非线性最小二乘法Levenberg-Marquardt method
matlab中的levenberg-marquard方法

在MATLAB中,你可以使用`lsqnonlin`函数来实现Levenberg-Marquardt方法。
Levenberg-Marquardt方法是一种非线性最小二乘问题的优化算法,用于求解具有高度非线性的目标函数的最优解。
该方法通过调整参数来平衡最速下降法和高斯-牛顿法之间的权衡,从而实现更快的收敛速度和更好的稳定性。
下面是使用Levenberg-Marquardt方法求解非线性最小二乘问题的基本步骤:1. 定义目标函数:首先需要定义一个非线性函数,表示你想要求解的最小二乘问题。
2. 定义初始参数估计值:根据问题的特点,给出一个初始的参数估计值。
3. 定义残差函数:将目标函数与实际观测数据之间的差异定义为残差函数。
4. 调用`lsqnonlin`函数:使用`lsqnonlin`函数来求解最小二乘问题。
该函数需要输入目标函数、初始参数估计值和残差函数,并返回最优的参数估计值。
以下是一个简单的示例代码,演示如何在MATLAB中使用Levenberg-Marquardt方法求解非线性最小二乘问题:```matlab定义目标函数fun = @(x) x(1)*exp(-x(2)*[1:10]) - [2, 4, 6, 8, 10, 12, 14, 16, 18, 20];定义初始参数估计值x0 = [1; 0.1];定义残差函数residuals = @(x) norm(fun(x));调用lsqnonlin函数求解最小二乘问题options = optimoptions('lsqnonlin', 'Algorithm', 'levenberg-marquardt');x = lsqnonlin(residuals, x0, [], [], options);disp('最优参数估计值:');disp(x);```在上述示例中,我们首先定义了一个目标函数`fun`,然后给出了初始参数估计值`x0`。
leveberg-marquadt算法

leveberg-marquadt算法
它是使用最广泛的非线性最小二乘算法,中文为列文伯格-马夸尔特法。
它是利用梯度求最大(小)值的算法,形象的说,属于“爬山”法的一种。
它同时具有梯度法和牛顿法的优点。
当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。
Levenberg-Marquardt算法是最优化算法中的一种。
最优化是寻找使得函数值最小的参数向量。
它的应用领域非常广泛,如:经济学、管理优化、网络分析、最优设计、机械或电子设计等等。
根据求导数的方法,可分为2大类。
第一类,若f具有解析函数形式,知道x后求导数速度快。
第二类,使用数值差分来求导数。
根据使用模型不同,分为非约束最优化、约束最优化、最小二乘最优化。
第六章LevenbergMarquardt方法

:
min t
f
(xk
td k
)。
Step5 :若||
AT k
f
(xk
) ||
,
则x*
xk1 , 算法结束;否则,
k : k 1,转Step2。
Gauss-Newton 法的优缺点: 优点:
(1) 对于零残量问题(即 f (x) 0),有局部二阶收敛速度. (2) 对于小残量问题(即 f (x)较小,或者接近于线性),有快的
fi ( xk x j
)
Ak
;
g(k) j
m
i 1
fi ( xk
) fi ( xk x j
)
gk 。
Step 3 : 令 d k
( AkT gk
Ak )1
AT k
AT k
f
f (xk
( )
x
k
)
如果rank( A) n 如果rank( A) n
Step4 : 令
x k 1
xk
tkd k , 其中tk
考虑如下的信赖域模型:
min s.t.
f (xk ) A(xk )(x xk ) 2
.
x xk 2 hk
其中hk 为信赖域半径.
这个方程的解可由解如下方程组得到:
A xk T A xk k I z A xk T f (xk )
(7)
从而:
xk1 xk
6.采用进退方法调整:一次成功迭代后将缩小,迭代 遇到困难时将放大。 7. 调整算法: 初始:给定步长放大因子 1和步长缩小因子0 1,
给定f ( x), 初始点 x,的初值,控制终止常数 。
Step1 : 求解( A( x)T A( x) I )z AT ( x) f ( x)得z 。
第四章-非线性最小二乘法

(公式4)
非线性最小二乘法公式化简
则F ( x ) 的梯度向量可写为
g ( x) 2 J ( x)
T
f ( x)
(公式5)
其海色(Hesse)矩阵可写为
G ( x ) 2 J ( x ) J ( x ) 2 f i ( x ) f i ( x )
T 2 i 1 m
(公式6)
否则求解线性方程组得到在许多实际问题中当局部解对应的目标函数值接近于0这时如果当迭代点接近较小gaussnewton法可望有较好的效果高斯牛顿法gaussnewton法levenbergmarquardt算法为了克服为奇异时gn算法所遇到的困难levenberg在1944年久提出用方程组公式12来计算修正量其中是一个在迭代过程中调整的参数但它的工作很少受到注意1963年marquardt重新提出后才受到广泛的应用所以被称为levenbergmarquardt算法
x
(k )
(k )
,并计算
F k 1 F k Jk f
T (k )
rk
2
(k )
T
(k )
T
J k J k
T
(k )
④若 rk
0 . 25 ,则置 v k 1 4 v k
;否则,如果 r
k
0 .75
,则置
;否则置 ⑤置 k k 1 ,转②
v k 1 v k / 2
k p
*
非线性最小二乘法的其他算法
• • • • • • 修正阻尼最小二乘法(MDLS方法) Powell混合算法 法方程求解 拟牛顿法 Gill-Murray方法 一般极小化方法和混合方法
2
第六章 Levenberg-Marquardt方法

T
f ( xk )
(7)
T
从而:
x
k 1
x A x
A x
k 1
k
T
A x
T
k
k I
1
A xk f (xk ) .
由于 A x A x I 正定(适当调整 ), 从而(7)产生的方向
如果
A x
k T
A x k f ( x k ) hk ,则 k 0 ;否则 k 0 .
S ( x ) f ( x ) A ( x x ) A d f ( x ) k
k k k
k k T k k [ A d f ( x ) ] [ A d f ( x ) ] , k k
k k 其中: d x x 。
2 k
2 k
k k T k k 记 ( x ) [ A d f ( x ) ] [ A d f ( x ) ] , 则可 min ( x ) k k
非线性最小二乘法
• 1.改进的Gauss-Newton法 • 2.Levenberg-Marquardt方法 • 3.信赖域(Biblioteka -M)方法一、非线性最小二乘法
1.一般形式:
min S ( x ) f ( x ) f ( x ) f ( x )
T 2
T 其中: f ( x ) ( f ( x ), f ( x ),..., f ( x )) 1 2 m T x ( x , x ,..., x ) 1 2 n ;
Step 2 : 若 S ( x z ) S ( x ), 则令 : 并返回 Step 1 。
levenberg-marquardt方法

levenberg-marquardt方法Levenberg-Marquardt方法是一种数值优化方法。
该方法主要是解决非线性最小二乘问题,是用于求解参数估计、函数拟合等问题的重要手段。
本文主要介绍Levenberg-Marquardt方法的原理、算法以及应用。
一、Levenberg-Marquardt方法的原理在介绍Levenberg-Marquardt方法之前,我们先介绍最小二乘问题。
最小二乘问题可以表示为:$$\min_{x\in R^n}||f(x)||_2^2$$其中,$f(x)$是一个从$R^n$到$R^m$,$m>n$的非线性函数。
我们要找到一个向量$x$,使得$f(x)$的平方范数最小。
我们可以使用梯度下降等方法进行求解,但是,这些方法存在收敛慢、易陷入局部最优等问题。
Levenberg-Marquardt方法就是为了解决这些问题而出现的。
Levenberg-Marquardt方法的主要思想是在牛顿法中加入一个衰减因子,这个衰减因子可以保证算法更快、更稳定地收敛到最优解。
具体而言,Levenberg-Marquardt方法将牛顿法中的Hessian矩阵加上一个一定的正定矩阵,这个正定矩阵的大小可以动态调整。
当这个矩阵的大小较小时,Levenberg-Marquardt方法就相当于梯度下降法;当这个矩阵的大小较大时,Levenberg-Marquardt方法就相当于牛顿法。
这个正定矩阵的大小可以通过迭代过程中的误差大小来动态调整。
二、Levenberg-Marquardt方法的算法Levenberg-Marquardt方法的算法可以表示为:输入:函数$f(x)$,初值$x_0$,最大迭代次数$maxIter$,误差容限$eps$,衰减因子$\lambda$,正定矩阵$J^TJ$。
输出:使得$f(x)$的平方范数最小的解$x$。
1.令$x=x_0$,$k=0$。
2.计算函数$f(x)$在$x$处的梯度$g_k=J_k^T(y_k-f_k)$,其中$y_k$是$f(x)$的近似值,$J_k$是$f(x)$在$x$处的雅可比矩阵,$f_k=f(x_k)$。
levenberg-marquardtalgorithm最小二乘算法

levenberg-marquardtalgorithm最小二乘算法Levenberg-Marquardt算法是一种用于求解非线性最小二乘问题的迭代算法。
它结合了Gauss-Newton方法和梯
度下降法的思想,通过迭代更新参数来最小化目标函数(即
残差平方和)。
算法的基本步骤如下:
1.初始化参数向量θ^0,选择一个足够小的正数μ>0和足够大的正数β>0。
2.对于k=0,1,2,...,直到收敛:
a.计算残差向量r=y−F(θ^k),其中y是观测数据,F是模型函数。
b.计算雅可比矩阵J=∂F/∂θ,即F对参数θ的导数。
c.计算H=J^T*J+μ*I,其中I是单位矩阵。
d.计算δ=J^T*r。
e.计算θ^(k+1)=θ^k−H^(-1)*δ。
f.如果||δ||<β*||r||,则停止迭代,否则将μ增大一个数量级,并返回步骤2。
3.输出参数向量θ^(k+1)。
该算法在每一步迭代中都尝试最小化目标函数,直到达到收
敛条件。
其中,H是近似于目标函数的Hessian矩阵(即二
阶导数矩阵),而δ是残差向量。
通过求解线性方程组H*δ=J^T*r,可以得到参数向量的更新量。
在迭代过程中,μ是
一个阻尼因子,用于控制Hessian矩阵的近似精度。
如果迭代不收敛,则将μ增大一个数量级,以增加阻尼效果。
Levenberg-Marquardt算法在许多领域都有广泛的应用,例如曲线拟合、图像处理、机器视觉、控制系统等领域。
它是一种非常有效的非线性最小二乘求解方法,尤其适用于问题规模较大、非线性程度较高的情况。
求解非线性方程组的一种新的全局收敛的levenberg—marquardt算法

求解非线性方程组的一种新的全局收敛的levenberg—marquardt算法
Levenberg-Marquardt算法是一种全局收敛的求解非线性
方程组的算法,该算法是由Levenberg和Marquardt在1950年
从拟牛顿法的基础上发展而来的。
它能有效地求解非线性方程组,它兼顾了牛顿法的全局收敛性和梯度下降法的局部收敛性,是目前公认的非线性方程组求解中最有效的方法之
Levenberg-Marquardt算法是一种局部拟牛顿法,其基本
思想是在牛顿法的基础上引入一个收敛参数,以达到牛顿法的局部收敛性和全局收敛性的综合。
因此,Levenberg-Marquardt
算法在求解非线性方程组时具有较快的收敛速度和高的精度。
Levenberg-Marquardt算法的具体步骤如下:
1、建立拟牛顿法的迭代公式:DD=(DDD+λD)D−DDD;其中,DD表示迭代步长,J为雅可比矩阵,A为单位矩阵,F
为残差向量,λ为收敛参数。
2、根据迭代公式计算迭代步长DD。
3、根据迭代步长更新变量的值:D=D+DD;
4、根据新的变量值重新计算残差:D=D(D);
5、检查收敛情况,如果迭代收敛,则结束;如果未收敛,则更新收敛参数λ,重复步骤1~
4,直到收敛结束。
Levenberg-Marquardt算法是一种全局收敛的求解非线性
方程组的算法,它能够有效地求解非线性方程组,是目前公认的求解非线性方程组的最有效方法之
一。
它在求解非线性方程组时,兼顾了牛顿法的全局收敛性和梯度下降法的局部收敛性,使得它在求解非线性方程组时具有较快的收敛速度和高的精度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Levenberg-Marquardt Method(麦夸尔特法)Levenberg-Marquardt is a popular alternative to the Gauss-Newton method of finding the minimum of afunction that is a sum of squares of nonlinear functions,Let the Jacobian of be denoted , then the Levenberg-Marquardt method searches in thedirection given by the solution to the equationswhere are nonnegative scalars and is the identity matrix. The method has the nice property that, forsome scalar related to , the vector is the solution of the constrained subproblem of minimizingsubject to (Gill et al. 1981, p. 136).The method is used by the command FindMinimum[f, x, x0] when given the Method -> Levenberg Marquardt option.SEE A LSO:Minimum, OptimizationREFERENCES:Bates, D. M. and Watts, D. G. N onlinear Regr ession and Its Applications. New York: Wiley, 1988.Gill, P. R.; Murray, W.; and Wright, M. H. "The Levenberg-Marquardt Method." §4.7.3 in Practical Optim ization. London: Academic Press, pp. 136-137, 1981.Levenberg, K. "A Method for the Solution of Certain Problems in Least Squares." Quart. Appl. Math.2, 164-168, 1944. Marquardt, D. "An Algor ithm for Least-Squares Estimation of Nonlinear Parameters." SIAM J. Appl. Math.11, 431-441, 1963.Levenberg–Marquardt algorithmFrom Wikipedia, the free encyclopediaJump to: navigation, searchIn mathematics and computing, the Levenberg–Marquardt algorithm (LMA)[1] provides a numerical solution to the problem of minimizing a function, generally nonlinear, over a space of parameters of the function. These minimization problems arise especially in least squares curve fitting and nonlinear programming.The LMA interpolates between the Gauss–Newton algorithm (GNA) and the method of gradient descent. The LMA is more robust than the GNA, which means that in many cases it finds a solution even if it starts very far off the final minimum. For well-behaved functions and reasonable starting parameters, the LMA tends to be a bit slower than the GNA. LMA can also be viewed as Gauss–Newton using a trust region approach.The LMA is a very popular curve-fitting algorithm used in many software applications for solving generic curve-fitting problems. However, the LMA finds only a local minimum, not a global minimum.Contents[hide]∙ 1 Caveat Emptor∙ 2 The problem∙ 3 The solutiono 3.1 Choice of damping parameter∙ 4 Example∙ 5 Notes∙ 6 See also∙7 References∙8 External linkso8.1 Descriptionso8.2 Implementations[edit] Caveat EmptorOne important limitation that is very often over-looked is that it only optimises for residual errors in the dependant variable (y). It thereby implicitly assumes that any errors in the independent variable are zero or at least ratio of the two is so small as to be negligible. This is not a defect, it is intentional, but it must be taken into account when deciding whether to use this technique to do a fit. While this may be suitable in context of a controlled experiment there are many situations where this assumption cannot be made. In such situations either non-least squares methods should be used or the least-squares fit should be done in proportion to the relative errors in the two variables, not simply the vertical "y" error. Failing to recognise this can lead to a fit which is significantly incorrect and fundamentally wrong. It will usually underestimate the slope. This may or may not be obvious to the eye.MicroSoft Excel's chart offers a trend fit that has this limitation that is undocumented. Users often fall into this trap assuming the fit is correctly calculated for all situations. OpenOffice spreadsheet copied this feature and presents the same problem.[edit] The problemThe primary application of the Levenberg–Marquardt algorithm is in the least squares curve fitting problem: given a set of m empirical datum pairs of independent and dependent variables, (x i, y i), optimize the parameters β of the model curve f(x,β) so that the sum of the squares of the deviationsbecomes minimal.[edit] The solutionLike other numeric minimization algorithms, the Levenberg–Marquardt algorithm is an iterative procedure. To start a minimization, the user has to provide an initial guess for the parameter vector, β. In many cases, an uninformed standard guess like βT=(1,1,...,1) will work fine;in other cases, the algorithm converges only if the initial guess is already somewhat close to the final solution.In each iteration step, the parameter vector, β, is replaced by a new estimate, β + δ. To determine δ, the functions are approximated by their linearizationswhereis the gradient(row-vector in this case) of f with respect to β.At its minimum, the sum of squares, S(β), the gradient of S with respect to δwill be zero. The above first-order approximation of gives.Or in vector notation,.Taking the derivative with respect to δand setting theresult to zero gives:where is the Jacobian matrix whose i th row equals J i,and where and are vectors with i th componentand y i, respectively. This is a set of linear equations which can be solved for δ.Levenberg's contribution is to replace this equation by a "damped version",where I is the identity matrix, giving as the increment, δ, to the estimated parameter vector, β.The (non-negative) damping factor, λ, isadjusted at each iteration. If reduction of S is rapid, a smaller value can be used, bringing the algorithm closer to the Gauss–Newton algorithm, whereas if an iteration gives insufficientreduction in the residual, λ can be increased, giving a step closer to the gradient descentdirection. Note that the gradient of S withrespect to β equals .Therefore, for large values of λ, the step will be taken approximately in the direction of the gradient. If either the length of the calculated step, δ, or the reduction of sum of squares from the latest parameter vector, β + δ, fall below predefined limits, iteration stops and the last parameter vector, β, is considered to be the solution.Levenberg's algorithm has the disadvantage that if the value of damping factor, λ, is large, inverting J T J + λI is not used at all. Marquardt provided the insight that we can scale eachcomponent of the gradient according to thecurvature so that there is larger movement along the directions where the gradient is smaller. This avoids slow convergence in the direction of small gradient. Therefore, Marquardt replaced theidentity matrix, I, with the diagonal matrixconsisting of the diagonal elements of J T J,resulting in the Levenberg–Marquardt algorithm:.A similar damping factor appears in Tikhonov regularization, which is used to solve linear ill-posed problems, as well as in ridge regression, an estimation technique in statistics.[edit] Choice of damping parameterVarious more-or-less heuristic arguments have been put forward for the best choice for the damping parameter λ. Theoretical arguments exist showing why some of these choices guaranteed local convergence of the algorithm; however these choices can make the global convergence of the algorithm suffer from the undesirable properties of steepest-descent, in particular very slow convergence close to the optimum.The absolute values of any choice depends on how well-scaled the initial problem is. Marquardt recommended starting with a value λ0 and a factor ν>1. Initially setting λ=λ0and computing the residual sum of squares S(β) after one step from the starting point with the damping factor of λ=λ0 and secondly withλ0/ν. If both of these are worse than the initial point then the damping is increased by successive multiplication by νuntil a better point is found with a new damping factor of λ0νk for some k.If use of the damping factor λ/ν results in a reduction in squared residual then this is taken as the new value of λ (and the new optimum location is taken as that obtained with this damping factor) and the process continues; if using λ/ν resulted in a worse residual, but using λresulted in a better residual then λ is left unchanged and the new optimum is taken as the value obtained with λas damping factor.[edit] ExamplePoor FitBetter FitBest FitIn this example we try to fit the function y = a cos(bX) + b sin(aX) using theLevenberg–Marquardt algorithm implemented in GNU Octave as the leasqr function. The 3 graphs Fig 1,2,3 show progressively better fitting for the parameters a=100, b=102 used in the initial curve. Only when the parameters in Fig 3 are chosen closest to the original, are thecurves fitting exactly. This equation is an example of very sensitive initial conditions for the Levenberg–Marquardt algorithm. One reason for this sensitivity is the existenceof multiple minima —the function cos(βx)has minima at parameter value and[edit] Notes1.^ The algorithm was first published byKenneth Levenberg, while working at theFrankford Army Arsenal. It was rediscoveredby Donald Marquardt who worked as astatistician at DuPont and independently byGirard, Wynn and Morrison.[edit] See also∙Trust region[edit] References∙Kenneth Levenberg(1944). "A Method for the Solution of Certain Non-Linear Problems in Least Squares". The Quarterly of Applied Mathematics2: 164–168.∙ A. Girard (1958). Rev. Opt37: 225, 397. ∙ C.G. Wynne (1959). "Lens Designing by Electronic Digital Computer: I". Proc.Phys. Soc. London73 (5): 777.doi:10.1088/0370-1328/73/5/310.∙Jorje J. Moré and Daniel C. Sorensen (1983)."Computing a Trust-Region Step". SIAM J.Sci. Stat. Comput. (4): 553–572.∙ D.D. Morrison (1960). Jet Propulsion Laboratory Seminar proceedings.∙Donald Marquardt (1963). "An Algorithm for Least-Squares Estimation of NonlinearParameters". SIAM Journal on AppliedMathematics11 (2): 431–441.doi:10.1137/0111030.∙Philip E. Gill and Walter Murray (1978)."Algorithms for the solution of thenonlinear least-squares problem". SIAMJournal on Numerical Analysis15 (5):977–992. doi:10.1137/0715063.∙Nocedal, Jorge; Wright, Stephen J. (2006).Numerical Optimization, 2nd Edition.Springer. ISBN0-387-30303-0.[edit] External links[edit] Descriptions∙Detailed description of the algorithm can be found in Numerical Recipes in C, Chapter15.5: Nonlinear models∙ C. T. Kelley, Iterative Methods for Optimization, SIAM Frontiers in AppliedMathematics, no 18, 1999, ISBN0-89871-433-8. Online copy∙History of the algorithm in SIAM news∙ A tutorial by Ananth Ranganathan∙Methods for Non-Linear Least Squares Problems by K. Madsen, H.B. Nielsen, O.Tingleff is a tutorial discussingnon-linear least-squares in general andthe Levenberg-Marquardt method inparticular∙T. Strutz: Data Fitting and Uncertainty (A practical introduction to weighted least squares and beyond). Vieweg+Teubner, ISBN 978-3-8348-1022-9.[edit] Implementations∙Levenberg-Marquardt is a built-in algorithm with Mathematica∙Levenberg-Marquardt is a built-in algorithm with Matlab∙The oldest implementation still in use is lmdif, from MINPACK, in Fortran, in thepublic domain. See also:o lmfit, a translation of lmdif into C/C++ with an easy-to-use wrapper for curvefitting, public domain.o The GNU Scientific Library library hasa C interface to MINPACK.o C/C++ Minpack includes theLevenberg–Marquardt algorithm.o Several high-level languages andmathematical packages have wrappers forthe MINPACK routines, among them:▪Python library scipy, modulescipy.optimize.leastsq,▪IDL, add-on MPFIT.▪R (programming language) has theminpack.lm package.∙levmar is an implementation in C/C++ with support for constraints, distributed under the GNU General Public License.o levmar includes a MEX file interface for MATLABo Perl (PDL), python and Haskellinterfaces to levmar are available: seePDL::Fit::Levmar, PyLevmar andHackageDB levmar.∙sparseLM is a C implementation aimed at minimizing functions with large,arbitrarily sparse Jacobians. Includes a MATLAB MEX interface.∙ALGLIB has implementations of improved LMA in C# / C++ / Delphi / Visual Basic.Improved algorithm takes less time toconverge and can use either Jacobian orexact Hessian.∙NMath has an implementation for the .NET Framework.∙gnuplot uses its own implementation .∙Java programming language implementations:1) Javanumerics, 2) LMA-package (a small,user friendly and well documentedimplementation with examples and support),3) Apache Commons Math∙OOoConv implements the L-M algorithm as an Calc spreadsheet.∙SAS, there are multiple ways to access SAS's implementation of the Levenberg-Marquardt algorithm: it can be accessed via NLPLMCall in PROC IML and it can also be accessed through the LSQ statement in PROC NLP, and the METHOD=MARQUARDT option in PROC NLIN.。