电子衍射分析及晶体生长方向判定电子衍射基础

电子衍射分析及晶体生长方向判定电子衍射基础
电子衍射分析及晶体生长方向判定电子衍射基础

单晶电子衍射谱标定入门朱玉亮

钢铁研究总院特殊钢研究所不锈钢研究室 单晶电子衍射谱 标定入门编写:朱玉亮

前言 作为材料分析的重要手段,透射电镜电子显微分析具有能够将材料的晶体结构分析与其微观形貌观察相结合的优点,因而在材料的研究中得到了广泛的应用。但也正是因为涉及到材料结构问题,使得电子衍射分析不同于常规的扫描电镜等材料微观形貌分析手段,研究者必须具备一定的理论基础知识。 电子衍射分析涉及到的基础理论涵盖晶体学、衍射学等内容,其中包括倒易点阵、结构因子等诸多概念。对于初次接触电子衍射的研究者而言,这些理论往往难以在短时间内掌握。但运用电子衍射的目的主要是为了确定某些物相,而确定物相的过程主要是对单晶电子衍射谱进行标定,相对而言这是较为容易掌握的。并且掌握这一技能也有助于进一步理解电子衍射的基本理论。 电子衍射标定物相的依据在于,对于某种物相,其特定指数晶面具有特定的晶面间距;而不同的物相其同一晶面指数的晶面间距是不同的。在标定单晶电子衍射谱之前,需要明确两点:1、衍射谱中每一个衍射斑代表晶体中的一个衍射晶面,衍射谱的中央最亮斑点为透射斑,其余斑点为衍射斑;2、衍射谱中由透射斑指向任一衍射斑构成一个向量,该向量的方向与其所对应的一组平行晶面的方向相同,其长度与该晶面组中相邻晶面的间距成反比。 本文适于作为初学电子衍射标定的基础参考资料。对于电子衍射具体理论的学习,有大量可供参考的文献专著,本文在最后也列出了部分可供参考的相关文献及著作。由于编者知识水平有限,对于文中出现的错误,敬请谅解。

图2 扫描仪扫描出来的透射照片 a 原始扫描照片;b 反相处理后 图1 电子衍射花样形成原理 1. 电子衍射基本公式 电子衍射花样形成原理图如1所示,图中OO*为电子入射 方向,O 点为透射试样所在位置。球O 是半径为1/λ的反射球 (也叫爱瓦尔德球,Ewald Sphere )。O*G*为满足布拉格方程 的衍射面所对应的倒易矢量。O’为照相底片中的透射斑,G’ 为OG*衍射线投影在底片上的衍射斑。由于在电子衍射中的衍 射角2θ(∠O*OG*)非常小,所以可以近似认为O*G*∥O ’G ’。 从而根据三角形相似得到电子衍射的基本公式如下: Rd=λL R :底片中衍射斑点G ’到透射斑点O ’的距离; d :晶面间距;对于每种晶系,其(hkl)晶面间距与其点阵常 数都有固定关系;如对于立方晶系有 。 λ:电子波长;由电镜的加速电压决定,如当加速电压为 200V 时,电子波长为0.0251?。 L :相机长度;可理解为试样距离底片的距离。 K=λL :称为相机常数。在同一次实验中K 是固定的。 2. 透射照片 通常,在透射电镜实验中,我们拿到的是冲洗出来的 底片。这种底片经扫描仪扫描后,就得到了电子照片,如 图2所示。图中央最亮的斑点为透射斑。除去中央透射斑, 图中还有两种亮度不同的斑点。一般而言,在做析出相的 选区电子衍射照片下,当析出像较小时(小于300nm ),选 区衍射电子打出的斑点同时包括基体和析出相的两套斑点。其中较亮的斑点为基体斑点;而较暗的斑点为析出相的斑 点。 图2给出的是一种镍基合金中细小析出相的衍射斑点,于是我们可以推测其中较亮的斑点为基体的斑点,而较暗 的斑点为析出相的斑点。 b

1单晶体电子衍射花样是(

一、选择题 1.单晶体电子衍射花样是()。 A. 规则的平行四边形斑点; B. 同心圆环; C. 晕环; D.不规则斑点。 2. 薄片状晶体的倒易点形状是()。 A. 尺寸很小的倒易点; B. 尺寸很大的球; C. 有一定长度的倒易杆; D. 倒易圆盘。 3. 当偏离矢量S<0时,倒易点是在厄瓦尔德球的()。 A. 球面外; B. 球面上; C. 球面内; D. B+C。 4. 能帮助消除180o不唯一性的复杂衍射花样是()。 A. 高阶劳厄斑; B. 超结构斑点; C. 二次衍射斑; D. 孪晶斑点。 5. 菊池线可以帮助()。 A. 估计样品的厚度; B. 确定180o不唯一性; C. 鉴别有序固溶体; D. 精确测定晶体取向。 6. 如果单晶体衍射花样是正六边形,那么晶体结构是()。 A. 六方结构; B. 立方结构; C. 四方结构; D. A或B。 二、判断题 1.多晶衍射环和粉末德拜衍射花样一样,随着环直径增大,衍射晶面指数也由低到高。() 2.单晶衍射花样中的所有斑点同属于一个晶带。() 3.因为孪晶是同样的晶体沿孪晶面两则对称分布,所以孪晶衍射花样也是衍射斑点沿两则对称分布。() 4.偏离矢量S=0时,衍射斑点最亮。这是因为S=0时是精确满足布拉格方程,所以衍射强度最大。() 5.对于未知晶体结构,仅凭一张衍射花样是不能确定其晶体结构的。还要从不同位向拍摄多幅衍射花样,并根据材料成分、加工历史等或结合其它方法综合判断晶体结构。() 6.电子衍射和X射线衍射一样必须严格符合布拉格方程。() 三、填空题 1.电子衍射和X射线衍射的不同之处在于入射波长不同、试样尺寸形状不同,以及样品对 电子和X射线的散射能力不同。 2.电子衍射产生的复杂衍射花样是高阶劳厄斑、超结构斑点、二次衍射、孪晶斑点和菊池 花样。 3.偏离矢量S的最大值对应倒易杆的长度,它反映的是θ角偏离布拉格方程的程度。 4.单晶体衍射花样标定中最重要的一步是确定晶体结构。 5.二次衍射可以使密排六方、金刚石结构的花样中在本该消光的位置产生衍射花样,但体 心立方和面心立方结构的花样中不会产生多余衍射。 四、名词解释 1.偏离矢量S 2.180o不唯一性 3.菊池线

(整理)选区电子衍射与晶体取向分析

实验四选区电子衍射与晶体取向分析 一、实验目的与任务 1)通过选区电子衍射的实际操作演示,加深对选区电子衍射原理的了解。 2)选择合适的薄晶体样品,利用双倾台进行样品取向的调整,利用电子衍射花样测定晶体取向的基本方法。 二、选区电子衍射的原理和操作 1.选区电子衍射的原理 使学生掌握 简单地说,选区电子衍射借助设置在物镜像平面的选区光栏,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理见图10—16。选区光栏用于挡住光栏孔以外的电子束,只允许光栏孔以内视场所对应的样品微区的成像电子束通过,使得在荧光屏上观察到的电子衍射花样仅来自于选区范围内晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,选区域以外样品晶体对衍射花样也有贡献。选区范围不宜太小,否则将带来太大的误差。对于100kV的透射电镜,最小的选区衍射范围约0.5m;加速电压为1000kV时,最小的选区范围可达0.1m。 2.选区电子衍射的操作 1) 在成像的操作方式下,使物镜精确聚焦,获得清晰的形貌像。 2) 插入并选用尺寸合适的选区光栏围住被选择的视场。 3) 减小中间镜电流,使其物平面与物镜背焦面重合,转入衍射操作方式。对于近代的电镜,此步操作可按“衍射”按钮自动完成。 4) 移出物镜光栏,在荧光屏上显示电子衍射花样可供观察。 5) 需要拍照记录时,可适当减小第二聚光镜电流,获得更趋近平行的电子束,使衍射斑点尺寸变小。 三、选区电子衍射的应用 单晶电子衍射花样可以直观地反映晶体二维倒易平面上阵点的排列,而且选区衍射和形貌观察在微区上具有对应性,因此选区电子衍射一般有以下几个方面的应用: 1) 根据电子衍射花样斑点分布的几何特征,可以确定衍射物质的晶体结构;再利用电子 衍射基本公式Rd=L,可以进行物相鉴定。 2) 确定晶体相对于入射束的取向。 3) 在某些情况下,利用两相的电子衍射花样可以直接确定两相的取向关系。 4) 利用选区电子衍射花样提供的晶体学信息,并与选区形貌像对照,可以进行第二相和晶体缺陷的有关晶体学分析,如测定第二相在基体中的生长惯习面、位错的柏氏矢量等。 以下仅介绍其中两个方面的应用。 (1)特征平面的取向分析特征平面是指片状第二相、惯习面、层错面、滑移面、孪晶面等平面。特征平面的取向分析(即测定特征平面的指数)是透射电镜分析工作中经常遇到的一项工作。利用透射电镜测定特征平面的指数,其 根据是选区衍射花样与选区内组织形貌的微区对应性。这里特介绍一种最基本、 较简便的方法。该方法的基本要点为:使用双倾台或旋转台倾转样品,使特征 平面平行于入射束方向,在此位向下获得的衍射花样中将出现该特征平面的衍 射斑点。把这个位向下拍照的形貌像和相应的选区衍射花样对照,经磁转角校 正后,即可确定特征平面的指数。其具体操作步骤如下: 1) 利用双倾台倾转样品,使特征平面处于与入射束平行的方向。 2) 拍照包含有特征平面的形貌像,以及该视场的选区电子衍射花样。 3) 标定选区电子衍射花样,经磁转角校正后,将特征平面在形貌像中的迹线画在衍射花样中。 4) 由透射斑点作迹线的垂线,该垂线所通过的衍射斑点的指数即为特征平 面的指数。

X射线衍射与电子衍射比较

采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。 1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。电子衍射虽 电子衍射 与X射线衍射有相同的几何原理。但它们的物理内容不同。在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。 2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。 物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力为什么在对这些问题展开讨论之后,小结在最后将会被给出。希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了! 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law): 2d*sinθ=nλ(n是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。

电子显微分析总结

《电子显微分析》知识点总结 第一讲电子光学基础 1、电子显微分析特点 2、Airy斑概念 3、Rayleigh准则 4、光学显微镜极限分辨率大小:半波长,200nm 5、电子波的速度、波长推导公式 6、光学显微镜和电子显微镜的不同之处:光源不同、透镜不同、环境不同 7、电磁透镜的像差产生原因,如何消除和减少像差。 8、影响光学显微镜和电磁透镜分辨率的关键因素,如何提高电磁透镜的分辨率 9、电子波的特征,与可见光的异同 第二讲 TEM 1、TEM的基本构造 2、TEM中实现电子显微成像模式与电子衍射模式操作 第三讲电子衍射 1、电子衍射的基本公式推导过程 2、衍射花样的分类:斑点花样、菊池线花样、会聚束花样 3、透射电子显微镜图像衬度,各自的成像原理。 第四讲 TEM制样 1、粉末样品制备步骤 2、块状样品制备减薄的方法 3、块状脆性样品制备减薄——离子减薄 4、塑料样品制备——离子减薄 5、复型的概念、分类 第五讲 SEM 1、电子束入射固体样品表面会激发的信号、特点和用途 2、SEM工作原理 3、SEM的组成 4、SEM的成像衬度:二次电子表面形貌衬度、背散射电子原子序数衬度、吸收电子像的衬 度、X射线图像的衬度 第六讲 EDS和WDS 1、EDS探测系统——锂漂移硅固体探测器 2、EDS与WDS的优缺点 第七讲 EBSD 1、EBSD的应用 第八讲其它电子显微分析方法 1、各种设备的缩写形式

历年考题 透射电镜的图像衬度有非晶样品质厚衬度, 薄晶体样品的衍射衬度, 相位衬度。 一、我校材料分析中心现有的两台场发射电子显微镜有哪些主要的功能附件可以进行哪方面的分析工作 答:1、场发射扫描电子显微镜仪器型号: SUPRA 55 生产厂家:德国ZEISS 功能附件: (1)配备Oxford INCA EDS设备,可以对5B-92U的元素进行微区成分定性、定量分析,包括点、线、面成分的分析; (2)配备HKL EBSD设备,可以对材料进行取向、织构及物相鉴定,晶体学结构分析,相位及相位差分析,应变分析; (3)配备拉伸弯曲台,可以在扫描电镜内对试样做拉伸、压缩和弯曲试验,同时原位观察组织变化。 用途:可用于金属、非金属、半导体、地质、矿物、冶金、考古、生物等材料的显微形态,断口形貌的分析研究;也可进行各种样品的高分辨成像以及配合能谱仪进行微区元素分析,配备电子背散射衍射(EBSD)附件,可对晶体材料进行晶体取向、织构、以及物相鉴定等分析研究。 2、场发射透射电子显微镜仪器型号:TECNAI F30 G2生产厂家:美国FEI公司 功能附件: (1)配备EDS设备,可以进行微区成分定性定量分析,包括点、线、面成分的分析; (2)配备EELS,进行电子-能量损失谱分析; (3)配备原位拉伸仪,可以进行原位拉伸观察和三维图像重构分析。 用途:可以对透射电镜样品进行形貌、相应选区电子衍射、微衍射及相干电子衍射和高分辨电子显微像观察;配合STEM-HAADF探针进行原子序数衬度像分析;配合特征X射线能谱仪(EDS)进行纳米尺度成分分析;配合电子能量损失谱系统(EELS)进行电子能量损失谱分析;进行样品原位拉伸观察和三维图像重构分析。 二、电子束入射固体样品表面会激发哪些信号它们有哪些特点和用途 答:电子束入射固体样品表面会激发出背散射电子、二次电子、吸收电子、透射电子、特征X射线、俄歇电子、电子束感生电效应、阴极荧光。 (1)背散射电子:入射电子与原子核发生弹性散射,能量损失小,一般大于50eV都称为背散射电子。平均原子序数越大,产生背散射电子越多,不仅能用于形貌分析,还可以用于显示原子序数衬度,定性进行成分分析; (2)二次电子:入射电子与外层电子发生非弹性散射,一部分核外电子获得能量逸出试样表面,成为二次电子。二次电子能量小,一般小于50eV,适于表面形貌观察; (3)吸收电子:入射电子发生非弹性散射次数增多,以致电子无法逸出试样表面,在样品与地之间接电流放大器,获得电流信号,吸收电子像衬度与二次电子和背散射电子的总像衬度相反,适用于显示试样元素分布和表面形貌,尤其是试样裂纹内部的微观形貌; (4)透射电子:如果被分析的样品很薄,就会有一部分入射电子穿过薄样品而成为透射电子。可进行形貌和成分分析。 (5)特征X射线:入射电子与样品原子内层电子作用,释放出具有特征能量的电磁辐射波,

选区电子衍射分析完整版

选区电子衍射分析 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

选区电子衍射分析实验报告 一、实验目的 1、掌握进行选区衍射的正确方法; 2、学习如何对拍摄的电子衍射花样进行标定; 3、通过选区衍射操作,加深对电子衍射原理的了解。 二、实验内容 1、复习电镜的操作程序、了解成像操作、衍射操作的区别与联系; 2、以复合材料(Al2O3+TiB2)/Al为观察对象,进行选区衍射操作,获得衍射花样; 3、对得到的单晶和多晶电子衍射花样进行标定。 三、实验设备和器材 JEM-2100F型TEM透射电子显微镜 四、实验原理 选区电子衍射就是对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图的方法。选区电子衍射又称微区衍射,它是通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。 图1即为选区电子衍射原理图。 平行入射电子束通过试样后,由于试 样薄,晶体内满足布拉格衍射条件的 晶面组(hkl)将产生与入射方向成 2θ角的平行衍射束。由透镜的基本性 质可知,透射束和衍射束将在物镜的 后焦面上分别形成透射斑点和衍射斑 点,从而在物镜的后焦面上形成试样 晶体的电子衍射谱,然后各斑点经干 涉后重新在物镜的像平面上成像。如 果调整中间镜的励磁电流,使中间镜 的物平面分别与物镜的后焦面和像平

面重合,则该区的电子衍射谱和像分别被中间镜和投影镜放大,显示在荧光屏上。 显然,单晶体的电子衍射谱为对称于中心透射斑点的规则排列的斑点群。多晶体的电子衍射谱则为以透射斑点为中心的衍射环。非晶则为一个漫散的晕斑。 (a)单晶(b)多晶(c)非晶 图2电子衍射花样 五、实验步骤 通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。具体步骤如下: (1)由成像操作使物镜精确聚焦,获得清晰形貌像。 (2)插入尺寸合适的选区光栏,套住被选视场,调整物镜电流,使光栏孔内的像清晰,保证了物镜的像平面与选区光栏面重合。 (3)调整中间镜的励磁电流,使光栏边缘像清晰,从而使中间镜的物平面与选区光栏的平面重合,这也使选区光栏面、物镜的像平面和中间镜的物平面三者重合,进一步保证了选区的精度。 (4)移去物镜光栏(否则会影响衍射斑点的形成和完整性),调整中间镜的励磁电流,使中间镜的物平面与物镜的后焦面共面,由成像操作转变为衍射操作。电子束经中间镜和投影镜放大后,在荧光屏上将产生所选区域的电子衍射图谱,对于高档的现代电镜,也可操作“衍射”按钮自动完成。 (5)需要照相时,可适当减小第二聚光镜的励磁电流,减小入射电子束的孔径角,缩小束斑尺寸,提高斑点清晰度。微区的形貌和衍射花样可存同一张底片上。 六、电子衍射花样的标定方法 电子衍射花样的标定:即衍射斑点指数化,并确定衍射花样所属的晶带轴指数

透射电镜的选区电子衍射

透射电子显微镜的选区衍射 摘要:本文主要是以透射电子显微镜的选区电子衍射为主题来说明透射电镜在材料学中的应用。 关键词:透射电镜;电子衍射谱;选区电子衍射;应用 Selected-Area Electron Diffraction of TEM Abstract: The Selected-Area Electron Diffraction of TEM is mainly talked about in this paper, And it tell us the application of the TEM in materials science. Key words:Transmission electron microscope; Electron diffraction spectrum; Selected-Area Electron Diffraction; application 1.透射电镜的电子衍射概论 透射电镜的电子衍射是透射电镜的一个重要应用,而透射电镜广泛应用于断裂失效分析、产品缺陷原因分析、镀层结构和厚度分析、涂料层次与厚度分析、材料表面磨损和腐蚀分析、耐火材料的结构与蚀损分析[1]中。透射电镜的电子衍射能够在同一试样上将形貌观察与结构分析结合起来[2]。这就使得电子衍射在应用中有着举足轻重的地位。 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点。另外,由于二次衍射等原因会使电子衍射花样变得更加复杂。 选区衍射的特点是能把晶体试样的像与衍射图对照进行分析,从而得出有用的晶体学数据,例如微小沉淀相的结构、取向及惯习面,各种晶体缺陷的几何学特征等[3]。2.选区电子衍射的原理及特点 2.1选区电子衍射的原理 为了得到晶体中某一个微区的电子衍射花样,一般用选区衍射的方法,将选区光阑放置在物镜像平面(中间镜成像模式时的物平面),而不是直接放在样品处。 选区电子衍射借助设置在物镜像平面的选区光阑,可以对产生衍射的样品区域进行选择,并对选区范围的大小加以限制,从而实现形貌观察和电子衍射的微观对应。选区电子衍射的基本原理[4]见图4-1。选区光阑用于挡住光阑孔以外的电子束,只允许光阑孔以内视场所对应的样品微区的成像电子束通过。使得在荧光屏上观察到的电子衍射花样,它仅来自于选区范围内的晶体的贡献。实际上,选区形貌观察和电子衍射花样不能完全对应,也就是说选区衍射存在一定误差,所选区域以外样品晶体对衍

选区电子衍射分析

选区电子衍射分析实验报告 一、实验目的 1、掌握进行选区衍射的正确方法; 2、学习如何对拍摄的电子衍射花样进行标定; 3、通过选区衍射操作,加深对电子衍射原理的了解。

二、实验内容 1、复习电镜的操作程序、了解成像操作、衍射操作的区别与联系; 2、以复合材料(Al2O3+TiB2)/Al为观察对象,进行选区衍射操作,获得衍射花样; 3、对得到的单晶和多晶电子衍射花样进行标定。 三、实验设备和器材 JEM-2100F型TEM透射电子 显微镜 四、实验原理 选区电子衍射就是对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图的方法。选区电子衍射又称微区衍射,它是通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

图1即为选区电子衍射原理图。平 行入射电子束通过试样后,由于试样 薄,晶体内满足布拉格衍射条件的晶面 组(hkl)将产生与入射方向成2θ角的 平行衍射束。由透镜的基本性质可知, 透射束和衍射束将在物镜的后焦面上 分别形成透射斑点和衍射斑点,从而在 物镜的后焦面上形成试样晶体的电子 衍射谱,然后各斑点经干涉后重新在物 镜的像平面上成像。如果调整中间镜的 励磁电流,使中间镜的物平面分别与物 镜的后焦面和像平面重合,则该区的电 子衍射谱和像分别被中间镜和投影镜 放大,显示在荧光屏上。 显然,单晶体的电子衍射谱为对称于中心透射斑点的规则排列的斑点群。多晶体的电子衍射谱则为以透射斑点为中心的衍射环。非晶则为一个漫散的晕斑。 (a)单晶(b)多晶(c)非晶 图2电子衍射花样 五、实验步骤 通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。具体步骤如下: (1)由成像操作使物镜精确聚焦,获得清晰形貌像。

电子衍射谱的标定

第二章 电子衍射谱的标定 2. 1透射电镜中的电子衍射 透射电镜中的电子衍射基本公式为: λL Rd = R 为透射斑到衍射斑的距离(或衍射环半径),d 为晶面间距,λ为电子波长,L 为有效相机长度。 p i M M f L 0= 0f 为物镜的焦距,i M 中间镜放大倍数,p M 投影镜的放大倍数,在透射电镜 的工作 中,有效的相机长度L ,一般在照相底板中直接标出,各种类型的透射电镜标注方法不同,λ为电子波长,由工作电压决定,工作电压一般可由底板标注确定,对没有标注的早期透射电镜在拍摄电子衍射花样时,记录工作时的加速电压,由电压与波长对应表中查出λ。 K L =λ K 为有效机相常数,单位 A mm ,如加速电压U =200仟伏,则 A 2 1051.2-?=λ,若有 效相机长度mm L 800=,则 A mm K 08.2010 51.28002 =??=- 透射电镜的电子衍射有效相机常数确定方法: 电子衍射有效相机常数确定方法,一般有三种方法 ①按照相底片直接标注计算: H -800透射电镜的电子衍射底片下方有一列数字,如: 0.80 91543 4A 90.5.21; 0.80表示有效相机长度mm M L 8008.0==,91543为片号,4A 其A 表示工作电压200千伏查表知电子波长 A 2 10 51.2-?=λ则有效相机常数K 为: A mm L K 08.201051.28002 =??==-λ H -800透射电镜中,电子衍射底片第一个数字为相机长度如:0.80,0.40,……第三个数字为工作电压U ,分别为4A ,4b ,4c ,4d ,相对应的工作电压分别为200,175,150,100千伏,对应的电子波长分别为:2 2 2 2 1070.3,1095.2,1071.2,1051.2----????埃。 由电镜有关参数确定的相机常数是不精确的,常因电镜中电气参数变化而改变,产生一些误差,电镜工作者常要根据经验作些修正。 ②用金Au 多晶环状花样校正相机常数 例如喷金Au 多晶样品在H -800透射电镜下拍摄多晶环状花样,如照片上标注为

X射线衍射与电子衍射比较讲解学习

X射线衍射与电子衍 射比较

采用波长小于或接近于其点阵常数的电子束照射晶体样品,由于入射电子与晶体内周期地规则排列的原子的交互作用,晶体将作为二维或三维光栅产生衍射效应,根据由此获得的衍射花样研究晶体结构的技术,称为电子衍射。 1电子衍射和X射线衍射一样,也遵循布喇格公式2dsinθ=λ(见X射线衍射)。当入射电子束与晶面簇的夹角θ、晶面间距和电子束波长λ三者之间满足布喇格公式时,则沿此晶面簇对入射束的反射方向有衍射束产生。电子衍射虽 电子衍射 与X射线衍射有相同的几何原理。但它们的物理内容不同。在与晶体相互作用时,X射线受到晶体中电子云的散射,而电子受到原子核及其外层电子所形成势场的散射。除以上用布喇格公式或用倒易点阵和反射球来描述产生电子衍射的衍射几何原理外,严格的电子衍射理论从薛定谔方程Hψ=Eψ出发,式中ψ为电子波函数,E表示电子的总能量,H为哈密顿算子,它包括电子从外电场得到的动能和在晶体静电场中的势能。 2电子衍射和X射线衍射一样,可以用来作物相鉴定、测定晶体取向和原子位置。由于电子衍射强度远强于X射线,电子又极易为物体所吸收,因而电子衍射适合于研究薄膜、大块物体的表面以及小颗粒的单晶。此外,在研究由原子序数相差悬殊的原子构成的晶体时,电子衍射较X射线衍射更优越些。会聚束电子衍射的特点是可以用来测定晶体的空间群(见晶体的对称性)。

物质结构的解析,准确说是晶体的结构解析,不可避免需要使用X射线衍射(XRD),中子衍射或电子衍射三种技术当中的一种。三者各有优缺点,面对具体问题,一般只有一种技术是最有说服力的最佳选择,但是具体什么样的问题使用哪一种技术最有说服力?很多结构分析的朋友认识的不透彻,我经常看见有些人使用不是很有说服力的技术去尝试解决实际问题而闹出笑话而自己不自知:比如声称使用XRD精确确定氧、炭或氢的原子位置;比如认为中子衍射得到的晶格常数最可信;又比如以为选区电子衍射(TEM-SAD)的标定能精确得到晶格常数信息,等等。所以这里笔者在这里抛砖引玉式的尝试探讨:哪一种衍射技术对于什么样的解结构问题最有说服力?为什么?在对这些问题展开讨论之后,小结在最后将会被给出。希望大家在我的话题后面踊跃发表不同观点,如果我有什么疏漏、错误之处,还望不吝指教,笔者这里先多谢了! 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。 i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。 ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion呈现平方项。正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。当然,物质波在运动速度接近光速的时候其dispersion 会发生本质的转变,转变点如图1所示,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion完全一致时的异常,反正迄今还没有见过这样的实验。

选区电子衍射分析

选区电子衍射分析Last revision on 21 December 2020

选区电子衍射分析实验报告 一、实验目的 1、掌握进行选区衍射的正确方法; 2、学习如何对拍摄的电子衍射花样进行标定; 3、通过选区衍射操作,加深对电子衍射原理的了解。 二、实验内容 1、复习电镜的操作程序、了解成像操作、衍射操作的区别与联系; 2、以复合材料(Al2O3+TiB2)/Al为观察对象,进行选区衍射操作,获得衍射花样; 3、对得到的单晶和多晶电子衍射花样进行标定。 三、实验设备和器材 JEM-2100F型TEM透射电子显微镜 四、实验原理 选区电子衍射就是对样品中感兴趣的微区进行电子衍射,以获得该微区电子衍射图的方法。选区电子衍射又称微区衍射,它是通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。

图1即为选区电子衍射原理图。 平行入射电子束通过试样后,由于试 样薄,晶体内满足布拉格衍射条件的 晶面组(hkl)将产生与入射方向成2θ 角的平行衍射束。由透镜的基本性质 可知,透射束和衍射束将在物镜的后 焦面上分别形成透射斑点和衍射斑 点,从而在物镜的后焦面上形成试样 晶体的电子衍射谱,然后各斑点经干 涉后重新在物镜的像平面上成像。如 果调整中间镜的励磁电流,使中间镜 的物平面分别与物镜的后焦面和像平 面重合,则该区的电子衍射谱和像分 别被中间镜和投影镜放大,显示在荧 光屏上。 显然,单晶体的电子衍射谱为对称于中心透射斑点的规则排列的斑点群。多晶体的电子衍射谱则为以透射斑点为中心的衍射环。非晶则为一个漫散的晕斑。 (a)单晶(b)多晶(c)非晶 图2电子衍射花样 五、实验步骤 通过移动安置在中间镜上的选区光栏(又称中间镜光栏),使之套在感兴趣的区域上,分别进行成像操作或衍射操作,实现所选区域的形貌分析和结构分析。具体步骤如下: (1)由成像操作使物镜精确聚焦,获得清晰形貌像。

TEM 分析中电子衍射花样标定

TEM分析中电子衍射花样的标定原理 第一节 电子衍射的原理 1.1 电子衍射谱的种类 在透射电镜的衍射花样中,对于不同的试样,采用不同的衍射方式时,可以观察到多种形式的衍射结果。如单晶电子衍射花样,多晶电子衍射花样,非晶电子衍射花样,会聚束电子衍射花样,菊池花样等。而且由于晶体本身的结构特点也会在电子衍射花样中体现出来,如有序相的电子衍射花样会具有其本身的特点,另外,由于二次衍射等会使电子衍射花样变得更加复杂。 上图中,图a和d是简单的单晶电子衍射花样,图b是一种沿[111]p方向出现了六倍周期的有序钙钛矿的单晶电子衍射花样(有序相的电子衍射花样);图c是非晶的电子衍射结果,图e和g是多晶电子的衍射花样;图f是二次衍射花样,由于二次衍射的存在,使得每个斑点周围都出现了大量的卫星斑;图i和j是典型的菊池花样;图h和k是会聚束电子衍射花样。 在弄清楚为什么会出现上面那些不同的衍射结果之前,我们应该先搞清楚电子衍射的产

生原理。电子衍射花样产生的原理与X 射线并没有本质的区别,但由于电子的波长非常短,使得电子衍射有其自身的特点。 1.2 电子衍射谱的成像原理 在用厄瓦尔德球讨论X射线或者电子衍射的成像几何原理时,我们其实是把样品当成了一个几何点,但实际的样品总是有大小的,因此从样品中出来的光线严格地讲不能当成是一支光线。之所以我们能够用厄瓦尔德来讨论问题,完全是由于反射球足够大,存在一种近似关系。如果要严格地理解电子衍射的形成原理,就有必要搞清楚两个概念:Fresnel(菲涅尔)衍射和Fraunhofer(夫朗和费)衍射。所谓Fresnel(菲涅尔)衍射又称为近场衍射,而Fraunhofer(夫朗和费)衍射又称为远场衍射.在透射电子显微分析中,即有Fresnel(菲涅尔)衍射(近场衍射)现象,同时也有Fraunhofer(夫朗和费)衍射(远场衍射)。 Fresnel(菲涅尔)衍射(近场衍射)现象主要在图像模式下出现,而Fraunhofer(夫朗和费)衍射(远场衍射)主要是在衍射情况下出现。 小孔的直接衍射成像(不加透镜)就是一个典型的Fresnel(菲涅尔)衍射(近场衍射)现象。在电镜的图像模式下,经常可以观察到圆孔的菲涅尔环。 Fraunhofer(夫朗和费)衍射是远场衍射,它是平面波在与障碍物相互作用后发生的衍射。严格地讲,光束之间要发生衍射,必须有互相叠加,平行光严格意义上是不能叠加的,所以在没有透镜的前提下,夫朗和费衍射只是一种理论上的概念。但是在很多情况下,可以将衍射当成夫朗和费衍射来处理,X射线衍射就是这样一种情况。虽然X射线是照射在晶体中的不同晶面上,但是由于晶面间距的值远远小于厄瓦尔德球(X射线波长的倒数),即使测试时衍射仪的半径跟晶面间距比也是一个非常大的值,所以X射线衍射可以当成夫朗和费衍射处理,因为此时不同晶面上的X射线叠加在一点上时,它们

第九章 电子衍射

第九章电子衍射 1、分析电子衍射与 X 射线衍射有何异同(**) 电子衍射原理与X射线相似 相同之处:都是满足布拉格方程作为产生衍射的必要条件,两种衍射技术所得到的衍射花样在几何特征上是大致相似的。 不同之处: 1)电子波的波长比X射线短得多,在同样满足布拉格条件时,它的衍射角θ很小,约为10e-2rad。而X射线产生衍射时其衍射角最大可接近π/2。(这是电子衍射花样特征不同与x射线衍射的主要原因) 2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易阵点会沿着厚度方向延伸成杆状,因此,增加了倒易点阵与爱瓦德球相交截的机点,结果使略微偏离布拉格条件的电子束可能发生衍射。 3)因为电子波的波长短,采用爱瓦德球图解式,反射球的半径很大,在衍射角θ较小的范围内反射球的球面可以近似的看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内,这个结果使晶体产生的衍射花样能比较直接地反映晶体内各晶面的位向,给分析带来不少方便。 4)原子对电子的散射能力远高于对X射线的散射能力(约高四个数量级),故电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟。 2、倒易点阵与正点阵之间关系如何倒易点阵与晶体的电子衍射斑点之间有何对应关系(**)答:倒易点阵是与正点阵相对应的量纲为长度倒数的一个三维空间(倒易空间)点阵,通过倒易点阵可以把晶体的电子衍射斑点直接解释成晶体相应晶面的衍射结果,可以认为电子衍射斑点就是就是与晶体相对应的倒易点阵中某一倒易面上阵点排列的像。

关系: 1)倒易矢量ghkl 垂直于正点阵中对应的(hkl )晶面,或平行于它的法向Nhkl 2)倒易点阵中的一个点代表正点阵中的一组晶面 3)倒易矢量的长度等于正点阵中的相应晶面间距的倒数,即ghkl=1/dhkl 。 4)对正交点阵有a*θL R tan2?=θ θθsin 22sin 2tan ≈≈d 1有能产生衍射的斑点都扩展为一个圆环,故为一系列同心圆环。 3)非晶态物质的电子衍射花样只有一个漫散的中心斑点。 形成机理:非晶没有整齐的晶格结构。 8、 单晶与多晶衍射花样分别如何进行标定(*****)。 详情请看电子衍射3-11-14ppt (1)晶体结构已知单晶电子衍射花样标定 ①标准花样对照法:只适用于简单立方、fcc 、bcc 和hcp 的低指数晶带轴。因为这些晶系的低指数晶带的标准花样可以在有的书上查到,如果得到的衍射花样跟标准花样完全一致,则基本上可以确定该花样。 不过需要注意的是,标定完了以后,一定要验算它的相机常数,因为标准花样给出的只是花样的比例关系,而对于有的物相,某些较高指数花样在形状上与某些低指数花样十分相似,但是由两者算出来的相机常数会相差很远。 ②已知相机常数和样品的晶体结构 ·测量R 1、R 2、R 3、R 4 ·根据Rd=L λ求出d 1、d 2、d 3、d 4。查附表可以确定{H1K1L1}、{H2K2L2}、 … ()()0r r ha kb lc ua vb wc ****?=++?++=

X射线衍射 电子衍射 中子衍射的差异

X射线衍射电子衍射中子衍射 首先来谈谈X-射线、中子、和电子衍射的源-- X-ray,中子和电子的同和异。最为突出的相同点,搞晶体结构分析的人都非常清楚,即他们都具有波动性,满足基本的波动规律--布拉格公式(Bragg Law):2d*sinθ=nλ(n是自然数)。前面已经明确本文的动机,所以这里着重分析它们的差异。 i)表观上的差异,X-ray是光子(电磁波)、不带电没有磁性,电子带负电,中子不带电、质量较大而且具有磁性,这些是显而易见的常识,不多说。 ii)本质上的差异,参考图1所示:X射线是电磁波,没有静止质量,均匀介质中速度不变,波动行为在时空上的dispersion呈现简单的线性关系;而电子、中子是物质波,具有质量,均匀介质中运动速度可以变化,时空上的dispersion呈现平方项。正是这样的本质差别导致波长(动量)与频率(能量)之间的关系在电磁波(这里是X-ray)和物质波(这里是电子、中子)之间的截然不同。当然,物质波在运动速度接近光速的时候其dispersion会发生本质的转变,不过这样的情况在实际的结构分析中碰不到,所以不用担心电子/中子在和光子的dispersion完全一致时的异常,反正迄今还没有见过这样的实验. 下面进入正题,分别讨论X射线衍射、中子衍射和电子衍射具有哪些其他技术所不能匹敌的优势,在最后综合比较时兼谈相应的不足。 1、XRD具有其他两种技术所不能比拟的地方是它能最准确的测定晶胞参数。如图2所示,在精确确定晶胞参数这点上,中子衍射最不可取,一方面因为中子衍射波

长practically相对较长,另一方面中子衍射波长的校准很难做的很理想,所以中子衍射的结果容易偏离真实值而且分散较大。电子衍射之选区衍射技术,角度(这里通过相机常数转化成distance)探测的精密性受限制(比不上XRD的成熟技术),况且多数时候靠人眼去分辨,加上相机长度、标尺的误差,很难得到精确标定;电子衍射之会聚束电子衍射(CBED),在精密性上相对选区要高,但CBED存在的不足,CBED测定一个微区晶格参数,而这个晶格参数很大程度上受到strain的影响,以至于不容易获得标准晶格参数。而XRD,尤其是高能同步辐射XRD,在精密确定晶胞参数上,具有着不可替代的优势,以至于当今的晶体结构信息库中的晶格参数大多采用XRD的结果。为了给读者增加一些感性认识,举例说明如下:如果拿标准Si粉(比如SRM640, a = 5.4307 A,at R.T.),我们使用以下几种技术定量来比较标准差(standard error,σ): i)SR_XRD (同步辐射XRD,比如100 MeV, 波长0.0001A),σ原则上可以非常小,但实际标准样品本身的a值误差约在0.001A,所以practically,σ~0.001A; ii)Cu-alpha_XRD (8 keV, 波长1.54 A),波长相对较长,但利用宽角度细扫(2θ:1~100deg, 0.005 step, 2万个数据点),充分利用多个衍射峰信息,使用全谱拟合,practically, σ~0.01A 的精度; iii)电镜--哪怕是你提到的xstem?--多晶选区衍射环(300 keV, 波长约0.02A),波长相对Cu-a较小,但是衍射角很小,在当前现有技术下,在0.01~ 1deg之间我们能探测的最多点数是很受限制的,况且多数时候靠人眼去分辨,加上相机长度、标尺的误差,我没有见过通过电镜衍射得到σ小于0.1A的标定。 iv)如果是中子衍射的晶胞参数存在0.5A的差异也是不稀奇的。

电子衍射(材料分析方法)

第十章电子衍射 一、概述 透射电镜的主要特点是可以进行组织形貌与晶体结构同位分析。若中间镜物平面与物镜像平面重合(成像操作),在观察屏上得到的是反映样品组织形态的形貌图像;而若使中间镜的物平面与物镜背焦面重合(衍射操作),在观察屏上得到的则是反映样品晶体结构的衍射斑点。本章介绍电子衍射基本原理与方法,下章将介绍衍衬成像原理与应用。 电子衍射的原理和X射线衍射相似,是以满足(或基本满足)布拉格方程作为产生衍射的必要条件。两种衍射技术所得到的衍射花样在几何特征上也大致相似。多晶体的电子衍射花样是一系列不同半径的同心圆环,单晶衍射花样由排列得十分整齐的许多斑点所组成。而非晶态物质得衍射花样只有一个漫散得中心斑点(图1,书上图10-1)。由于电子波与X射线相比有其本身的特性,因此,电子衍射和X射线衍射相比较时具有下列不同之处: (1)电子波的波长比X射线短的多,在同样满足布拉格条件时,它的衍射角θ很小,约10-2rad;而X射线产生衍射时,其衍射角最大可接近90°。 (2)在进行电子衍射操作时采用薄晶样品,薄样品的倒易阵点会沿着样品厚度方向延伸成杆状,因此,增加了倒易阵点和爱瓦尔德球相交截的机会,结果使略为偏离布拉格条件的电子束也能发生衍射。 (3)因为电子波的波长短,采用爱瓦尔德球图解时,反射球德半径很大,在衍射角θ较小德范围内反射球的球面可以近似地看成是一个平面,从而也可以认为电子衍射产生的衍射斑点大致分布在一个二维倒易截面内。这个结果使晶体产生的衍射花样能比较直观的反映晶体内各晶面的位向,给分析带来不少方便。 (4)原子对电子的散射能力远高于它对X射线的散射能力(约高出四个数量级),这使得二者要求试样尺寸大小不同,X射线样品线性大小位10-3cm,电子衍射样品则为10-6~10-5cm,且电子衍射束的强度较大,摄取衍射花样时曝光时间仅需数秒钟,而X射线以小时计。 (5)X射线衍射强度和原子序数的平方(Z2)成正比,重原子的散射本领比轻原子大的多。用X射线进行研究时,如果物质中存在重原子,就会掩盖轻原子的存在。而电子散射的强度约与Z4/3(原子序数)成正比,重原子与轻原子的散射本领相差不十分明显,这使得电子衍射有可能发现轻原子。此外,电子衍射因子随散射教的增大而减小的趋势要比X射线迅速的多。 (6)它们的穿透能力大不相同,电子射线的穿透能力比X射线弱的多。这是由于电子穿透能力有限,比较适合于用来研究微晶、表面、薄膜的晶体结构。由于物质对电

相关文档
最新文档