多元回归模型
第三章 多元线性回归模型

即
Y Xb U
X 称为数据矩阵或设计矩阵。
6
二、古典假定
假定1:零均值假定 E(ui ) 0 (i 1,2,...,n)
1 E ( 1 ) E ( ) 2 2 E (μ) E 0 n E ( n )
写成矩阵形式:
Y1 1 X 21 Y 1 X 22 2 Yn 1 X 2 n X 31 X k 1 b 1 u1 X 32 X k 2 b 2 u 2 X 3 n X kn b k un
或
ei 1 X 21 X e 1 X 22 2i i X ki ei 1 X 2 n X 31 X k 1 e1 X 32 X k 2 e2 X e 0 X 3 n X kn en
9
当总体观测值难于得到时,回归系数向 量 b 是未知的,这时可以由样本观测值进行 估计,可表示为
ˆ ˆ Xb Y
但实际观测值与计算值有偏差,记为:
ˆ e Y Y
于是
ˆ e Y Xb
称为多元样本回归函数。
10
ˆ b 1 ˆ b2 ˆ b ˆ b k
同理
ˆ x x b ˆ x 2 x3 i yi b 2 2i 3i 3 3i
x2 i yi x x3 i yi x2 i x3 i ˆ b2 2 2 2 x2 x ( x x ) i 3i 2i 3i
2 3i
x3 i yi x x2 i yi x2 i x3 i ˆ b3 2 2 2 x2 x ( x x ) i 3i 2i 3i
多元线性回归模型

Cov( X ji , i ) 0
j 1,2, k
假设4,随机项满足正态分布
i ~ N (0, 2 )
上述假设的矩阵符号表示 式:
假设1,n(k+1)维矩阵X是非随机的,且X的秩=k+1,
即X满秩。
回忆线性代数中关于满秩、线性无关!
假设2,
E (μ)
E
1
E (1 )
0
n E( n )
X ki ) ) X 1i ) X 2i
Yi Yi X 1i Yi X 2i
(ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ) X ki Yi X ki
解该( k+1)个方程组成的线性代数方程组,即
可得到(k+1) 个待估参数的估计值
$ j
,
j
0,1,2, ,
k
。
□正规方程组的矩阵形式
en
二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且各X之间互不 相关(无多重共线性)。
假设2,随机误差项具有零均值、同方差及不序列相关 性。
E(i ) 0
i j i, j 1,2,, n
Var
(i
)
E
(
2 i
)
2
Cov(i , j ) E(i j ) 0
假设3,解释变量与随机项不相关
这里利用了假设: E(X’)=0
等于0,因为解释变 量与随机扰动项不相 关。
3、有效性(最小方差性)
ˆ 的方差-协方差矩阵为
Co(v ˆ) E{[ˆ E(ˆ)][ˆ E(ˆ)]}
E[(ˆ )(ˆ )]
E{([ X X)-1X ]([ X X)-1X ]}
第三章多元线性回归模型(计量经济学,南京审计学院)

Yˆ 116.7 0.112X 0.739P
R2 0.99
(9.6) (0.003) (0.114)
Y和X的计量单位为10亿美元 (按1972不变价格计算).
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
3
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
c (X X )1 X D
从而将 的任意线性无偏估计量 * 与OLS估计量 ˆ 联系
起来。
28
cX I
由
可推出:
(X X )1 X X DX I
即 I DX I
因而有 D X 0
cc (X X )1 X D (X X )1 X D ( X X )1 X D X ( X X )1 D
第三章 多元线性回归模型
简单线性回归模型的推广
1
第一节 多元线性回归模型的概念
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
Yt β0 β1X1t β2 X 2t ... βk X kt ut t=1,2,…,n
Yt
ˆ0
βˆ 1
X
1t
... βˆ K X Kt
2
为最小,则应有:
S
S
S
ˆ0 0, ˆ1 0, ..., ˆ K 0
我们得到如下K+1个方程(即正规方程):
13
β0 n
β1 X1t ...... β K X Kt Yt
β 0 X 1t β1 X 1t 2 ...... β K X 1t X Kt X 1tYt
多元线性回归模型的矩阵表示课件

直线计算 Yi的理论值,然后计算回归残差序列,
再结合样本数据进行计算。
25
第四节 统计推断和预测
一、参数估计量的标准化 二、统计推断和检验 三、预测
26
一、参数估计量的标准化
在满足模型假设的情况下,多元线性回归模型 参数的最小二乘估计量是线性无偏估计。
Y1 0 1 X 11 K X K1 1
Yn 0 1 X 1n K X K n
Y1
Y
Yn
X i1
X i
X i n
1
l
1
0
K
1
n
1 X11 X K1
X l, X1,, X K
1 X1n X Kn
Y 0 1 X 1 2 X 2 K X K X
S.E. of regression 0.007246 Akaike info criterion -6.849241
Sum squared resid 0.000683 Schwarz criterion -6.704381
Log likelihood 57.79393 F-statistic
(1)、变量Y和X1,X K 之间存在多元线性随
机函数关系 Y 0 1X1 K X K ;
(2)、Ei 0 对任意 i 都成立;
(3)、Vari 2 ,与 i 无关;
(4)、误差项不相关,当 i j 时,E i j 0
(5)、解释变量都是确定性的而非随机变量, 且解释变量之间不存在线性关系;
bk k
seˆ(bk )
= bk
seˆ(bk )
t / 2(n-K-1)
如果t 统计量数值不满足上述不等式,意味着 可以拒绝原假设,不能认为第k个解释变量是 不重要的,称模型的第k个解释变量通过了显
多元回归模型分析案例

多元回归模型分析案例回归模型是统计学中最常用的分析方法之一,是一种用来预测两个或多个变量之间的关系的方法。
这种模型可以用来估算单独变量以及组合变量对信息或结果的影响。
多元回归模型是具有两个或多个自变量的回归模型,它在预测和分析多变量之间的关系时特别有用。
本文旨在提供一个用多元回归模型分析的案例。
首先,本文将介绍多元回归模型的基本原理,并详细阐述案例中使用的各项数据。
接下来,将对案例中遇到的问题进行详细讨论,并介绍多元回归模型的具体应用。
最后,将对分析的结果进行讨论,以便判断回归模型的准确性。
一、多元回归模型的基本原理多元回归模型是一种建立在一组多元数据上的回归模型,它用一个线性函数根据观察数据预测一个特定变量。
基本形式为:Y=+βX1+βX2+...+βXn其中,Y是被预测变量,X1,X2,…,Xn是影响Y的因素。
β1,β2,…,βn是模型中所有自变量的系数,通过这些系数可以计算出每个因素对Y的影响程度。
多元回归模型需要解决的重要任务是:从观察的多变量数据中提取有用的信息,并确定Y的影响因素,并用这些因素来构建一个反映实际情况的模型,以评估变量对Y的影响程度。
因此,多元回归模型在分析多变量数据时非常有用。
二、案例介绍本文使用多元回归模型分析一年级学生的成绩,以探究学生成绩的影响因素及其对成绩的影响程度。
案例中共有20名一年级学生,每个学生的数据包括学生的学习和社交能力以及准备考试的时长等三个自变量。
其中学习能力和准备时长的取值范围分别为1-10,社交能力的取值范围为1-5。
案例数据如下:学生习能力交能力备时长绩1 8 3 7 772 4 2 8 553 7 5 5 654 6 1 6 675 9 4 7 84.....20 7 1 5 63三、案例问题分析本案例旨在探究一年级学生成绩的影响因素及其对成绩的影响程度,而这种因果关系很难仅用一句话来表达,只有使用多元回归模型才能获得更准确的结果。
在分析案例时,学习能力、社交能力和准备时长这三个自变量的影响是需要考虑的重要因素。
计量经济学-多元线性回归模型

Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断
多元线性回归模型

第三章 多元线性回归模型基本概念(1)多元线性回归模型; (2)偏回归系数;(3)正规方程组; (4)调整的多元可决系数; (5)多重共线性; (6)假设检验; 练习题1. 多元线性回归模型的基本假设是什么?试说明在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用?2.在多元线性回归分析中,t 检验与F 检验有何不同?在一元线性回归分析中二者是否有等价的作用?3.为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么样的条件下,受约束回归与无约束回归的结果相同?4.在一项调查大学生一学期平均成绩(Y )与每周在学习(1X )、睡觉(2X )、 娱乐(3X )与其他各种活动(4X )所用时间的关系的研究中,建立如下回归模型: 011223344Y X X X X u βββββ=+++++如果这些活动所用时间的总和为一周的总小时数168。
问:保持其他变量不变,而改变其中一个变量的说法是否有意义?该模型是否有违背基本假设的情况? 如何修改此模型以使其更加合理?5.表3-1给出三变量模型的回归结果。
表 3-1(1)求样本容量n ,残差平方和RSS ,回归平方和ESS 及残差平方和RSS 的自由度。
(2)求拟合优度2R 及调整的拟合优度2R -。
(3)检验假设:2X 和3X 对Y 无影响。
应采用什么假设检验?为什么? (4)根据以上信息,你能否确定3X 和3X 各自对Y 的影响?6.某地区通过一个样本容量为722的调查数据得到劳动力受教育的一个回归方程为 12310.360.0940.1310.210Y X X X =-++20.214R =其中,Y 为劳动力受教育年数,1X 为该劳动力家庭中兄弟姐妹的人数,2X 与3X 分别为母亲与父亲受教育的年数。
问:(1) 1X 是否具有预期的影响?为什么?若2X 与3X 保持不变,为了使预测的受教育水平减少一年,需要1X 增加多少?(2)请对2X 的系数给予适当的解释。
多元线性回归模型原理

多元线性回归模型原理Y=β0+β1*X1+β2*X2+...+βn*Xn+ε其中,Y表示因变量,X1、X2、..、Xn表示自变量,β0、β1、β2、..、βn表示模型的参数,ε表示误差项。
通过对数据进行拟合,即最小化误差平方和,可以估计出模型的参数。
多元线性回归模型的原理是基于最小二乘法,即通过最小化残差平方和来估计参数的值。
残差是指模型预测值与真实值之间的差异,最小二乘法的目标是找到一组参数,使得所有数据点的残差平方和最小。
通过求解最小二乘估计,可以得到模型的参数估计值。
为了评估模型的拟合程度,可以使用各种统计指标,例如R方值、调整R方值、标准误差等。
R方值表示模型解释因变量方差的比例,取值范围在0到1之间,值越接近1表示模型对数据的拟合程度越好。
调整R方值考虑了模型中自变量的个数和样本量之间的关系,可以更准确地评估模型的拟合程度。
标准误差表示模型预测值与真实值之间的标准差,可以用于评估模型的预测精度。
在建立多元线性回归模型之前,需要进行一些前提条件的检查,例如线性关系、多重共线性、异方差性和自变量的独立性。
线性关系假设要求自变量与因变量之间存在线性关系,可以通过散点图、相关系数等方法来检验。
多重共线性指的是自变量之间存在高度相关性,会导致参数估计的不稳定性,可以使用方差膨胀因子等指标来检测。
异方差性指的是残差的方差不恒定,可以通过残差图、方差齐性检验等方法来检验。
自变量的独立性要求自变量之间不存在严重的相关性,可以使用相关系数矩阵等方法来检验。
当满足前提条件之后,可以使用最小二乘法来估计模型的参数。
最小二乘法可以通过不同的方法来求解,例如解析解和数值优化方法。
解析解通过最小化误差平方和的一阶导数为零来求解参数的闭式解。
数值优化方法通过迭代来求解参数的数值估计。
除了最小二乘法,还有其他方法可以用于估计多元线性回归模型的参数,例如岭回归和lasso回归等。
岭回归和lasso回归是一种正则化方法,可以对模型进行约束,可以有效地避免过拟合问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3 多元回归参数的估计
双变量模型 OLS法:残差平方和最小
OLS估计法的基本原理
对于随机抽取的n组观测值 (Yi , X ji ), i 1,2, , n, j 0,1,2, k
可以得到Y的拟合值:
Yˆi bˆ0 bˆ1 X1i bˆ2 X 2i bˆki X Ki i=1,2…n
影响斜率估计量方差的因素
1、总体的方差
Var(Y)
σ²
2、解释变量的变化程度
x ∑ j²
3、和其他解释变量的线性相关程度 Rj ²
Var(bi )
σ²
x Var(bj ) = ∑ j²(1-Rj²)
其中,Rj ²为第j个解释变量对其余解释变 量进行回归得到的拟合优度:反映了第j个解 释变量和其他变量的线性相关关系
1、更准确地估计斜率:无偏估计量 2、更好地说明被解释变量的变化:引入 了更多的解释变量
多元回归模型
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
1、K个解释变量 2、k+1个待估参数
3、 b0称为截距, b1 到 bk称为斜率
3.2 多元线性回归模型的第6个假设
一元线性回归模型关于随机误差项的五个 假设 新增的关于多个解释变量之间关系的假设
案例:教育对工资的影响
wage = b0 + b1 educ + b2 exper +
请解释b1的含义
采用一元回归模型和二元回归模型估计出的
b1相等吗?
wage = b0 + b1 educ + wage = b0 + b1 educ + b2 exper +
运行eviews验证
多元回归分析的优势
多重共线性
1、完全共线性 Rj ² =1 如果存在完全共线性,则不能应用OLS估 计法 2、多重共线性 Rj ²接近于1 后果:估计量的方差较大,导致估计结果 不准确
E(exper | 9)
大学学历人群的平均工作经验:
E(exper | 16)
如何处理工作经验的影响
wage = b0 + b1 educ +
即使我们关心的是教育对工资的影响,
如果把exper放在中,就不能得到b1的
无偏估计量 解决的方法: 多元回归分析
多元回归分析
Y= b0 + b1x1 + b2 x2 + µ 请解释b1在上述二元回归模型中的含义 给定保持x2不变……
E(i)=0
i=1,2, …,n
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
假设3、随机误差项同方差 Var (i)=2 i=1,2, …,n
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
假设4、随机误差项无序列相关 Cov(i, j)=0 i≠j i,j= 1,2, …,n
第3章 多元回归
7、如何预测被解释变量的期望值? 8、如何预测被解释变量的值?
3.1 三变量线性回归模型
一元回归分析的弱点
Y = b0 + b1X+ µ b1刻划了解释变量X对Y的影响 其他影响Y的因素被放入µ当中
一元回归分析的弱点
Y = b0 + b1X+ µ
要用OLS法得到b1的无偏估计量,必要条
二元回归模型
Y= b0 + b1x1 + b2x2 + µ
1、确定性部分: b0 + b1x1 + b2x2 E(Y| X1 , X2) 2、随机性部分: µ
Var(Y)
被解释变量的期望值
E(Y| X1 , X2)= b0 + b1x1 + b2x2
b1表示给定x2保持不变,x1变化一个单
位,引起的Y的均值的改变量 多元回归分析可以使我们明确控制其他 影响因素
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
假设1、随机误差项与各解释变量X之间不相关(更 强的假设是各个解释变量X都是确定性变量,不是随 机变量,这样假设1自动满足)
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
假设2、随机误差项具有零均值
colGPA = b0 + b1hsGPA + b2ACT + b1的含义?
Eviews
运用Eviews,得到如下估计结果: colGPA = 1.29 + 0.45hsGPA + 0.0094ACT
请解释: 1、1.29 2、0.45 3、0.0094
错误的简单回归分析
被解释变量:大学平均成绩colGPA 解释变量: 大学能力测验分数ACT colGPA = 2.40 + 0.027ACT 请比较: 多元回归分析:0.0094 一元回归分析:0.027
Y= b0 + b1x1 + b2x2 + . . . bkxk + µ
假设5、服从正态分布 i~N(0, 2 )
i=1,2, …,n
Y= b0 + b1x1 + b2x2 +. . . bkxk + µ
假设6、Xi之间无完全的线性相关关系(完全共 线性)
即任何一个Xi都不能被表示成其他解释变量的线性 函数 例如,
根据最小二乘原理,参数估计值应该是下列方程组的解
bˆ
0
Q
0
bˆ1
Q
0
bˆ
2
Q
0
bˆ k
Q
0
其中
n
n
Q ei2 (Yi Yˆi ) 2
i 1
i 1
nLeabharlann 2(Yi (bˆ0 bˆ1 X 1i bˆ2 X 2i bˆk X ki ))
i 1
案例分析:大学平均成绩
被解释变量:大学平均成绩colGPA 解释变量: (1)高中平均成绩hsGPA; (2)大学能力测验分数ACT 计量模型:
件是:
µ与X不相关,或者说,
E(µ | Xi) = 0(零条件均值假定)
案例分析:工资与教育
被解释变量:工资(1976年每小时美元数) 解释变量:教育(年数) 计量模型:
wage = b0 + b1 educ +
b1的含义?
b1 > 0
E(µ | Xi) = 0不成立的情况
案例:影响工资的其他因素 例如,工作经验exper 初中学历人群的平均工作经验:
OLS估计量的性质
1、无偏性 含义?
E(bi )= bi
2、有效性 含义?
斜率估计量的方差.
σ²
x Var(bj ) = ∑ j²(1-Rj²)
x 其中,∑ j²为第j个解释变量的离差平方和
Rj ²为第j个解释变量对其余解释变量进行回 归得到的拟合优度:反映了第j个解释变量和 其他变量的线性相关关系