理.17.(14分)(2014秋•启东市校级期末)圆O1的方程为x2+(y+1)2=4,圆O2的圆心O2(2,1).(1)若圆O2与圆O1外切,求圆O2的方程;(2)若圆O2与圆O1交于A、B两点,且|AB|=2.求圆O2的方程.考点:圆与圆的位置关系及其判定.专题:直线与圆.分析:(1)通过圆心距对于半径和,求出圆的半径,即可求出圆的方程.(2)利用圆心距与写出的故选求出,圆到直线的距离,然后求出所求圆的半径,即可求出圆的方程.解答:解:(1)圆O1的方程为x2+(y+1)2=4,圆心坐标(0,﹣1),半径为:2,圆O2的圆心O2(2,1).圆心距为:=2,圆O2与圆O1外切,所求圆的半径为:2,圆O2的方程(x﹣2)2+(y﹣1)2=12﹣8,(2)圆O2与圆O1交于A、B两点,且|AB|=2.所以圆O1交到AB的距离为:=,当圆O2到AB的距离为:,圆O2的半径为:=2.圆O2的方程:(x﹣2)2+(y﹣1)2=4.当圆O2到AB的距离为:3,圆O2的半径为:=.圆O2的方程:(x﹣2)2+(y﹣1)2=20.综上:圆O2的方程:(x﹣2)2+(y﹣1)2=4或(x﹣2)2+(y﹣1)2=20.点评:本题考查两个圆的位置关系,圆的方程的求法,考查计算能力.18.(16分)(2008•天心区校级模拟)已知函数f(x)=x3+ax2+b的图象在点p(1,0)处(即p为切点)的切线与直线3x+y=0平行.(1)求常数a、b的值;(2)求函数f(x)在区间[0,t](t>0)上的最小值和最大值.考点:利用导数研究曲线上某点切线方程;利用导数研究函数的单调性;利用导数求闭区间上函数的最值.专题:计算题.分析:(1)由题目条件知,点P(1,0)为切点,且函数在改点处的导数值为切线的斜率,从而建立关于a,b的方程,可求得a,b的值;(2)由(1)确定了函数及其导数的解析式,解不等式f'(x)>0与f'(x)<0,可求出函数的单调区间,讨论t与区间(0,2]的位置关系,根据函数的单调性分别求出函数f(x)在区间[0,t](t>0)上的最小值和最大值.解答:解:(1)f'(x)=3x2+2ax,因为函数f(x)=x3+ax2+b的图象在点p(1,0)处(即p为切点)的切线与直线3x+y=0平行,所以f'(1)=3+2a=﹣3,∴a=﹣3.又f(1)=a+b+1=0∴b=2.综上:a=﹣3,b=2(2)由(1)知,f(x)=x3﹣3x2+2,f'(x)=3x2﹣6x.令f'(x)>0得:x<0或x>2,f'(x)<0得:0<x<2∴f(x)的单调递增区间为(﹣∞,0),(2,+∞),单调递减区间为(0,2).又f(0)=2,f(3)=2∴当0<t≤2时,f(x)的最大值为f(0)=2,最小值为f(t)=t3﹣3t2+2;当2<t≤3时,f(x)的最大值为f(0)=2,最小值为f(2)=﹣2;当t>3时,f(x)的最大值为f(t)=t3﹣3t2+2,最小值为f(2)=﹣2点评:本题主要考查了利用导数研究函数的最大值,最小值,同时考查了导数的几何意义,以及学生灵活转化题目条件的能力,属于中档题.19.(16分)(2013•眉山二模)设A(x1,y1),B(x2,y2)是椭圆,(a>b>0)上的两点,已知向量=(,),=(,),且,若椭圆的离心率,短轴长为2,O为坐标原点:(Ⅰ)求椭圆的方程;(Ⅱ)若直线AB过椭圆的焦点F(0,c),(c为半焦距),求直线AB的斜率k的值;(Ⅲ)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.考点:直线与圆锥曲线的综合问题.专题:计算题;压轴题.分析:(Ⅰ)根据题意可求得b,进而根据离心率求得a和c,则椭圆的方程可得.(Ⅱ)设出直线AB的方程,与椭圆方程联立消去y,表示出x1+x2和x1x2,利用建立方程求得k.(Ⅲ)先看当直线的斜率不存在时,可推断出x1=x2,y1=﹣y2,根据=0求得x1和y1的关系式,代入椭圆的方程求得|x1|和|y1|求得三角形的面积;再看当直线斜率存在时,设出直线AB的方程,与椭圆方程联立,利用韦达定理表示出x1+x2和x1x2,利用=0求得2b2﹣k2=4,最后利用弦长公式和三角形面积公式求得答案.解答:解:(Ⅰ)2b=2.b=1,e=椭圆的方程为(Ⅱ)由题意,设AB的方程为y=kx+由已知=0得:=,解得k=±(Ⅲ)(1)当直线AB斜率不存在时,即x1=x2,y1=﹣y2,由=0,则又A(x1,y1)在椭圆上,所以S=所以三角形的面积为定值(2)当直线AB斜率存在时,设AB的方程为y=kx+b得到x1+x2=代入整理得:2b2﹣k2=4=所以三角形的面积为定值点评:本题主要考查了直线与圆锥曲线的综合问题.设直线方程的时候,一定要考虑斜率不存在时的情况,以免有所遗漏.20.(16分)(2010•广东模拟)已知函数f(x)=lnx+﹣kx(k为常数)(1)试讨论f(x)的单调性;(2)若f(x)存在极值,求f(x)的零点个数.考点:利用导数研究函数的单调性;根的存在性及根的个数判断.专题:导数的综合应用.分析:(1)先求出f′(x)=,而方程x2﹣kx+1=0的判别式△=k2﹣4,再讨论(i)当﹣2<k<2时(ii)当k=±2时,(iii)当k<﹣2或k>2时的情况,从而求出函数的单调区间;(2)由(1)知当k>2时,得f极大值(x)=f(x1)=<0,当x∈(0,x2]时,f(x)≤f(x1)<0,即f(x)在(0,x2]无零点,当x∈(x2,+∞)时,f(x)是增函数,故f(x)在(x2,+∞)至多有一个零点,另一方面,f(x)在(x2,2k)至少有一个零点,进而当f(x)存在极值时,f(x)有且只有一个零点.解答:解:(1)函数的定义域为(0,+∞),f′(x)=,方程x2﹣kx+1=0的判别式△=k2﹣4,(i)当﹣2<k<2时,△<0,在f(x)的定义域内f′(x)>0,f(x)是增函数;(ii)当k=±2时,△=0,若k=﹣2,f′(x)=>0,f(x)是增函数若k=2,f′(x)=,那么x∈(0,1)∪(1,+∞)时,f′(x)>0,且f(x)在x=1处连续,所以f(x)是增函数;(iii)当k<﹣2或k>2时,△>0,方程x2﹣kx+1=0有两不等实根x1=,x2=,当k<﹣2时,x1<x2<0,当x>0时,x2﹣kx+1>0恒成立,即f′(x)>0,f(x)是增函数当k>2时,x2>x1>0,此时f(x)的单调性如下表:x (0,x1)x1(x1,x)x2(x2,+∞)f′(x)+ 0 ﹣0 +f(x)增减增综上:当k≤2时,f(x)在(0,+∞)是增函数当k>2时,f(x)在(0,),(,+∞)是增函数,在(,)是减函数;(2)由(1)知当k>2时,f(x)有极值∵x1==<<1,∴lnx1<0,且f极大值(x)=f(x1)=<0,∵f(x)在(0,x1)是增函数,在(x1,x2)是减函数,∴当x∈(0,x2]时,f(x)≤f(x1)<0,即f(x)在(0,x2]无零点,当x∈(x2,+∞)时,f(x)是增函数,故f(x)在(x2,+∞)至多有一个零点,另一方面,∵f(2k)=ln(2k)>0,f(x2)<0,则f(x2)f(2k)<0,由零点定理:f(x)在(x2,2k)至少有一个零点,∴f(x)在(x2,+∞)有且只有一个零点综上所述,当f(x)存在极值时,f(x)有且只有一个零点.点评:本题考查了函数的单调性,函数的最值问题,考查导数的应用,考查根的存在性及根的个数问题,是一道综合题.四、(附加题)试卷21.(2014秋•启东市校级期末)(1)求函数f(x)=cos2(ax+b)的导函数;(2)证明:若函数f(x)可导且为周期函数,则f′(x)也为周期函数.考点:导数的运算;函数的周期性.专题:导数的综合应用.分析:(1)利用倍角公式降幂,然后利用基本初等函数的导数公式及简单的复合函数的导数得答案;(2)函数f(x)可导且为周期函数,则存在a≠0,使得f(x+a)=f(x),两边对x求导数即可证明f′(x)也为周期函数.解答:(1)解:由f(x)=cos2(ax+b)=,得=﹣asin(2ax+2b);(2)证明:函数f(x)可导且为周期函数,则存在a≠0,使得f(x+a)=f(x),两边对x求导得f'(x+a)=f'(x),∴以f'(x)是以a为周期的周期函数.点评:本题考查了对数的运算,考查了基本初等函数的导数公式,考查了简单的复合函数的导数,是基础题.22.(2014秋•启东市校级期末)设M、N为抛物线C:y=x2上的两个动点,过M、N分别作抛物线C的切线l1、l2,与x轴分别交于A、B两点,且l1与l2相交于点P,若AB=1,求点P的轨迹方程.考点:轨迹方程.专题:导数的综合应用;圆锥曲线的定义、性质与方程.分析:设P(x,y),M(x1,x12),N(x2,x22),由导数求得两直线的斜率,用点斜式求得l1 的方程,同理求得l2的方程,由此建立x,y 的方程.解答:解:设P(x,y),M(x1,x12),N(x2,x22),由y=x2,得y′=2x,∴=2x1,∴l1 的方程为y﹣x12=2x1(x﹣x1),即y=2x1x﹣x12①,同理,l2的方程为y=2x2x﹣x22②,令y=0,可求出A(,0),B(,0).∵|AB|=1,∴|x1﹣x2|=2,即|x1+x2|2﹣4x1x2 =4,由①,②,得,y=x1x2,故点P(,x1x2).∴点P的轨迹方程为:y=x2﹣1,点评:本题考查了轨迹方程的求法,考查了利用导数研究过曲线上某点处的切线方程,体现了整体运算思想方法,是中档题.23.(2014秋•启东市校级期末)如图△BCD与△MCD都是边长为2的正三角形,平面MCD⊥平面BCD,AB⊥平面BCD,.(1)求点A到平面MBC的距离;(2)求平面ACM与平面BCD所成二面角的正弦值.考点:二面角的平面角及求法;用空间向量求直线间的夹角、距离.专题:综合题;空间角.分析:(1)取CD的中点,连接OB,OM,则OB⊥CD,OM⊥CD,又平面MCD⊥平面BCD,则MO⊥平面BCD,故MO∥AB,A,B,O,M共面,延长AM,BO相交于E,则∠AEB就是AM与平面BCD所成的角,由此能求出点A到平面MBC的距离.(2)CE是平面ACM与平面BCD的交线,由(1)知,O是BE的中点,则BCED是菱形,作BF⊥EC于F,连接AF,∠AFB是二面角A﹣EC﹣B的平面角,由此能求出平面ACM与平面BCD所成二面角的正弦值.解答:解:(1)取CD的中点,连接OB,OM,则OB⊥CD,OM⊥CD,又平面MCD⊥平面BCD,则MO⊥平面BCD,∴MO∥AB,A,B,O,M共面,延长AM,BO相交于E,则∠AEB就是AM与平面BCD所成的角,OB=MO=,MO∥AB,MO∥面ABC,M,O到平面ABC的距离相等,作OH⊥BC于H,连接MH,则MH⊥BC,∴OH=OC•sin60°=,MH=,∵V A﹣MBC=V M﹣ABC,∴d=.(2)CE是平面ACM与平面BCD的交线,由(1)知,O是BE的中点,则BCED是菱形,作BF⊥EC于F,连接AF,∠AFB是二面角A﹣EC﹣B的平面角,设为θ,∵∠BCE=120°,∴∠BCF=60°,BF=BC•sin60°=,tanθ=,sinθ=,所以平面ACM与平面BCD所成二面角的正弦值为.点评:本题考查点到平面的距离的求法,考查二面角的正弦值的求法.解题时要认真审题,注意合理地化空间问题为平面问题.。