江苏省启东中学高二上学期期初考试数学试题含答案

合集下载

江苏省启东中学2019~2020学年度高二第一学期期初考试数学试题及参考答案解析

江苏省启东中学2019~2020学年度高二第一学期期初考试数学试题及参考答案解析

江苏省启东中学2019~2020学年度第一学期期初考试高中二年级数学试卷一、选择题。

1.已知集合{}2|340A x x x =--<,{|()[(2)]0}B x x m x m =--+>,若A B =U R ,则实数m 的取值范围是( ) A. (1,)-+∞ B. (,2)-∞C. (1,2)-D. [1,2]-【试题参考答案】C 【试题解答】分别求出集合,A B ,利用A B =U R 可得两个集合端点之间的关系,从而可求实数m 的取值范围.集合{}2|340(1,4)A x x x =--<=-,集合{|()[(2)]0}(,)(2,)B x x m x m m m =--+>=-∞⋃++∞,若A B =U R ,则124m m >-⎧⎨+<⎩,解得(1,2)m ∈-,故选C.本题考查集合的并以及一元二次不等式的解法,属于中档题.2.若函数()6(3)37=7x a x x f x a x ---≤⎧⎨>⎩,,单调递增,则实数a 的取值范围是( )A. 9(3)4, B. 9[3)4, C. (13), D. 23(,)【试题参考答案】D 【试题解答】试题分析:因为函数()()633,7{,7x a x x f x ax ---≤=>单调递增,所以13a <<且由()()78f f <,所以27(3)3a a --<,解得9a <-或2a >,所以实数a 的取值范围是()2,3,故选D. 考点:数列的单调性及分段函数的性质.【方法点晴】本题主要考查了分段函数的图象与性质、函数的单调性的应用,不等式的求解等知识点的应用,其中解答中根据哈数()f x 是定义域山过的单调递增函数,即可列出不等关系13a <<且()()78f f <是解答的关键,即可求求解实数a 的取值范围,着重考查了学生分析问题和解答问题的能力,属于中档试题.3.设ω是正实数,函数2()2cos ,0,3f x x x πω⎡⎤=∈⎢⎥⎣⎦上是减函数,那么ω的值可以是( ) A.12B. 2C. 3D. 4【试题参考答案】A 【试题解答】根据函数在20,3π⎡⎤⎢⎥⎣⎦为减函数可以得到半周期满足的不等式,从而可以得到ω的取值范围,故可得正确的选项.由题意可知函数的最小正周期2T πω=,故223T π≥,所以23ππω≥即302ω<≤,故选A. 本题考查三角函数的图像和性质,属于基础题.4.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x ,方差为2s ,则( ) A. 4x =,22s < B. 4x =,22s > C. 4x >,22s < D. 4x >,22s >【试题参考答案】A 【试题解答】分析:首先根据平均数的求解方法,代入式子,求得x ,利用方差的定义和计算公式,求得2s ,从而可以判断其大小关系,求得结果.详解:根据题意有47448x ⨯+==,而2272(44)28s ⨯+-=<,故选C. 点睛:该题考查的是有关一组数据的平均数和方差的计算公式,所以在解题的过程中,利用平均数和方差的公式,求新添一个值之后的平均数和方差,从而得到结果.5.甲、乙两个人进行“剪子、包袱、锤”的游戏,两人都随机出拳,则一次游戏两人平局的概率为( ) A.13B.23C.14D.29【试题参考答案】A 【试题解答】 【分析】先列表得到所有的基本事件的个数及平局对应的基本事件的个数,根据公式可得所求的概率. 甲、乙两个人进行“剪子、包袱、锤”的游戏,所有可能出现的结果列表如下:因为由表格可知,共有9种等可能情况. 其中平局的有3种:(锤,锤)、(剪子,剪子)、(包袱,包袱).设A 为“甲和乙平局”,则()3193P A ==,故选A. 古典概型的概率计算,如果基本事件的总数计算较为繁琐时,那么应该用枚举法或列表法得到所有的基本事件及随机事件中含有的基本事件.6.如图,在ABC △上,D 是BC 上的点,且22AC CD AC AB AD ===,,,则sin B 等于( )A.6 3B.33C.66D.36【试题参考答案】C【试题解答】试题分析:根据题意设2AD x=,则3,4AC CD x AB x===,在ADCV中由余弦定理可得2222433336cos sin sin1333223x x xADC ADB ADCx x⎛⎫+-∠==∴∠=∠=-=⎪⎪⋅⋅⎝⎭,在ADB△中由正弦定理得62sin63sin4xAD ADBBAB x⋅∠===,故选C.考点:正余弦定理的综合应用.7.在正方体1111ABCD A B C D-中,异面直线1A B与1AD所成角的大小为( )A. 30︒B. 45︒C. 60︒D. 90︒【试题参考答案】C【试题解答】连接1D C,则1AD C∠或其补角为所求的异面直线所成的角,利用1AD C∆为等边三角形可以其大小.如图,连接1D C,因为11//A B D C ,所以异面直线1A B 与1AD 所成的角为1AD C ∠或其补角.因为1AD C ∆为等边三角形,所以160AD C ︒∠=.故选C.空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.8.1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是 A. 12l l ⊥,23l l ⊥13//l l ⇒ B. 12l l ⊥,23//l l ⇒13l l ⊥ C. 233////l l l ⇒1l ,2l ,3l 共面 D. 1l ,2l ,3l 共点⇒1l ,2l ,3l 共面【试题参考答案】B 【试题解答】解:因为如果一条直线平行于两条垂线中的一条,必定垂直于另一条。

江苏省启东市2020-2021学年高二上学期期中考试数学试题及答案

江苏省启东市2020-2021学年高二上学期期中考试数学试题及答案

2020~2021学年第一学期期中考试高二数学试题及评分建议(考试时间:120分钟 满分:150分)一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 已知命题p :∃x ∈R ,2104x x -+≤,则⌝p 为( ▲ )A .∀x ∈R ,2104x x -+≤B .∀x ∈R ,2104x x -+>C .∃x ∈R ,2104x x -+>D .∃x ∈R ,2104x x -+<【答案】B2. 椭圆141622=+y x 的长轴长为( ▲ )A .2B .4C .8D .16 【答案】C3. 已知关于x 的不等式ax 2+bx -1>0的解集为(3,4),则实数a ,b 的值是( ▲ ) A .a =12,b =-84 B .a =-12,b =84C .a =112,b =-712D .a =-112,b =712【答案】D4. 已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( ▲ )A .4B .-4C .±4D .不确定 【答案】A5. 已知正数a 、b 满足a +b =2,则b a +有( ▲ )A .最小值1B .最小值2C .最大值1D .最大值2 【答案】D6. “a >1,b >1”是“log a b +log b a ≥2”的( ▲ )条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要 【答案】A7. 在等差数列{a n }中,已知前21项和S 21=63,则a 2+a 5+a 8+…+a 20的值为( ▲ )A .7B .9C .21D .42 【答案】C8. ∃x ∈)13⎡+∞⎢⎣,,使得ax 2-2x +1>0 成立,则实数a 的取值范围为( ▲ )A .[-3,+∞)B .(-3,+∞)C .[1,+∞)D .(1,+∞) 【答案】B二、多项选择题:本题共4小题,每小题5分,共20分。

启东中学2024-2025学年高二上学期期初数学试题

启东中学2024-2025学年高二上学期期初数学试题

江苏省启东中学2024~2025学年度第一学期期初反馈检测高二数学一、单选题(本题共8小题,每小题5分,共40分)1.已知复数z 满足1i 2i z z +=-,则z =()A.32B.52C.2D.2.过点()2,1-且与直线2390x y -+=平行的直线的方程是()A.2370x y --=B.2310x y +-= C.3240x y +-= D.2370x y -+=3.已知3sin 5x =,其中π,π2x ⎛⎫∈ ⎪⎝⎭,则tan 24πx ⎛⎫-= ⎪⎝⎭()A .1- B.49C.3117D.1731-4.在区间[]5,10-上任取一个整数m ,则使函数()222f x x mx m =--存在两个不同零点的概率为()A.116B.316C.1316D.15165.已知直线l :0ax by c ++=与直线l '关于直线0x y +=对称,则l '的方程为()A.bx ay c +-= B.bx ay c -+=C.0bx ay c ++= D.0bx ay c --=6.已知空间向量()1,2,3m = ,空间向量n 满足//m n u r r 且7⋅=m n ,则n =()A.13,1,22⎛⎫⎪⎝⎭ B.13,1,22⎛⎫--- ⎪⎝⎭ C.31,1,22⎛⎫--- ⎪⎝⎭ D.31,1,22⎛⎫⎪⎝⎭7.点P 在直线:10l x y --=上运动,()()2,3,2,0A B ,则PA PB -的最大值是()A.B.C.3D.48.如图,正四面体ABCD 的顶点A ,B ,C 分别在两两垂直的三条射线Ox ,Oy ,Oz 上,则在下列命题中,错误的是A.O ABC -是正三棱锥B.直线OB ∥平面ACDC.直线AD 与OB 所成的角是45D.二面角D OB A --为45 .二、多选题(本题共3小题,每小题6分,共18分.)9.下列命题正确的是()A.若存在实数x ,y ,使p xa yb =+ ,则p 与,a b 共面B.若p与,a b共面,则存在实数x ,y ,使p xa yb=+C.若存在实数x ,y ,使MP xMA yMB =+,则M ,P ,A ,B 共面D.若M ,P ,A ,B 共面,则存在实数x ,y ,使MP xMA yMB=+10.对于直线()12:230,:3130l ax y a l x a y a ++=+-+-=.以下说法正确的有()A.1l ∥2l 的充要条件是3a =B.当25a =时,12l l ⊥C.直线1l 一定经过点()3,0M D.点()1,3P 到直线1l 的距离的最大值为511.已知P 、Q 分别为棱长为2的正方体1111ABCD A B C D -棱1DD 、1BC 上的动点,则下列说法正确的是()A.线段PQ 长度的最小值为2B.三棱锥11P A BC -的外接球体积的最大值为C.直线1AQ 与直线BC 所成角的余弦值的范围为0,2⎡⎢⎣⎦D.当P 、Q 为中点时,平面1B PQ 截正方体1111ABCD A B C D -所形成的图形的面积为94三、填空题(本题共3小题,每小题5分,共15分)12.若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC V 是____________三角形13.如果三条直线280ax y ++=,4310x y +=和210x y -=将平面分为六个部分,那么实数a 的取值集合为___________.14.已知R m ∈,若过定点A 的动直线1:20l x my m -+-=和过定点B 的动直线2:240l mx y m ++-=交于点P (P 与A ,B 不重合),则PA PB ⋅的最大值为_____________;2PA PB +的最大值为_____________.四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.已知点(1,3)A ,(3,1)B ,(1,0)C -,求:(1)BC 边上的高所在直线方程;(2)ABC V 的外心坐标;(3)ABC V 的面积.16.在ABC V 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知2sin 3sin ,3,cos 3b Ac B a B ===.(1)求b 的值;(2)求πcos 24A ⎫⎛+⎪⎝⎭的值.17.某新能源汽车制造公司,为鼓励消费者购买其生产的新能源汽车,约定从今年元月开始,凡购买一辆该品牌汽车,在行驶三年后,公司将给予适当金额的购车补贴.某调研机构对已购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,得其样本频率分布直方图如图所示.其中0.15a =.(1)估计已购买该品牌汽车的消费群体对购车补贴金额的心理预期值的平均数(同一组数据用该区间的中点值作代表)和中位数;(精确到0.01)(2)现在要从购车补贴金额的心理预期值在[)3,5间用分层抽样的方法抽取6人,再从这6人中随机抽取2人进行调查,求抽到2人中购车补贴金额的心理预期值都在[)3,4间的概率.18.已知点()1,2M -,直线:250l x y +-=(1)求点M 关于点()3,1F 对称点N 的坐标(2)求点M 关于直线l 的对称点Q 的坐标.(3)已知点()0,2R -,点P 在直线l 上,问使22PM PR +取得最小值时P 点的坐标与使PM PR +取得最小值时P 点的坐标是否相同?请说明理由.19.如图,四边形ABCD 是矩形,PA ⊥平面ABCD ,DE ⊥平面ABCD ,1,2AB DE AD PA ====,点F 在棱PA 上.(1)求证://BF 平面CDE ;(2)求直线BP 与平面PEC 所成角的正弦值;(3)若点F 到平面PCE 的距离为13,求线段AF 的长.江苏省启东中学2024~2025学年度第一学期期初反馈检测高二数学一、单选题(本题共8小题,每小题5分,共40分)1.已知复数z 满足1i 2i z z +=-,则z =()A.32B.52C.2D.【答案】C 【解析】【分析】根据复数的除法运算化简复数,即可根据模长公式求解.【详解】由1i 2i z z +=-可得()()()()12i 1i 12i 13i1i 1i 1i 2z +++-+===--+,所以2z ,故选:C2.过点()2,1-且与直线2390x y -+=平行的直线的方程是()A.2370x y --= B.2310x y +-= C.3240x y +-= D.2370x y -+=【答案】A 【解析】【分析】利用直线的平行系方程及点在直线上即可求解.【详解】设与直线2390xy -+=平行的直线的方程为230x y λ-+=,将点()2,1-代入得()22310λ⨯-⨯-+=,解得7λ=-,所以所求直线的方程为2370x y --=.故选:A.3.已知3sin 5x=,其中π,π2x ⎛⎫∈ ⎪⎝⎭,则tan 24πx ⎛⎫-= ⎪⎝⎭()A.1- B.49C.3117D.1731-【答案】C 【解析】【分析】先利用三角函数的基本关系式求得3tan 4x =-,再利用正切的倍角公式和两角差的正切公式,即可求解.【详解】因为3sin 5x =,其中π,π2x ⎛⎫∈ ⎪⎝⎭,则4cos 5x =-,可得sin 3tan cos 4x x x ==-,又因为22tan 24tan21tan 7x x x ==--,所以tan2131tan 241tan217x x x π-⎛⎫-== ⎪+⎝⎭.故选:C.4.在区间[]5,10-上任取一个整数m ,则使函数()222f x x mx m =--存在两个不同零点的概率为()A.116 B.316C.1316D.1516【答案】C 【解析】【分析】利用2(2)41(2)0m m ∆=--⨯⨯->,可求有两个零点的m 的范围,进而可求概率.【详解】因为函数()222f x x mx m =--存在两个不同零点,所以()2220f x x mx m =--=有两个不同的根,所以2(2)41(2)0m m ∆=--⨯⨯->,解得2m <-或0m >,在区间[]5,10-上任取一个整数m ,共有16种取法,能使使函数()222f x x mx m =--存在两个不同零点的取法有13种,所以使函数()222f x x mx m =--存在两个不同零点的概率为1316.故选:C.5.已知直线l :0ax by c ++=与直线l '关于直线0x y +=对称,则l '的方程为()A.0bx ay c +-= B.0bx ay c -+= C.0bx ay c ++= D.bx ay c --=【答案】A 【解析】【分析】根据对称性的性质,用x -代y ,以y -代x 进行求解即可.【详解】因为直线l :0ax by c ++=与直线l '关于直线0x y +=对称,所以在方程0ax by c ++=中,用x -代y ,以y -代x ,得0ay bx c --+=,化简,得0bx ay c +-=,故选:A6.已知空间向量()1,2,3m = ,空间向量n 满足//m n u r r 且7⋅=m n ,则n =()A.13,1,22⎛⎫⎪⎝⎭B.13,1,22⎛⎫--- ⎪⎝⎭C.31,1,22⎛⎫--- ⎪⎝⎭ D.31,1,22⎛⎫ ⎪⎝⎭【答案】A 【解析】【分析】由空间向量共线的坐标表示与数量积的坐标表示求解即可.【详解】∵()1,2,3m=,且空间向量n满足//m n u r r ,∴可设(),2,3n m λλλλ== ,又7⋅= m n,∴1233147λλλλ⨯+⨯+⨯==,得12λ=.∴113,1,222n m ⎛⎫== ⎪⎝⎭,故A 正确.故选:A.7.点P 在直线:10l x y --=上运动,()()2,3,2,0A B ,则PA PB-的最大值是()A.B.C.3D.4【答案】A 【解析】【分析】作出点关于直线的对称点,然后利用两点距离公式求解即可.【详解】设B 关于:10l x y --=的对称点为(),C m n ,则1221022nm m n ⎧=-⎪⎪-⎨+⎪--=⎪⎩,解得11m n =⎧⎨=⎩,即()1,1C 故AC ==PA PB PA PC AC -=-≤=,当且仅当,,,P A C 三点共线时,等号成立.故选:A8.如图,正四面体ABCD 的顶点A ,B ,C 分别在两两垂直的三条射线Ox ,Oy ,Oz 上,则在下列命题中,错误的是A.O ABC -是正三棱锥B.直线OB ∥平面ACDC.直线AD 与OB 所成的角是45 D.二面角D OB A --为45 .【答案】B 【解析】【详解】试题分析:由正四面体的性质知ABC 是等边三角形,且OA OB OC 、、两两垂直,所以A 正确;借助正方体思考,把正四面体ABCD 放入正方体,很显然直线OB 与平面ACD 不平行,B 错误.考点:正四面体的性质、转化思想的运用.二、多选题(本题共3小题,每小题6分,共18分.全选对得6分,部分选对得部分分,有选错得0分)9.下列命题正确的是()A.若存在实数x ,y ,使p xa yb =+,则p 与,a b 共面B.若p 与,a b 共面,则存在实数x ,y ,使p xa yb=+ C.若存在实数x ,y ,使MPxMA yMB =+,则M ,P ,A ,B 共面D.若M ,P ,A ,B 共面,则存在实数x ,y ,使MPxMA yMB=+【答案】AC 【解析】【分析】由平面向量基本定理逐项判断即可.【详解】选项A ,根据共面向量基本定理可知,若存在实数x ,y ,使p xa yb =+ ,则p 与,a b 共面,所以A 正确;选项B ,若向量p 与,a b共面,如果,a b 共线,不一定有p xa yb =+ ,只有a 与b 不共线时,{},a b可以作为一组基底,存在唯一确定的有序实数对(),x y ,使任意向量p xa yb =+,所以B 错误;选项C ,根据共面向量基本定理可知,,,MP MA MB uuu r uuu r uuu r共面,由于它们有公共点M ,所以M ,P ,A ,B 共面,所以C 正确;选项D ,若,MA MB共线,MP不与,MA MB共线,则不存在实数x ,y ,使MPxMA yMB =+,所以D 错误.故选:AC10.对于直线()12:230,:3130l ax y a l x a y a ++=+-+-=.以下说法正确的有()A.1l ∥2l 的充要条件是3a =B.当25a=时,12l l ⊥C .直线1l 一定经过点()3,0M D.点()1,3P 到直线1l 的距离的最大值为5【答案】BD 【解析】【分析】求出1l ∥2l 的充要条件即可判断A;验证25a =时,两直线斜率之积是否为-1,判断B;求出直线1l 经过的定点即可判断C;判断何种情况下点()1,3P 到直线1l 的距离最大,并求出最大值,可判断D.【详解】当1l ∥2l 时,(1)60a a--=解得3a =或2a =-,当2a =-时,两直线为530,03x y x y -+=-+=,符合题意;当3a =时,两直线为3290,320x y x y ++=+=,符合题意,故A 错误;当25a=时,两直线为530,153130x y x y ++=-+=,121515l l k k ⋅=-⨯=-,所以12l l ⊥,故B 正确;直线1:230l ax y a ++=即直线(3)20a x y ++=,故直线过定点()3,0-,C 错误;因为直线1:230l ax y a ++=过定点()3,0-,当直线1:230l ax y a ++=与点()1,3P 和()3,0-的连线垂直时,()1,3P 到直线1l 的5=,故D 正确,故选:BD .11.已知P 、Q 分别为棱长为2的正方体1111ABCD A B C D -棱1DD 、1BC 上的动点,则下列说法正确的是()A.线段PQ 长度的最小值为2B.三棱锥11P A BC -的外接球体积的最大值为C.直线1AQ 与直线BC 所成角的余弦值的范围为0,2⎡⎢⎣⎦D.当P 、Q 为中点时,平面1B PQ 截正方体1111ABCD A B C D -所形成的图形的面积为94【答案】ABC 【解析】【分析】先建立空间直角坐标系,写出点和向量的坐标;根据空间两点间距离公式可判断选项A ;先求出该正方体外接球的体积;再根据点P 为棱1DD 上的动点,点P 在正方体外接球内运动,即可确定三棱锥11P A BC -外接球体积的最大值,可判断选项B ;利用空间直线与直线所成角的向量计算方法表示出直线1AQ 与直线BC 所成角的余弦值,再分两种情况,求出每种情况下的取值范围即可判断选项C ;先根据确定平面的依据判断截面形状,进而求出面积即可判断选项D .【详解】以点A 为坐标原点,AD 、AB 、1AA 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图所示:因为正方体1111ABCD A B C D -的棱长为2.则0,0,0,()0,2,0B ,()2,2,0C ,()2,0,0D ,()10,0,2A ,()10,2,2B ,()12,2,2C ,()12,0,2D .所以()10,0,2DD = ,()12,0,2BC = ,()112,2,0A C = ,()10,2,2A B =-.因为P 、Q 分别为棱1DD 、1BC 上的动点,令()101DP DD λλ=≤≤ ,()101BQ BC μμ=≤≤.所以()2,0,2P λ,()2,2,2Q μμ.对于选项A :因为2PQ ==≥,当且仅当1λμ==时,等号成立.所以线段PQ 长度的最小值为2,故选项A 正确;对于选项B :由正方体的性质可得三角形11A BC为边长为的正三角形,1BD ==.所以该正方体的外接球球心O 为正方体的中心,球半径为12BD R ==,外接球体积的为34π3R =.因为点P 为棱1DD 上的动点,所以点P 在正方体外接球内运动.故正方体外接球的体积就是三棱锥11PA BC -外接球体积的最大值,为,此时点P 与点1D (或点D )重合.故选项B 正确;对于选项C :因为()12,2,22A Q μμ=- ,()2,0,0BC =,所以直线1AQ 与直线BC所成角的余弦值为11A Q BC A Q BC ⋅==.当0μ=时,110A Q BC A Q BC⋅=.当01μ<≤时,有11μ≥,11AQ BC AQ BC ⋅==因为当11μ≥时,2113124μ⎛⎫-+≥ ⎪⎝⎭,则1102A Q BC A Q BC⋅<≤.所以直线1AQ 与直线BC 所成角的余弦值的范围为0,2⎡⎢⎣⎦,故选项C 正确;对于选项D :取11A D 中点M,连接PM,PC ,1B C ,1B M .因为正方体棱长为2则PM =PC =,1B M =1B C =当P 、Q 为中点时,1B C PM∥,所以平面1B PQ 截正方体1111ABCD A B C D -所形成的图形为梯形1PMB C .因为在等腰梯形1PMB C 2=.所以截面面积为19222⨯+⨯=,故选项D 错误.故选:ABC.【点睛】关键点点睛:本题考查空间线线、线面的位置关系,几何体外接球及截面问题,属于难题.解题关键在于:建立空间直角坐标系,写出点和向量的坐标,利用对于空间两点间距离公式和直线与直线所成角的向量计算方法可判断选项A 、C ;对于选项B ,关键在于根据点P 为棱1DD 上的动点判断点P 在正方体外接球内运动,正方体外接球的体积就是三棱锥11P A BC -的外接球体积的最大值;对于选项D ,关键在于根据确定平面的依据判断截面形状.三、填空题(本题共3小题,每小题5分,共15分)12.若()()3ab c b c a bc +++-=,且sin 2sin cos A B C =,那么ABC V 是____________三角形【答案】等边三角形【解析】【分析】根据余弦定理得到3A π=,再根据正弦定理结合余弦定理得到bc =,得到答案.【详解】由题设可得222b c a bc +-=,故2221cos 22b c a A bc +-==,故3A π=,根据正弦定理得到:2cos a b C =,故22222a b c a b ab+-=⋅,即220b c -=,即b c =,即该三角形是等边三角形.故答案为:等边三角形.【点睛】本题考查了利用正弦定理和余弦定理判断三角形形状,意在考查学生的计算能力和应用能力.13.如果三条直线280ax y ++=,4310x y +=和210x y -=将平面分为六个部分,那么实数a 的取值集合为___________.【答案】{4-,1-,8}3【解析】【分析】根据三条直线把平面分为六个部分,分析直线的位置关系,分别求出a 的值.【详解】若是三条直线两两相交,且交点不重合,则这三条直线把平面分成7部分;如果这三条直线将平面划分为六部分包括两种情况能够成立,①是280ax y ++=过另外两条直线的交点,由4310x y +=和210x y -=的交点是(4,2)-,代入解得:1a =-;②是这条直线与另外两条直线平行,当280ax y ++=和4310x y +=平行,只需284310a =≠,解得83a =;当280ax y ++=和210x y -=平行,只需282110a =≠--此时4a =-.综上,a 的取值集合是{4-,1-,8}3.故答案为:{4-,1-,8}3.【点睛】解析几何中判断直接利用两直线平行的方法:(1)若两直线斜率都不存在,两直线平行;(2)两直线的斜率都存在,且k 1=k 2,b 1≠b 2,则两直线平行;(3)若用一般式表示的直线,不用讨论斜率是否存在,只要A 1B 2=A 2B 1,B 1C 2≠B 2C 1.14.已知R m ∈,若过定点A 的动直线1:20l x my m -+-=和过定点B 的动直线2:240l mx y m ++-=交于点P (P 与A ,B 不重合),则PA PB ⋅的最大值为_____________;2PA PB+的最大值为_____________.【答案】①.252##12.5②.【解析】【分析】根据直线方程确定12l l ⊥,利用勾股定理得到22225PA PB AB +==,结合基本不等式即可求出PA PB ⋅的最大值,再利用三角函数即可求出2PA PB +的最大值.【详解】1:20l x my m -+-=可以转化为(1)20m y x -+-=,故直线恒过定点A 2,1,2l :240mx y m ++-=,即()42y m x -=-+,恒过定点B ()2,4-,由1:20l x my m -+-=和2l :240mx y m ++-=,满足()110m m ⨯+-⨯=,所以12l l ⊥,可得PA PB ⊥,所以()()22222221425PA PB AB +==++-=,且22252PA PB PA PB+=≥⋅,故252PA PB ⋅≤,当且仅当PA PB =时,等号成立;因为PA PB ⊥,设PAB θ∠=为锐角,则5cos ,5sin PA PB θθ==,所以()()252cos sin PA PB θθθϕ+=+=+,所以当()sin 1θϕ+=时,2PA PB+取最大值.故答案为:252;四、解答题(本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤)15.已知点(1,3)A ,(3,1)B ,(1,0)C -,求:(1)BC 边上的高所在直线方程;(2)ABC V 的外心坐标;(3)ABC V 的面积.【答案】(1)470xy +-=(2)99(,1010(3)5【解析】【分析】(1)首先求出直线BC 的斜率,由互相垂直的直线间斜率关系得出BC 边上的高线的斜率,由高线过(1,3)A ,即可得出BC 边上的高所在直线方程;(2)分别求出边,AB BC 的垂直平分线,联立即可得出ABC V 的外心坐标;(3)先写出直线BC 的方程,由点到直线的距离公式得出点A 到直线BC 的距离,再由两点之间的距离公式求出边BC 的长,由三角形面积公式计算即可.【小问1详解】由(3,1)B ,(1,0)C -得,14BCk=,所以BC 边上的高线的斜率为4k =-,且高线过点(1,3)A ,所以BC 边上的高线的直线方程为:34(1)y x -=--,即470x y +-=.【小问2详解】由(1,3)A ,(3,1)B 得,1AB k =-,边AB 的中点为1331(,)22++,即(2,2),所以边AB 的垂直平分线的直线方程为:22y x -=-,即y x =;由(3,1)B ,(1,0)C -,得14BCk=,边BC 的中点为1(1,)2,所以边BC 的垂直平分线的直线方程为:14(1)2y x -=--,即942y x =-+,由942y x y x =⎧⎪⎨=-+⎪⎩,得910910x y ⎧=⎪⎪⎨⎪=⎪⎩,所以ABC V的外心坐标为99(,1010.【小问3详解】由(1)知,14BCk=,则直线BC 的方程为:1(1)4y x =+,即410x y -+=,边BC上的高为:17d ==,BC ==所以1152217ABCSBC d =⋅⋅=⨯= .16.在ABC V 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知2sin 3sin ,3,cos 3b Ac B a B ===.(1)求b 的值;(2)求πcos 24A ⎫⎛+⎪⎝⎭的值.【答案】(1(2)6-【解析】【分析】(1)借助正弦定理可得3ac =,结合余弦定理可得b 的值;(2)借助正弦定理及同角三角函数关系得sin 6A =,由余弦定理得cos6A =-,再代入二倍角公式和两角和的余弦公式求解即可.【小问1详解】由sin 3sin b A c B =结合正弦定理可得:3ab cb =,即3a c =,所以1c =,由2cos 3B=及余弦定理可得b ===【小问2详解】由2cos 3B =得sin 3B ==,由正弦定理sin sin a b A B=得3sin sin 6a B A b ==,由余弦定理得222cos 26b c a A bc +-==-,所以sin22sin cos 2663AA A ⎛⎫==⨯⨯-=- ⎪ ⎪⎝⎭,22cos212sin 3A A =-=-,所以πππcos 2cos2cos sin2sin 444A A A ⎛⎫+=- ⎪⎝⎭232326⎛⎫=-⨯--⨯= ⎪ ⎪⎝⎭.17.某新能源汽车制造公司,为鼓励消费者购买其生产的新能源汽车,约定从今年元月开始,凡购买一辆该品牌汽车,在行驶三年后,公司将给予适当金额的购车补贴.某调研机构对已购买该品牌汽车的消费者,就购车补贴金额的心理预期值进行了抽样调查,得其样本频率分布直方图如图所示.其中0.15a =.(1)估计已购买该品牌汽车的消费群体对购车补贴金额的心理预期值的平均数(同一组数据用该区间的中点值作代表)和中位数;(精确到0.01)(2)现在要从购车补贴金额的心理预期值在[)3,5间用分层抽样的方法抽取6人,再从这6人中随机抽取2人进行调查,求抽到2人中购车补贴金额的心理预期值都在[)3,4间的概率.【答案】(1)平均数的估计值为3.5万元,中位数的估计值为3.33万元;(2)25.【解析】【分析】(1)由于0.15a =,利用频率分布直方图中每组数据区间的中点值乘以相应频率相加可求得平均数,判断中位数对应的区间,求出频率0.5对应的值即为中位数;(2)先算出从购车补贴金额的心理预期值在[)3,5的6人中,在[)3,4间的有4人,然后根据列举法列出所有可能的基本事件15种,选出都在预期值[)3,4间的情况6种,利用古典概型计算公式,即可求解.【小问1详解】解:根据题意,因为0.15a =,结合频率分布直方图中的平均数的计算公式,可得数据的平均数的估计值为:0.1 2.50.3 3.50.3 4.50.15 5.50.1 6.50.0.5 3.155x ⨯+⨯+⨯+⨯+⨯==+⨯万元,因为0.10.30.50.10.30.3+<<++,则中位数在区间()3,4内,设中位数为3x +,则0.10.30.30.5x ++=,解得10.333x =≈,所以中位数的估计值为3.33万元.【小问2详解】解:从购车补贴金额的心理预期值在[3,5)间用分层抽样的方法抽取6人,则购车补贴金额的心理预期值在[3,4)间的有4人,记为a ,b ,c ,d ,购车补贴金额的心理预期值在[4,5)间的有2人,记为A ,B ,则基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,A ),(a ,B ),(b ,c ),(b ,d ),(b ,A ),(b ,B ),(c ,d ),(c ,A ),(c ,B )(d ,A ),(d ,B ),(A ,B ),共15种情况,其中购车补贴金额的心理预期值都在[3,4)间有(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共6种情况,所以抽到2人中购车补贴金额的心理预期值都在[3,4)间的概率62155P ==.18.已知点()1,2M -,直线:250l x y +-=(1)求点M 关于点()3,1F 对称点N 的坐标(2)求点M 关于直线l 的对称点Q 的坐标.(3)已知点()0,2R -,点P 在直线l 上,问使22PM PR +取得最小值时P 点的坐标与使PM PR+取得最小值时P 点的坐标是否相同?请说明理由.【答案】(1)(7,0);(2)(3,4);(3)不同,详见解析.【解析】【分析】(1)由F 是MN 的中点可求得N点坐标;(2)由MQ 与直线l 垂直且MQ 的中点在直线l 上可求得Q 点坐标;(3)设出P 点坐标为(,52)x x -,表示出22PM PR+和PM PR+,然后求最小值即可得利结论.【详解】(1)设(,)N x y ,则1622x y -=⎧⎨+=⎩,则7x y =⎧⎨=⎩,∴(7,0)N .(2)设(,)Q x y ,则21121225022y x x y -⎧=⎪⎪+⎨-+⎪⨯+-=⎪⎩,解得34x y =⎧⎨=⎩,即(3,4)Q .(3)两P 点坐标不相同.证明如下:由题意,设(,52)P x x -,则222222(1)(522)(522)PM PR x x x x +=++--++-+=2103859x x -+,显然当1910x =时,22PM PR +取得最小值22910,1965252105x -=-⨯=,此时196(,105P 由(2)PM PR +PQ PR QR=+≥,当P 是QR 与直线l 的交点时,等号成立,443(2)5QR k ==--,直线QR 的方程为425y x =-,代入l 的方程解得52x =,520x -=,即5(,0)2P .两个P 点不相同.【点睛】本题考查对称问题和与直线有关的最值问题.点M 关于点F 对称点N ,则F 是线段MN 的中点,点M 关于直线l 的对称点Q ,则MQ l ⊥,MQ 的中点在直线l 上.,M R 在直线l 的同一侧,求直线l 上一点P 使MP PR+最小,一般是求出M 点关于直线l 的对称点Q 的坐标,而使MP PR+最小的P 点就是QR 与直线l 的交点.19.如图,四边形ABCD 是矩形,PA ⊥平面ABCD ,DE ⊥平面ABCD ,1,2AB DE AD PA ====,点F 在棱PA 上.(1)求证://BF 平面CDE ;(2)求直线BP 与平面PEC 所成角的正弦值;(3)若点F 到平面PCE 的距离为13,求线段AF 的长.【答案】(1)证明见解析(2)15(3)32AF =【解析】【分析】(1)证明平面PAB ∥平面CDE ,利用面面平行的性质可证得BF ∥平面CDE ;(2)以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,利用空间向量法求值即可;(3)设AF t =,则()[]0,0,,0,2F t t ∈,利用空间向量法可得出关于t 的方程,结合t 的范围可求得t 的值.【小问1详解】在矩形ABCD 中,AB CD ∥,因为AB ⊄平面CDE ,CD ⊂平面CDE ,所以AB P 平面CDE .因为PA ⊥平面ABCD ,DE ⊥平面ABCD ,所以PA DE ∥,因为PA ⊄平面CDE ,DE ⊂平面CDE ,所以PA ∥平面CDE .又因为PA ⊂平面PAB ,AB ⊂平面PAB ,PA AB A = ,所以平面PAB ∥平面CDE .因为BF ⊂平面PAB ,所以BF ∥平面CDE .【小问2详解】因为PA ⊥平面ABCD ,AD ⊂平面ABCD ,AB ⊂平面ABCD ,所以,PA AD PA AB ⊥⊥,又因为ABCD 是矩形,AD AB ⊥,所以AD 、AB 、AP 两两垂直,以点A 为坐标原点,AB 、AD 、AP 所在直线分别为x 、y 、z 轴建立空间直角坐标系A xyz -,则()1,2,0C 、()0,0,2P 、()()0,2,1,1,0,0E B ,所以()()()1,0,1,0,2,1,1,0,2CE PE BP =-=-=-,设平面PEC 的一个法向量为=s s ,则020n CE x z n PE y z ⎧⋅=-+=⎪⎨⋅=-=⎪⎩,取2x =,可得()2,1,2n =,设直线BP 与平面PEC 所成角为θ,所以2425sin 1553BP n BP nθ⋅-+===⨯ .【小问3详解】设AF t =,2AP =,则()[]0,0,,0,2F t t ∈,所以()1,2,CF t =--,因为点F 到平面PCE 的距离222241333CF n t t d n ⋅--+-====,因为[]0,2t ∈,解得32t =,故32AF =.。

江苏省启东中学2019-2020学年度第一学期期初考试高二数学试卷

江苏省启东中学2019-2020学年度第一学期期初考试高二数学试卷

江苏省启东中学2019-2020学年度第一学期期初考试高二数学试卷命题人:陈存勤一、选择题:1.已知集合A ={x |x 2-3x -4<0},B ={x |(x -m )[x -(m +2)]>0},若A ∪B =R ,则实数m 的取值范围是 ( )A. (-1,+∞)B. (-∞,2)C. (-1,2)D. [-1,2]2.若函数f (x )=⎩⎨⎧>≤---7,7,3)3(6x a x x a x 单调递增,则实数a 的取值范围是 ( ) A.)3,49( B. )3,49[ C. (1,3)D. (2,3)3.设ω是正实数,函数f (x )=2cos ωx 在x ∈⎣⎢⎡⎦⎥⎤0,2π3上是减函数,那么ω的值可以是( )A. 12 B. 2 C. 3D. 44.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则 ( )A. x -=4,s 2<2 B. x -=4,s 2>2 C. x ->4,s 2<2D. x ->4,s 2>25.甲、乙两个人进行“剪子、包袱、锤”的游戏,两人都随机出拳,则一次游戏两人平局的概率为 ( )A. 13B. 23C. 14D. 296.如图,在△ABC 上,D 是BC 上的点,且AC =CD ,2AC =3AD ,AB =2AD ,则sin B=( )A. 63B. 33C.66D.367.在正方体ABCD -A 1B 1C 1D 1中,异面直线A 1B 与AD 1所成角的大小为( )A. 30°B. 45°C. 60°D. 90°8. l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是 ( )A. l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B. l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C. l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D. l 1,l 2,l 3共点⇒l 1,l 2,l 3共面9.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高,计算其体积V 的近似公式V ≈148L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为4,那么近似公式V ≈175L 2h 相当于将圆锥体积公式中π的近似取为 ( )A.256 B. 258 C. 253 D. 25410.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A +PB 的取值范围 ( )A. [5,2 5]B. [10,2 5]C. [10,4 5]D. [2 5,4 5]二、填空题:11.定义在(-∞,0)∪(0,+∞)上的奇函数f (x ),若函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式xx f )(的解集为________. 12.若直线y =k (x -2)+4与曲线y =1+4-x 2有两个交点,则实数k 的取值范围是 .13.若点P 是△ABC 内的一点,且满足P A →+PB →+PC →=0,则S △P AB S △ABC=________.14.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°、相距10海里C 处的乙船,若设乙船朝北偏东θ弧度的方向沿直线前往B 处救援,则sin θ=________.15.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________.16.已知直三棱柱ABC-A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 . 三、解答题:17.设全集U =R ,集合A ={x |1≤x <4},B ={x |2a ≤x <3-a }.(1) 若a =-2,求B ∩A ,B ∩∁U A ; (2) 若A ∪B =A ,求实数a 的取值范围.18.在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1) 求BC 的长; (2) 求tan2B 的值.19.某市规定,高中学生在校期间须参加不少于80小时的社区活动才取得学分.某校随机抽取了20位学生参加社区活动的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(1) 求抽取的20人中,参加社区活动时间不少于90小时的学生人数;(2) 从参加社区活动时间不少于90小时的学生中任意选取2人,求所选学生的参加社区活动时间在同一时间段内的概率.20.如图,在平面直角坐标系x O y 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2) 设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l 的方程.21.如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角C - EM - N的正弦值;(3)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.22.已知函数f(x)=3-2lo g2 x,g(x)=log2 x.(1) 如果x∈[1,4],求函数h(x)=[f(x)+1]g(x)的值域;(2) 求函数M(x)=2|)( )(|)()(xgxfxgxf--+的最大值;(3) 如果对不等式f(x2)f(x)>kg(x)中的任意x∈[1,4],不等式恒成立,求实数k的取值范围.江苏省启东中学高二数学期初测试卷一、选择题:1、已知集合A ={x |x 2-3x -4<0},B ={x |(x -m )[x -(m +2)]>0},若A ∪B =R ,则实数m 的取值范围是( ) A. (-1,+∞) B. (-∞,2) C. (-1,2)D. [-1,2]答案:C 解析:集合A ={x |x 2-3x -4<0}=(-1,4),集合B ={x |(x -m )[x -(m +2)]>0}=(-∞,m )∪(m +2,+∞),若A ∪B =R ,则⎩⎨⎧m >-1,m +2<4,解得m ∈(-1,2),故选C.2、若函数f (x )=单调递增,则实数a 的取值范围是( ) A. ⎝ ⎛⎭⎪⎫94,3 B. ⎣⎢⎡⎭⎪⎫94,3 C. (1,3)D. (2,3)答案:B 解析:因为函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,由指数函数以及一次函数的单调性的性质,可得3-a >0且a >1.但应当注意两段函数在衔接点x =7处的函数值大小的比较,即7(3-a )-3≤a ,解得a ≥94,综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫94,3.故选B.3、设ω是正实数,函数f (x )=2cos ωx 在x ∈⎣⎢⎡⎦⎥⎤0,2π3上是减函数,那么ω的值可以是( )A. 12 B. 2 C. 3D. 4答案:A 解析:由题意可知函数的最小正周期T =2πω≥2⎝ ⎛⎭⎪⎫2π3-0,解得ω≤32,结合选项可知只有A 符合.故选A.4、已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则( ) A. x -=4,s 2<2 B. x -=4,s 2>2 C. x ->4,s 2<2D. x ->4,s 2>2答案:A 解析:某7个数的平均数为4,方差为2, 则这8个数的平均数为x -=18×(7×4+4)=4, 方差为s 2=18×[7×2+(4-4)2]=74<2.5、甲、乙两个人进行“剪子、包袱、锤”的游戏,两人都随机出拳,则一次游戏两人平局的概率为( )A. 13B. 23C. 14D. 29答案:A 解析:甲、乙两个人进行“剪子、包袱、锤”的游戏,所有可能出现的结果列表如下:)、(剪子,剪子)、(包袱,包袱).所以甲和乙平局的概率为39=13. =36、如图,在△ABC 上,D 是BC 上的点,且AC =CD,2ACAD ,AB =2AD ,则sin B =( )A. 63 B. 33 C. 66D. 36答案:C 解析:由题意设AD =2x ,则AC =CD =3x ,AB =4x .在△ADC 中,由余弦定理可得cos ∠ADC =4x 2+3x 2-3x 22·2x ·3x =33,所以sin ∠ADB =sin ∠ADC =1-⎝ ⎛⎭⎪⎫332=63, 所以在△ADB 中,由正弦定理可得sin B =AD sin ∠ADB AB =2x ·634x =66.故选C.7、在正方体ABCD -A1B 1C 1D 1中,异面直线A 1B 与AD 1所成角的大小为( )A. 30°B. 45°C. 60°D. 90°答案:C 解析:因为A 1B ∥D 1C ,所以异面直线A 1B 与AD 1所成的角为∠AD 1C .因为△AD 1C 为等边三角形,所以∠AD 1C =60°.故选C.8、l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A. l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B. l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C. l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D. l 1,l 2,l 3共点⇒l 1,l 2,l 3共面答案:B 解析:对于A ,如正方体,从同一个顶点出发的三条棱两两垂直,A 错;对于B ,因为l 1⊥l 2,所以l 1,l 2所成的角是90°,又因为l 2∥l 3所以l 1,l 3所成的角是90°,所以l 1⊥l 3,B 对;对于C ,例如三棱柱中的三侧棱平行,但不共面,故C 错;对于D ,例如三棱锥的三侧棱共点,但不共面,故D 错. 9、《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高,计算其体积V 的近似公式V ≈148L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为4,那么近似公式V ≈175L 2h 相当于将圆锥体积公式中π的近似取为( )A. 256B. 258C. 253D. 254答案:D 解析:设圆锥的底面半径为r ,则圆锥的底面周长L =2πr ,所以r =L2π,所以V =13πr 2h =13π×L 24π2×h =L 212πh .令L 212πh =175L 2h ,得π=7512=254.10、设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A +PB 的取值范围是( )A. [5,2 5]B. [10,2 5]C. [10,4 5]D. [2 5,4 5]答案:B 解析:由题意可知,动直线x +my =0经过定点A (0,0),动直线mx -y -m +3=0即m (x -1)-y +3=0经过定点B (1,3),因为动直线x +my =0和动直线mx -y -m +3=0的斜率之积为-1,始终垂直,P 又是两条直线的交点,所以P A ⊥PB , 所以P A 2+PB 2=AB 2=10.设∠ABP =θ, 则P A =10sin θ,PB =10cos θ, 由P A ≥0且PB ≥0,可得θ∈⎣⎢⎡⎦⎥⎤0,π2.所以P A +PB =10(sin θ+cos θ) =2 5sin ⎝ ⎛⎭⎪⎫θ+π4.因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ+π4∈⎣⎢⎡⎦⎥⎤π4,3π4,所以sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤22,1,所以2 5sin ⎝ ⎛⎭⎪⎫θ+π4∈[10,2 5].故选B.二、填空题:11、定义在(-∞,0)∪(0,+∞)上的奇函数f (x ),若函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )x <0的解集为________.(-1,0)∪(0,1) 解析:由题意得到f (x )与x 异号,故不等式f (x )x <0可转化为⎩⎨⎧ x <0,f (x )>0)或⎩⎨⎧x >0,f (x )<0,)根据题意可作函数图象,如图所示:由图象可得:当f (x )>0,x <0时,-1<x <0;当f (x )<0,x >0时,0<x <1,则不等式f (x )x <0的解集是(-1,0)∪(0,1).12、若直线y =k (x -2)+4与曲线y =1+4-x 2有两个交点,则实数k 的取值范围是解析:曲线y =1+4-x 2可化为x 2+(y -1)2=4,y ≥1,所以曲线为以(0,1)为圆心,2为半径的圆在y ≥1的部分.直线y =k (x -2)+4过定点P (2,4),由图知,当直线经过点A (-2,1)时恰与曲线有两个交点,顺时针旋转到与曲线相切时交点变为一个.且k AP =4-12+2=34,由直线与圆相切得d =|-1+4-2k |k 2+1=2,解得k =512, 则实数k 的取值范围为⎝ ⎛⎦⎥⎤512,34.13、若点P 是△ABC 内的一点,且满足P A →+PB→+PC →=0,则S △P AB S △ABC=_________1314、如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°、相距10海里C 处的乙船,若设乙船朝北偏东θ弧度的方向沿直线前往B 处救援,则sin θ=________.15、有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________5π16、已知直三棱柱ABC-A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 。

2017-2018学年江苏省南通市启东中学高二上学期期中数学试卷与解析

2017-2018学年江苏省南通市启东中学高二上学期期中数学试卷与解析

2017-2018学年江苏省南通市启东中学高二(上)期中数学试卷一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题:∀x∈R,sinx≤1的否定为.2.(5分)抛物线x2=2y的准线方程为.3.(5分)已知复数z满足(z﹣2)(1﹣i)=1+i(i为虚数单位),则复数z的模是.4.(5分)已知p:x>2,q:x≥1,则p是q的条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为.6.(5分)已知点A(﹣1,0),B(5,0),C(1,4),则△ABC的外接圆的方程为.7.(5分)设A,F是椭圆+=1(a>b>0)的上顶点和右焦点,AF的延长线交椭圆右准线于点B,若=λ,则λ的值为.8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.9.(5分)已知点P是直线y=x上一个动点,过点P作圆(x+2)2+(y﹣2)2=1的切线,切点为T,则线段PT长度的最小值为.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为.12.(5分)“求1+q+q2+q3+…(0<q<1)的值时,采用了如下的方式:令1+q+q2+q3+…=x,则有x=1+q(1+q+q2+…)=1+q•x,解得x=”,用类比的方法可以求得:的值为.13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是.14.(5分)在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是.二、解答题(本题共70分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.16.(14分)用合适的方法证明下面两个问题:(1)已知n∈N*,求证:﹣1≥﹣;(2),,不能构成等差数列.17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.18.(16分)在平面直角坐标系xOy中,已知F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1)求椭圆的方程;(2)过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA,若MF1⊥BF 2,求直线l的斜率.19.(16分)已知方程C:x2+y2+8x﹣m+1=0表示圆(m∈R).(1)求实数m的取值范围;(2)若圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,求m的值;(3)已知点A(﹣2,0),B(4,0),P是与圆C上任意一点,若为定值,求m的值.20.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦,直线y=kx(k>0)经过弦AB的中点M,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点P的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)若直线AB过椭圆的右焦点F,线段FO上一点D满足AB=4FD,求证:以FD为直径的圆恰好经过点M.【附加题】21.(12分)用数学归纳法证明:1+++…+<n(n∈N*,且n>1).22.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,点P在线段A1B上.(1)若P是线段A 1B的中点,求直线MP与直线AC所成的角的大小;(2)是否存在点P,使得直线MP与平面ABC所成角的大小为,若存在,求出线段BP的长度;若不存在,请说明理由.23.(16分)已知抛物线C:y2=4x,过直线l:x=﹣2上任一点A向抛物线C引两条切线AS,AT(切点为S,T,且点S在x轴上方).(1)求证:直线ST过定点,并求出该定点;(2)抛物线C上是否存在点B,使得BS⊥BT.2017-2018学年江苏省南通市启东中学高二(上)期中数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共70分)1.(5分)命题:∀x∈R,sinx≤1的否定为∃x0∈R,使得sinx0>1.【解答】解:∵命题:∀x∈R,sinx≤1,∴命题的否定为:∃x0∈R,使得sinx0>1,故答案为:∃x0∈R,使得sinx0>12.(5分)抛物线x2=2y的准线方程为y=﹣.【解答】解:根据题意,抛物线的方程为x2=2y,其开口向上,且p=1,则抛物线的准线方程y=﹣,故答案为:y=﹣.3.(5分)已知复数z满足(z﹣2)(1﹣i)=1+i(i为虚数单位),则复数z的模是.【解答】解:由(z﹣2)(1﹣i)=1+i,得z﹣2=,∴z=2+i,则|z|=.故答案为:.4.(5分)已知p:x>2,q:x≥1,则p是q的充分不必要条件.(选填“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”之一)【解答】解:∵p:x>2,q:x≥1,∴p⇒q,反之不成立.则p是q的充分不必要条件.故答案为:充分不必要.5.(5分)已知双曲线﹣=1的左、右焦点分别为F1,F2,点P在双曲线上,且PF1=4,则PF2的长为10.【解答】解:根据题意,双曲线的标准方程为﹣=1,其中a==3,点P在双曲线上,则有||PF1|﹣|PF2||=2a=6,又由|PF1|=4,解可得|PF2|=10或﹣2(舍),则|PF 2|=10;故答案为:10.6.(5分)已知点A(﹣1,0),B(5,0),C(1,4),则△ABC的外接圆的方程为x2+y2﹣4x﹣2y﹣5=0.【解答】解:已知点A(﹣1,0),B(5,0),C(1,4),设△ABC的外接圆的方程为x2+y2+Dx+Ey+F=0,则有,求得,∴△ABC的外接圆的方程为x2+y2﹣4x﹣2y﹣5=0,故答案为:x2+y2﹣4x﹣2y﹣5=0.7.(5分)设A,F是椭圆+=1(a>b>0)的上顶点和右焦点,AF的延长线交椭圆右准线于点B,若=λ,则λ的值为.【解答】解:如图,由题意+=1,得A(0,),c=,则F(1,0),右准线方程为x=.直线AF的方程为,取x=4,得B(4,﹣),,,由=λ,得,即.故答案为:.8.(5分)设F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,M为AF2的中点,若MF1⊥AF2,则该椭圆的离心率为.【解答】解:∵F1,F2是椭圆+=1(a>b>0)的左、右焦点,A为椭圆的上顶点,若M为AF2的中点,且MF1⊥AF2,则△F1F2A是等腰三角形,F1F2=F1A,即2c=a,故该椭圆的离心率e==,故答案为:.9.(5分)已知点P是直线y=x上一个动点,过点P作圆(x+2)2+(y﹣2)2=1的切线,切点为T,则线段PT长度的最小值为.【解答】解:圆心坐标C(﹣2,2),半径R=1,则切线长|PT|=,则要使PT最小,则只需要PC最小即可,此时CP垂直直线y=x,则C到直线x﹣y=0的距离d===2,此时|PT|===,故答案为:.10.(5分)已知F是抛物线C:y2=12x的焦点,M是C上一点,FM的延长线交y轴于点N,若M是FN的中点,则FN的长度为9.【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1.5,则FN|=1.5+3=4.5,|FN|=2|FM|=2×4.5=9.故答案为:9.11.(5分)已知双曲线﹣=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF的边长为6的等边三角形(O为坐标原点),则该双曲线的方程为﹣=1.【解答】解:由题意可知,解得a=3,b=3,∴双曲线方程为=1.故答案为:=1.12.(5分)“求1+q+q2+q3+…(0<q<1)的值时,采用了如下的方式:令1+q+q2+q3+…=x,则有x=1+q(1+q+q2+…)=1+q•x,解得x=”,用类比的方法可以求得:的值为.【解答】解:令=x(x>0)则有x=∴x2=1+x∴x2﹣x﹣1=0解得x=或x=∵x>0,∴舍去.故答案为:.13.(5分)已知P为椭圆+=1上的动点,M,N为圆(x﹣2)2+y2=1上两点,且MN=,则|+|的取值范围是[3,13] .【解答】解:令Q为MN中的中点,则圆(x﹣2)2+y2=1的圆心C到MN的距离CQ==,又由C为椭圆+=1的焦点,故|PC|∈[2,6],则PQ|∈[2﹣,6+]=[,],|+|=|2|∈[3,13],故答案为:[3,13].14.(5分)在平面直角坐标系xOy中,已知直线y=x+2与x轴,y轴分别交于M、N两点,点P在圆(x﹣a)2+y2=2上运动,若∠MPN恒为锐角,则a的取值范围是a>或a<﹣.【解答】解:设以MN为直径的圆的圆心为A,则M(﹣2,0),N(0,2),所以中点A(﹣1,1);点P与M,N构成∠MPN恒为锐角,则点P恒在圆A之外,又两个圆半径相等,所以两圆外离,所以(a+1)2+12>(2)2,解得a>或a<﹣;所以a的取值范围是a>或a<﹣;故答案为:a>或a<﹣.二、解答题(本题共70分)15.(14分)命题p:方程+=1表示双曲线;命题q:∃x∈R,使得x2+mx+m+3<0成立.若“p且¬q”为真命题,求实数m的取值范围.【解答】解:若p为真命题,则(m+3)(m﹣4)<0,解得:﹣3<m<4,¬q:∀x∈R,使得x2+mx+m+3≥0,若¬q是真命题,则m2﹣4(m+3)≤0,解得:﹣2≤m≤6,若“p且¬q”为真命题,则p是真命题且¬q也是真命题,故﹣2≤m<4.16.(14分)用合适的方法证明下面两个问题:(1)已知n∈N*,求证:﹣1≥﹣;(2),,不能构成等差数列.【解答】解:(1)要证:﹣1≥﹣,只要+≥+1,只要证(+)2≥(+1)2,只要证n+2+2≥n+2+2,只要证≥,只要证2n≥n+1,只要证n≥1,显然对于n∈N*,成立,故﹣1≥﹣;(2)假设,,能构成等差数列,则2=+,即(2)2=(+)2,即12=7+2,即5=2,显然不成立,故假设不成立,故,,不能构成等差数列17.(14分)在平面直角坐标系xOy中,已知椭圆+=1(a>b>0)与双曲线﹣y2=1有相同的焦点F1,F2,抛物线x2=2py(p>0)的焦点为F,且与椭圆在第一象限的交点为M,若MF1+MF2=2.(1)求椭圆的方程;(2)若MF=,求抛物线的方程.【解答】解:(1)由条件得,解得a=,b=,∴椭圆方程为=1.(2)设M(x0,y0),则MF=y0+=,即p=﹣2y0,又M在椭圆上,∴x02+3y02=6,且x02=2py0,∴(7﹣4y0)y0+3y02=6,解得y0=1或y0=6(舍),∴p=,∴抛物线方程为x2=3y.18.(16分)在平面直角坐标系xOy中,已知F 1,F2分别为椭圆+=1(a>b>0)的左、右焦点,且椭圆经过点A(2,0)和点(1,3e),其中e为椭圆的离心率.(1)求椭圆的方程;(2)过点A的直线l交椭圆于另一点B,点M在直线l上,且OM=MA,若MF1⊥BF2,求直线l的斜率.【解答】解:(1)∵椭圆E经过点A(2,0)和(1,3e),∴,解得a=2,b=,c=1.∴椭圆方程为;(2)由(1)知,F1(﹣1,0),F2(1,0).设直线l的斜率为k,则直线l的方程是y=k(x﹣2).联立,可得(4k2+3)x2﹣16k2x+16k2﹣12=0,解得x=2,或x=,点B坐标为(,).由OM=MA知,点M在OA的中垂线x=1上,又点M在直线l上,∴点M的坐标为(1,﹣k).从而=(2,k),=(,).∵MF1⊥BF2,∴,∴,解得k=±,故直线l的斜率是±.19.(16分)已知方程C:x2+y2+8x﹣m+1=0表示圆(m∈R).(1)求实数m的取值范围;(2)若圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,求m的值;(3)已知点A(﹣2,0),B(4,0),P是与圆C上任意一点,若为定值,求m的值.【解答】解:(1)若方程C:x2+y2+8x﹣m+1=0表示圆,必有82﹣4(﹣m+1)>0,解可得:m>﹣15;即m的取值范围是(﹣15,+∞);(2)圆C的方程为x2+y2+8x﹣m+1=0,变形可得(x+4)2+y2=15+m,圆心为(﹣4,0),半径r=,圆心C到直线x+y+1=0的距离d==,又由圆C与直线x+y+1=0相交于A、B,若△ABC为等边三角形,则圆心C到直线的距离d=r,则有=×,解可得m=﹣11;(3)根据题意,如图,连接PC,设圆C的半径为r,则PC=r,设∠PCA=θ,则有CA=2,CB=8,由余弦定理可得:PA=,PB=,若为定值,则设=,则有=即=k,变形可得:r2+4﹣4rcosθ=k(r2+64﹣16rcosθ),分析可得:k=,r2=16,又由圆的标准方程为:(x+4)2+y2=15+m,则有15+m=16,解可得m=1;则m=1.20.(16分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,AB为椭圆的一条弦,直线y=kx(k>0)经过弦AB的中点M,与椭圆C交于P,Q两点,设直线AB的斜率为k1.(1)若点P的坐标为(1,),求椭圆C的方程;(2)求证:k1k为定值;(3)若直线AB过椭圆的右焦点F,线段FO上一点D满足AB=4FD,求证:以FD为直径的圆恰好经过点M.【解答】(1)解:由题意,,解得a=2,b=,∴椭圆方程为;(2)证明:设AB的中点为(x0,y0),A(x1,y1),B(x2,y2),由于A,B为椭圆上的点,∴,,两式相减得:,即=﹣,∵k1=,k=,∴k1k=﹣;(3)证明:由(2)知,AB所在直线的斜率为,又直线AB过点F(1,0),则AB:y=,联立,得(3+4k2)x2﹣6x+3﹣16k2=0.则,.=.∴M().|AB|===.则|FD|==,设D(n,0),则1﹣n=,得n=.∴D(,0),而=,∴,∴以FD为直径的圆恰好经过点M.【附加题】21.(12分)用数学归纳法证明:1+++…+<n(n∈N*,且n>1).【解答】证明:(1)当n=2时,显然1++=<2,不等式成立;(2)假设当n=k(k≥2)时,不等式成立,即1+++…+<k,则当n=k+1时,1+++…++++…+<k++…+<k+++…=k+1,∴当n=k+1时,不等式成立,综上,对于n∈N*,n>1,1+++…+<n.22.(12分)如图,在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,点P在线段A1B上.(1)若P是线段A1B的中点,求直线MP与直线AC所成的角的大小;(2)是否存在点P,使得直线MP与平面ABC所成角的大小为,若存在,求出线段BP的长度;若不存在,请说明理由.【解答】解:(1)∵在直三棱柱ABC﹣A1B1C1中,AA1=AB=AC=2,AB⊥AC,M是棱BC的中点,P是线段A1B的中点,∴以A为原点,AB为x轴,AC为y轴,AA1为z轴,建立空间直角坐标系,A(0,0,0),B(2,0,0),C(0,2,0),M(1,1,0),A1(0,0,2),P(1,0,1),=(0,﹣1,1),=(0,2,0),设直线MP与直线AC所成的角为θ,则cosθ===,∴θ=,∴直线MP与直线AC所成的角为.(2)假设存在点P(a,b,c),,(0≤λ≤1),使得直线MP与平面ABC所成角的大小为,则(a﹣2,b,c)=(﹣2λ,0,2λ),解得P(2﹣2λ,0,2λ),=(1﹣2λ,﹣1,2λ),平面ABC的法向量=(0,0,1),∵直线MP与平面ABC所成角的大小为,∴sin==,由0≤λ≤1,解得.∴BP=×=.∴存在点P,使得直线MP与平面ABC所成角的大小为,线段BP的长度为.23.(16分)已知抛物线C:y2=4x,过直线l:x=﹣2上任一点A向抛物线C引两条切线AS,AT(切点为S,T,且点S在x轴上方).(1)求证:直线ST过定点,并求出该定点;(2)抛物线C上是否存在点B,使得BS⊥BT.:y﹣t=k(x+2),【解答】解:(1)方法一:(1)设A(﹣2,t),过点A的切线:l切联立,整理得:ky2﹣4y+4(t+2k)=0,由,则得2k2+tk﹣1=0,即k(2k+t)=1,则k+2t=,则k1k2=﹣,且有ky2﹣4y+=0,即(ky﹣2)2=0,得y=,因此S(,),T(,),l ST:y﹣=(x﹣)=(x ﹣)=﹣x﹣,∴y=﹣x+=﹣(x﹣2),即有l ST:y=﹣(x﹣2),∴直线ST过定点P(2,0);方法二:设S(x1,y1),T(x2,y2),由y2=4x,根据复合函数求导法则2yy′=4,则y′=,则直线AS的斜率k=,方程为:y﹣y1=(x﹣x1),由y12=4x1,整理得:yy1=2(x+x1),同理可得:直线AT:yy2=2(x+x2),设A(﹣2,y A),则y A y1=2(x1﹣2),y A y2=2(x2﹣2),即y A y1﹣2x1+4=0,y A y2﹣2x2+4=0,∴S(x1,y1),T(x2,y2)是方程y A y﹣2(x﹣2)=0解,则直线ST:y A y﹣2(x﹣2)=0∴直线ST恒过点(2,0);(2)假设存在点B,使得BS⊥BT,设B(m,n),由直线ST:y A y﹣2(x﹣2)=0,∴,整理得:y2﹣2y A y﹣8=0,则y1+y2=2y A,y1y2=﹣8,则x1+x2=y A2+4,x1x2=×(y1y2)2=4,由BS⊥BT,则•=0,即(x1﹣m,y1﹣n)•(x2﹣m,y2﹣n)=0,整理得:x1x2﹣m(x1+x2)+m2+y1y2﹣n(y1+y2)+n2=0,∴4﹣my A2﹣4m+m2﹣8﹣2ny A+n2=0,my A2+2ny A+4m+4﹣m2﹣n2=0,由4m=n2,代入整理得:y A2+2ny A+4﹣=0,令4﹣=0,即n2=8,当n=2则y A2+2y A=0,解得:y A=0或y A=﹣2,当n=﹣2则y A2﹣2y A=0,解得:y A=0(舍去)或y A=2,∴当B(2,2)或(2,﹣2)时,A(﹣2,±2)时,BS⊥BT.。

江苏省南通市启东中学2023-2024学年高二上学期10月考试数学试题

江苏省南通市启东中学2023-2024学年高二上学期10月考试数学试题

江苏省南通市启东中学2023-2024学年高二上学期10月考试数学试题一、单选题1.若方程x 2+y 2-x +y +m =0表示一个圆,则实数m 的取值范围是( )A .m <12B .m ≤12C .m <2D .m ≤22.已知双曲线2213x y m +=的焦距为4,则m 的值为( )A .1B .1-C .7D .7-3.已知两点()()1,3,2,3M N ---,直线l 过点()11P ,且与线段MN 相交,则直线的斜率k 的取值范围是( )A .4k -≥或2k ≥B .42k -≤≤C .2k ≥D .4k -≤4.已知数列{}n a 满足()2*sin N 4n n a n π=∈,则{}n a 的前10项的和为( ) A .132B .6C .5D .1125.直线:4320l x y +-=关于点()1,1A 对称的直线方程为( ) A .4x +3y -4=0 B .4x +3y -12=0 C .4x -3y -4=0D .4x -3y -12=06.已知数列{}n a 和2n n a ⎧⎫⎨⎬⎩⎭均为等差数列,n S 是数列{}n a 的前n 项和,则510S a =( ) A .1B .32C .2D .527.已知椭圆()2222:10x y C a b a b+=>>的左右焦点为1F 、2F ,O 为坐标原点,M 为椭圆上一点,1F M 与y 轴交于一点N,且2OM OF ==,则椭圆C 的离心率为( ) A .13BCD18.若圆()()22:cos sin 1M x y θθ-+-=02θπ≤<()与圆22:240N x y x y +--=交于A 、B 两点,则tan ∠ANB 的最大值为( )A .12B .34C .45D .43二、多选题9.已知直线l 过()1,2P ,且()2,3A ,()4,5B -到直线l 的距离相等,则l 的方程可能是( ) A .460x y +-= B .460x y +-=C .3270x y +-=D .2370x y +-=10.已知等差数列{}n a 的前n 项和为S n ,且公差0d ≠,若对于任意正整数n ,2022n S S ≥,则( )A .10a >B .0d >C .20220a =D .40450S ≥11.圆22:20F x y x +-=,抛物线2:4C y x =,过圆心F 的直线l 与两曲线的四个交点自下向上依次记为,,,P M N Q ,若,,PM MN NQ 构成等差数列,则直线l 的方程可能是( )A .10x y --=B .10x y +-=C 0y -=D 0y +12.泰戈尔说过一句话:世界上最远的距离,不是树枝无法相依,而是相互了望的星星,却没有交汇的轨迹;世界上最远的距离,不是星星之间的轨迹,而是纵然轨迹交汇,却在转瞬间无处寻觅.已知点()1,0F ,直线:4l x =,动点P 到点F 的距离是点P 到直线l 的距离的一半.若某直线上存在这样的点P ,则称该直线为“最远距离直线”,则下列结论中正确的是( )A .点P 的轨迹方程是22143x y +=B .直线1l :240x y +-=是“最远距离直线”C .平面上有一点()1,1A -,则2PA PF +的最小值为5.D .点P 的轨迹与圆C :2220x y x +-=是没有交汇的轨迹(也就是没有交点)三、填空题13.双曲线22124y x -=的渐近线方程为.14.等差数列{}n a 中,53710a a a -=-,则{}n a 的前9项和为15.已知点()()2,0,2,0A B -,若圆()223()4a x y -+-=上存在点,P 使得90APB ∠=o ,则实数a 的取值范围是.16.P 是抛物线24x y =准线为l 上一点,,A B 在抛物线上,,PA PB 的中点也在抛物线上,直线AB 与l 交于点Q ,则PQ 的最小值为.四、解答题17.等差数列{}n a 中,102030,50a a ==. (1)求数列的通项公式; (2)若242n S =,求n .18.已知点()1,0A -,()3,0B ,动点P 满足2226PB PA =+.(1)求动点P 的轨迹方程;(2)直线l 过点()2,3Q -且与点P 的轨迹只有一个公共点,求直线l 的方程.19.记n S 为数列{}n a 的前n 项和,已知11,n n S a a ⎧⎫=⎨⎬⎩⎭是公差为13的等差数列.(1)求{}n a 的通项公式; (2)证明:121112na a a +++<L . 20.已知椭圆C :22221x y a b+=(a >b > 0)的离心率e =,过左焦点F 的直线l 与椭圆交于点M 、N .当直线l 与x 轴垂直时,MON △(O 为坐标原点). (1)求椭圆C 的标准方程:(2)设直线l的倾斜角为锐角且满足OM ON ⋅=uuu r uuu rl 的方程.21.已知正项数列{}n a ,对任意*n ∈N ,都有22,n nn n S a a S =+为数列{}n a 的前n 项和. (1)求数列{}n a 的通项公式;(2)设13(1)2n an n n b λ-=+-⋅⋅,若数列{}n b 是递增数列,求实数λ的取值范围.22.已知C :221x y a b+=12,过椭圆左焦点1F 作不与x 轴重合的直线与椭圆C 相交于M 、N 两点,直线m 的方程为:2x a =-,过点M 作ME 垂直于直线m 交直线m 于点E . (1)求椭圆C 的标准方程;(2)求证线段NE 必过定点P ,并求定点P 的坐标.。

江苏省南通市启东中学高二上学期期中数学试题(及答案)

江苏省南通市启东中学高二上学期期中数学试题(及答案)


16.在平面直角坐标系 xOy 中,以点 (1, 0) 为圆心且与直线 mx y 2m 1 0(m R)
相切的所有圆中,半径最大的圆的标准方程为______.
评卷人 得分
三、解答题
试卷第 2页,总 4页
17.如图,在直三棱柱 ABC-A1B1C1 中,D,E 分别为 AB,BC 的中点,点 F 在侧棱 B1B
在三角形 ABC 中,因为 D,E 分别为 AB,BC 的中点,
所以 DE AC ,于是 DE A1C1 , 又因为 DE 平面 A1C1F , A1C1 平面 A1C1F , 所以直线 DE//平面 A1C1F . (2)在直三棱柱 ABC A1B1C1 中, AA1 平面A1B1C1
江苏省南通市启东中学高二上学期期中数学试题及答案
第 I 卷(选择题)
评卷人 得分
一、单选题
1.设 x R,则“ x >1”是“ x2 >1”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
2.从甲、乙等 5 名学生中随机选出 2 人,则甲被选中的概率为( )
1
A.
5
2
17.(1)详见解析(2)详见解析 【解析】 试题分析:(1)利用线面平行判定定理证明线面平行,而线线平行的寻找往往结合平面几何 的知识,如中位线的性质等;(2)利用面面垂直判定定理证明,即从线面垂直出发给予证明, 而线面垂直的证明,往往需要多次利用线面垂直性质定理与判定定理.
试题解析:证明:(1)在直三棱柱 ABC A1B1C1 中, A1C1 AC,

1, 3 2
,过点 M
作直线 l 与圆
C
交于
A, B 两点,若

江苏省南通市启东市等2地2024-2025学年高二上学期11月期中调研测试数学试题

江苏省南通市启东市等2地2024-2025学年高二上学期11月期中调研测试数学试题

江苏省南通市启东市等2地2024-2025学年高二上学期11月期中调研测试数学试题一、单选题1.经过()()1,3,1,9A B -两点的直线的一个方向向量为()1,k ,则k =()A .13-B .13C .3-D .32.若直线1:3470l x y +-=与直线2:610l ax y --=垂直,则a =()A .8B .-8C .92D .92-3.如图所示,空间四边形OABC 中,OA a = ,OB b = ,OC c =,点M 在OA 上,且,M为OA 中点,N 为BC 中点,则MN等于()A .111222a b c-++ B .111222a b c++C .111222a b c+- D .111222a b c-+ 4.若方程22123x y m m+=-+表示焦点在y 轴上的椭圆,则m 的取值范围为()A .132m -<<-B .122m -<<C .3m <-D .2m >5.已知圆221:2880C x y x y +++-=,圆222:4420C x y x y +---=,则圆1C 与圆2C 的公切线条数为()A .1B .2C .3D .46.已知椭圆的两个焦点与短轴的两个端点在同一个圆上,则该椭圆的离心率为()A .12B .23C D .37.已知直线:40l x y -+=,圆222:(0)C x y r r +=>,若圆C 上有且仅有一个点到直线l 的距r =()A .1B .2CD .8.已知椭圆22163x y +=,直线l 与椭圆在第二象限交于,A B 两点,与两坐标轴分别交于,C D 两点,且AC BD =,则直线l 的斜率为()A B .4C .2D .34二、多选题9.已知直线:20l x +=和圆22:20C x y x ++=,则()A .直线l 的倾斜角为60oB .直线l 与两坐标轴围成的三角形面积为3C .直线l 被圆CD .圆C 被直线l 截得的优弧与劣弧弧长之比为2:110.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,点P 在C 上,且1PF 的最大值为3,最小值为1,则下列说法正确的是()A .椭圆C 的离心率为12B .△12F PF 的周长为4C .若1260F PF ∠=°,则△12F PF D .12PF PF ⋅的取值范围为[]2,311.在棱长为1的正方体1111ABCD A B C D -中,点M 在线段BD 上,点N 在线段1AD 上,则()A .当M 为BD 的中点,N 为1AD 的中点时,MN ⊥平面11ABCD B .当M 为BD 的中点时,1MN B D ⊥C .当MN //平面11CC D D 时,MN 的最小值为23D .MN三、填空题12.过点()1,3且与直线230x y -=平行的直线方程为.13.若过点()2,1的圆与两坐标轴都相切,则该圆的标准方程为.14.已知曲线22:6E x y xy +-=是椭圆,则该椭圆的离心率为;P 为E 上任意一点,P 与点(之间的距离的最大值为.四、解答题15.已知点(2,4),(1,3),(2,6)A B C --.(1)求△ABC 的外接圆方程;(2)若点A 关于直线BC 的对称点为D ,求点C 到直线AD 的距离.16.如图,直三棱柱111ABC A B C -的所有棱长均为2,,E F 分别是1,AC CC 的中点.(1)证明:平面BEF ⊥平面11AAC C ;(2)求直线1A B 与平面BEF 所成角的余弦值.17.已知圆22:4640C x y x y +--+=.(1)若直线l 经过点()1,3A --,且与圆C 相切,求直线l 的方程;(2)设点(3,2)D ,点E 在圆C 上,M 为线段DE 的中点,求M 的轨迹的长度.18.已知椭圆2222:1(0)x y C a b a b +=>>的右焦点为0)F ,且离心率为63.(1)求椭圆C 的方程;(2)直线l 经过F 且与椭圆C 交于,M N 两点,证明:当且仅当直线l 与圆222x y b +=相切时MN =19.如图1,△ABC是等边三角形,△DAC为等腰直角三角形,DA DC==.将△DAC 沿AC翻折到△PAC位置,且点P不在平面ABC内(如图2).点F在线段PB上(不含端点).⊥;(1)证明:AC PB(2)直线PC与AB所成角的余弦值为.4①直线PB与平面ACF所成角为60°时,求PF;②设平面ACF与平面PBC的夹角为α,求sinα的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省启东中学2019-2020学年度第一学期期初考试高二数学试卷命题人:陈存勤一、选择题:1.已知集合A ={x |x 2-3x -4<0},B ={x |(x -m )[x -(m +2)]>0},若A ∪B =R ,则实数m 的取值范围是 ( )A. (-1,+∞)B. (-∞,2)C. (-1,2)D. [-1,2]2.若函数f (x )=⎩⎨⎧>≤---7,7,3)3(6x a x x a x 单调递增,则实数a 的取值范围是 ( ) A.)3,49( B. )3,49[ C. (1,3)D. (2,3)3.设ω是正实数,函数f (x )=2cos ωx 在x ∈⎣⎢⎡⎦⎥⎤0,2π3上是减函数,那么ω的值可以是( )A. 12 B. 2 C. 3D. 44.已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则 ( )A. x -=4,s 2<2 B. x -=4,s 2>2 C. x ->4,s 2<2D. x ->4,s 2>25.甲、乙两个人进行“剪子、包袱、锤”的游戏,两人都随机出拳,则一次游戏两人平局的概率为 ( )A. 13B. 23C. 14D. 296.如图,在△ABC 上,D 是BC 上的点,且AC =CD ,2AC =3AD ,AB =2AD ,则sin B=( )A. 63B. 33C.66D.367.在正方体ABCD -A 1B 1C 1D 1中,异面直线A 1B 与AD 1所成角的大小为( )A. 30°B. 45°C. 60°D. 90°8. l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是 ( )A. l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B. l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C. l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D. l 1,l 2,l 3共点⇒l 1,l 2,l 3共面9.《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高,计算其体积V 的近似公式V ≈148L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为4,那么近似公式V ≈175L 2h 相当于将圆锥体积公式中π的近似取为 ( )A.256 B. 258 C. 253 D. 25410.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A +PB 的取值范围 ( )A. [5,2 5]B. [10,2 5]C. [10,4 5]D. [2 5,4 5]二、填空题:11.定义在(-∞,0)∪(0,+∞)上的奇函数f (x ),若函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式xx f )(的解集为________. 12.若直线y =k (x -2)+4与曲线y =1+4-x 2有两个交点,则实数k 的取值范围是 .13.若点P 是△ABC 内的一点,且满足P A →+PB →+PC →=0,则S △P AB S △ABC=________.14.如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°、相距10海里C 处的乙船,若设乙船朝北偏东θ弧度的方向沿直线前往B 处救援,则sin θ=________.15.有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________.16.已知直三棱柱ABC-A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 . 三、解答题:17.设全集U =R ,集合A ={x |1≤x <4},B ={x |2a ≤x <3-a }.(1) 若a =-2,求B ∩A ,B ∩∁U A ; (2) 若A ∪B =A ,求实数a 的取值范围.18.在△ABC 中,AB =6,AC =32,AB →·AC →=-18.(1) 求BC 的长; (2) 求tan2B 的值.19.某市规定,高中学生在校期间须参加不少于80小时的社区活动才取得学分.某校随机抽取了20位学生参加社区活动的数据,按时间段[75,80),[80,85),[85,90),[90,95),[95,100](单位:小时)进行统计,其频率分布直方图如图所示.(1) 求抽取的20人中,参加社区活动时间不少于90小时的学生人数;(2) 从参加社区活动时间不少于90小时的学生中任意选取2人,求所选学生的参加社区活动时间在同一时间段内的概率.20.如图,在平面直角坐标系x O y 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1) 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程;(2) 设平行于OA 的直线l 与圆M 相交于B ,C 两点,且BC =OA ,求直线l的方程.21.如图,在三棱锥P-ABC中,P A⊥底面ABC,∠BAC=90°.点D,E,N分别为棱P A,PC,BC的中点,M是线段AD的中点,P A=AC=4,AB=2.(1)求证:MN∥平面BDE;(2)求二面角C - EM - N的正弦值;(3)已知点H在棱P A上,且直线NH与直线BE所成角的余弦值为721,求线段AH的长.22.已知函数f(x)=3-2lo g2 x,g(x)=log2 x.(1) 如果x∈[1,4],求函数h(x)=[f(x)+1]g(x)的值域;(2) 求函数M(x)=2|)( )(|)()(xgxfxgxf--+的最大值;(3) 如果对不等式f(x2)f(x)>kg(x)中的任意x∈[1,4],不等式恒成立,求实数k的取值范围.江苏省启东中学高二数学期初测试卷一、选择题:1、已知集合A ={x |x 2-3x -4<0},B ={x |(x -m )[x -(m +2)]>0},若A ∪B =R ,则实数m 的取值范围是( ) A. (-1,+∞) B. (-∞,2) C. (-1,2)D. [-1,2]答案:C 解析:集合A ={x |x 2-3x -4<0}=(-1,4),集合B ={x |(x -m )[x -(m +2)]>0}=(-∞,m )∪(m +2,+∞),若A ∪B =R ,则⎩⎨⎧m >-1,m +2<4,解得m ∈(-1,2),故选C. 2、若函数f (x )=单调递增,则实数a 的取值范围是( ) A. ⎝ ⎛⎭⎪⎫94,3 B. ⎣⎢⎡⎭⎪⎫94,3 C. (1,3)D. (2,3)答案:B 解析:因为函数f (x )=⎩⎨⎧(3-a )x -3,x ≤7,a x -6,x >7单调递增,由指数函数以及一次函数的单调性的性质,可得3-a >0且a >1.但应当注意两段函数在衔接点x =7处的函数值大小的比较,即7(3-a )-3≤a ,解得a ≥94,综上,实数a 的取值范围是⎣⎢⎡⎭⎪⎫94,3.故选B.3、设ω是正实数,函数f (x )=2cos ωx 在x ∈⎣⎢⎡⎦⎥⎤0,2π3上是减函数,那么ω的值可以是( )A. 12 B. 2 C. 3D. 4答案:A 解析:由题意可知函数的最小正周期T =2πω≥2⎝ ⎛⎭⎪⎫2π3-0,解得ω≤32,结合选项可知只有A 符合.故选A.4、已知某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的平均数为x -,方差为s 2,则( ) A. x -=4,s 2<2 B. x -=4,s 2>2 C. x ->4,s 2<2D. x ->4,s 2>2答案:A 解析:某7个数的平均数为4,方差为2, 则这8个数的平均数为x -=18×(7×4+4)=4, 方差为s 2=18×[7×2+(4-4)2]=74<2.5、甲、乙两个人进行“剪子、包袱、锤”的游戏,两人都随机出拳,则一次游戏两人平局的概率为( )A. 13B. 23C. 14D. 29答案:A 解析:甲、乙两个人进行“剪子、包袱、锤”的游戏,所有可能出现的结果列表如下:甲 乙 锤 剪子 包袱 锤 (锤,锤) (锤,剪子) (锤,包袱) 剪子 (剪子,锤) (剪刀,剪子) (剪子,包袱) 包袱(包袱,锤)(包袱,剪子)(包袱,包袱))、(剪子,剪子)、(包袱,包袱).所以甲和乙平局的概率为39=13. =36、如图,在△ABC 上,D 是BC 上的点,且AC =CD,2AC AD ,AB =2AD ,则sin B =( )A. 63 B. 33 C. 66D. 36答案:C 解析:由题意设AD =2x ,则AC =CD =3x ,AB =4x .在△ADC 中,由余弦定理可得cos ∠ADC =4x 2+3x 2-3x 22·2x ·3x =33,所以sin ∠ADB =sin ∠ADC =1-⎝ ⎛⎭⎪⎫332=63, 所以在△ADB 中,由正弦定理可得sin B =AD sin ∠ADB AB =2x ·634x =66.故选C. 7、在正方体ABCD -A 1B 1C 1D 1中,异面直线A 1B 与AD 1所成角的大小为( )A. 30°B. 45°C. 60°D. 90°答案:C 解析:因为A 1B ∥D 1C ,所以异面直线A 1B 与AD 1所成的角为∠AD 1C .因为△AD 1C 为等边三角形,所以∠AD 1C =60°.故选C.8、l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A. l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B. l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C. l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D. l 1,l 2,l 3共点⇒l 1,l 2,l 3共面答案:B 解析:对于A ,如正方体,从同一个顶点出发的三条棱两两垂直,A 错;对于B ,因为l 1⊥l 2,所以l 1,l 2所成的角是90°,又因为l 2∥l 3所以l 1,l 3所成的角是90°,所以l 1⊥l 3,B 对;对于C ,例如三棱柱中的三侧棱平行,但不共面,故C 错;对于D ,例如三棱锥的三侧棱共点,但不共面,故D 错.9、《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“盖”的术:置如其周,令相承也.又以高乘之,三十六成一.该术相当于给出了有圆锥的底面周长L 与高,计算其体积V 的近似公式V ≈148L 2h ,它实际上是将圆锥体积公式中的圆周率π近似取为4,那么近似公式V ≈175L 2h 相当于将圆锥体积公式中π的近似取为( )A. 256B. 258C. 253D. 254答案:D 解析:设圆锥的底面半径为r ,则圆锥的底面周长L =2πr ,所以r =L2π,所以V =13πr 2h =13π×L 24π2×h =L 212πh .令L 212πh =175L 2h ,得π=7512=254.10、设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则P A +PB 的取值范围是( )A. [5,2 5]B. [10,2 5]C. [10,4 5]D. [2 5,4 5]答案:B 解析:由题意可知,动直线x +my =0经过定点A (0,0),动直线mx -y -m +3=0即m (x -1)-y +3=0经过定点B (1,3),因为动直线x +my =0和动直线mx -y -m +3=0的斜率之积为-1,始终垂直,P 又是两条直线的交点,所以P A ⊥PB , 所以P A 2+PB 2=AB 2=10.设∠ABP =θ, 则P A =10sin θ,PB =10cos θ, 由P A ≥0且PB ≥0,可得θ∈⎣⎢⎡⎦⎥⎤0,π2.所以P A +PB =10(sin θ+cos θ) =2 5sin ⎝ ⎛⎭⎪⎫θ+π4.因为θ∈⎣⎢⎡⎦⎥⎤0,π2,所以θ+π4∈⎣⎢⎡⎦⎥⎤π4,3π4,所以sin ⎝ ⎛⎭⎪⎫θ+π4∈⎣⎢⎡⎦⎥⎤22,1,所以2 5sin ⎝ ⎛⎭⎪⎫θ+π4∈[10,2 5].故选B.二、填空题:11、定义在(-∞,0)∪(0,+∞)上的奇函数f (x ),若函数f (x )在(0,+∞)上为增函数,且f (1)=0,则不等式f (x )x <0的解集为________.(-1,0)∪(0,1) 解析:由题意得到f (x )与x 异号,故不等式f (x )x <0可转化为⎩⎨⎧ x <0,f (x )>0)或⎩⎨⎧x >0,f (x )<0,)根据题意可作函数图象,如图所示:由图象可得:当f (x )>0,x <0时,-1<x <0;当f (x )<0,x >0时,0<x <1,则不等式f (x )x <0的解集是(-1,0)∪(0,1).12、若直线y =k (x -2)+4与曲线y =1+4-x 2有两个交点,则实数k 的取值范围是解析:曲线y =1+4-x 2可化为x 2+(y -1)2=4,y ≥1,所以曲线为以(0,1)为圆心,2为半径的圆在y ≥1的部分.直线y =k (x -2)+4过定点P (2,4),由图知,当直线经过点A (-2,1)时恰与曲线有两个交点,顺时针旋转到与曲线相切时交点变为一个.且k AP =4-12+2=34,由直线与圆相切得d =|-1+4-2k |k 2+1=2,解得k =512,则实数k 的取值范围为⎝ ⎛⎦⎥⎤512,34.13、若点P 是△ABC 内的一点,且满足P A →+PB →+PC →=0,则S △P AB S △ABC=_________1314、如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°、相距10海里C 处的乙船,若设乙船朝北偏东θ弧度的方向沿直线前往B 处救援,则sin θ=________.147515、有一根高为3π,底面半径为1的圆柱形铁管,用一段铁丝在铁管上缠绕2圈,并使铁丝的两个端点落在圆柱的同一母线的两端,则铁丝的最短长度为________5π16、已知直三棱柱ABC-A 1B 1C 1中,∠ABC =120°,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为 。

相关文档
最新文档