谈如何学习线性空间的概念

合集下载

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间是线性代数的一个重要概念,扮演着理解线性变换的基础角色。

本文将介绍线性空间的定义、性质以及线性变换的概念和特性。

一、线性空间的定义与性质线性空间,也被称为向量空间,是指一个集合,其中包含一些向量,满足特定的性质。

具体而言,线性空间需要满足以下几个条件:1. 封闭性:对于线性空间中的任意两个向量,它们的线性组合也属于该空间。

即,如果向量a和向量b属于线性空间V,那么对于任意标量α和β,αa + βb也属于V。

2. 加法封闭性:线性空间中的向量满足加法封闭性,即对于任意的向量a和b,它们的和a + b也属于该空间。

3. 数乘封闭性:线性空间中的向量满足数乘封闭性,即对于任意的向量a和标量α,它们的积αa也属于该空间。

4. 满足加法和数乘的运算性质:线性空间中的向量满足加法和数乘的交换律、结合律和分配律。

线性空间的性质还包括零向量、负向量和线性相关性。

零向量表示线性空间中存在一个使其与任何向量相加得到自身的向量,负向量表示线性空间中的向量存在一个加法逆元。

线性相关性指的是线性空间中存在一组向量线性组合为零向量的关系。

二、线性变换的定义和性质线性变换是指在两个线性空间之间的映射,它保持了向量空间中的线性结构。

具体而言,线性变换需要满足以下几个条件:1. 保持加法运算:对于线性变换T,对任意的向量a和b,有T(a +b) = T(a) + T(b)。

2. 保持数乘运算:对于线性变换T和标量α,有T(αa) = αT(a)。

线性变换的性质还包括零变换、恒等变换和可逆性。

零变换表示线性变换将所有向量映射为零向量。

恒等变换表示线性变换将每个向量映射为其本身。

可逆性表示存在一个逆变换,使得两个线性变换进行复合后得到恒等变换。

三、线性空间与线性变换的关系线性空间和线性变换密切相关,线性变换本质上是线性空间之间的映射,它将一个线性空间中的向量映射到另一个线性空间中。

线性变换保持了向量空间的线性结构,在线性代数中起到了重要的作用。

线性代数学习指导第四章线性空间

线性代数学习指导第四章线性空间

第五章 线性空间一、内容提要⒈ 线性空间定义1 设V 是一个非空集合,P 是一个数域. 若在V 中定义的加法和数乘运算对集合V 封闭,且加法与数乘运算满足线性运算的八条运算规则, 则称集合V 为数域P 上的线性空间.线性空间又称为向量空间, 线性空间的元素亦称为向量.设V 是数域P 上的线性空间, W 是V 的非空子集, 若W 对于V 的加法和数乘运算也构成数域P 上的线性空间, 则称W 为线性空间V 的一个线性子空间, 简称子空间. ⒉ 基、维数和坐标定义2 若线性空间V 中有n 个线性无关向量,而没有更多数目的线性无关的向量,则称V 是n 维线性空间,称V 中n 个线性无关的向量为V 的一组基,n 称为V 的维数,记作dim V = n .注 向量组12,,,n ααα是V 的一组基⇔12,,,n ααα是V 中的n 个线性无关向量且V中的任一向量α可由12,,,n ααα线性表示.向量组12,,,s ααα生成的空间L (12,,,s ααα)的一组基就是12,,,s ααα的一个极大无关组, 其维数就是向量组12,,,s ααα的秩.定义3 设12,,,n ααα是n 维线性空间V 的一组基, α 为V 中的任一向量, 若1122n n x x x αααα=+++则称数12,,,n x x x 为向量α 在基12,,,n ααα下的坐标, 记作 12(,,,)n x x x .向量的坐标可写成行的形式也可写成列的形式,但在利用坐标进行运算时,则要以运算式的具体情况来确定坐标的形式.定义4 设12,,,n ααα和12,,,n βββ是n 维线性空间V 的两组基, 且(12,,,n βββ)=(12,,,n ααα)C (1)称C 为由基12,,,n ααα到基12,,,n βββ的过渡矩阵,(1)式称为由基12,,,n ααα到基12,,,n βββ的基变换公式.定理1 设12,,,n ααα和12,,,n βββ是n 维线性空间V 的两组基, 由基12,,,nααα到基12,,,n βββ的过渡矩阵为C = n n ij c ⨯)( ,即(12,,,n βββ)=(12,,,n ααα)C若向量α 在这两组基下的坐标分别为 ()n x x x ,,,21 与 ()n y y y ,,,21 , 则⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n n y y y C x x x 2121 ⒊ 线性空间同构定义5 设V 与W 都是数域P 上的线性空间,如果由V 到W 有一个双射(一一对应)σ, 且σ具有如下性质:,,(1) ()()()(2) ()()V k Pk k αβσαβσασβσασα∀∈∈+=+= 则称线性空间V 与W 同构,并称σ为由V 到W 的同构映射.注 数域P 上任意两个有限维线性空间同构的充要条件是它们的维数相同.定理2 设线性空间V 与W 同构,σ是由线性空间V 到W 的同构映射, 则V 中向量12,,,s ααα线性相关的充要条件是它们的像12(),(),,()s σασασα线性相关.⒋ 向量的内积、长度、距离、夹角定义6 设V 是实数域R 上的线性空间, 如果在V 上定义了一个二元实函数, 称为内积, 记作(,)αβ, 且它具有以下性质: ,αβγ,是V 中任意向量,k 是任意实数(1) (,)(,)(2) (,)(,)(3) (,)(,)(,)k k αββααβαβαβγαγβγ==+=+ (4) (,)0,ααα≥=当且仅当θ时,(α,α)= 0这个定义了内积的线性空间V 称为欧几里得空间,简称欧氏空间.当n R 的向量为列向量时,上述内积可记为乘积形式 (,)T αβαβ=. 当n R 的向量为行向量时,上述内积可记为乘积形式 (,)T αβαβ=., , ,V αααα设是欧氏空间中任一向量称非负实数()为向量的长度或模,α记作 即,ααα=()向量αα是单位向量, 将非零向量α化为单位向量称为将向量α单位化.βα-称为向量α 与β的距离,记作(,)d αβ, 即(,)d αβ=αβ-.柯西-布捏柯夫斯基不等式: (,)αβαβ≤⋅ , 当且仅当α 与β 线性相关时, 等号成立.定义7 设α,β 为欧氏空间V 中的非零向量, 定义α ,β 的夹角ω为(),arccosαβωαβ=⋅ ( 0 ≤ ω ≤ π)若(,)αβ= 0, 则称α与β正交(或垂直), 记作βα⊥ .5.向量组的正交化一组两两正交的非零向量组称为正交向量组. 正交向量组一定线性无关. 定义8 设12,,,n ααα是n 维线性空间V 的一组基, 若12,,,n ααα两两正交且都为单位向量, 则称它为V 的一个标准正交基.向量组12,,,n ααα是n 维欧氏空间V 中的一组标准正交基的充要条件是()01ij i ji j αα≠⎧=⎨=⎩,,, ,1,2,,i j n =.任何一组线性无关的向量组12,,,m ααα都可用Schmidt(施密特)正交化方法化为正交向量组12,,,m βββ, 且12,,,m βββ与12,,,m ααα等价.取 11αβ=, ()()1222111βαβαβββ=-,,,()()()()()()121121112211,,,,,,i i i i i i i i i βαβαβαβαβββββββββ----=----(i = 3 , 4 , …, m )将向量组1β ,2β ,… ,m β 中的每个向量单位化, 令iii ββη=(i = 1 , 2 , … , m ) 则得到一个与原向量组12,,,m ααα等价的标准正交向量组1η,2η,… ,m η.6. 正交矩阵定义9 设Q 为n 阶实矩阵, 若TQ Q = E , 则称Q 为正交矩阵. 正交矩阵的性质:(1)若Q 为正交阵,则 Q = 1 或-1 ;(2)若Q 为正交阵,则Q 可逆,且 1-Q=T Q ;(3)若P ,Q 都是n 阶正交矩阵,则P Q 也是n 阶正交矩阵;(4)n 阶实矩阵Q 为正交矩阵的充要条件是Q 的列(行)向量组是n R 的标准正交基.二、重点难点1. 判定集合是否构成线性空间.2. 线性空间的基、维数, 向量在基下的坐标等概念以及过渡矩阵、基变换与坐标变换公式.3. 欧式空间以及内积的概念和运算性质, 用内积运算进行证明.4. 用施密特正交化方法将线性无关的向量组正交化.5. 正交矩阵的概念及其性质.三、 学习要求1. 了解线性空间、子空间的概念, 理解向量空间的基和维数, 会求向量关于基的坐标,熟悉坐标变换公式.2. 了解线性空间同构的概念.3. 了解向量的内积、长度、距离、夹角、正交等概念, 掌握内积运算的性质.4. 理解标准正交基的概念, 掌握线性无关向量组正交规范化的施密特(Schmidt)方法.5. 掌握正交矩阵的概念及其性质.四、典型题分析例1 全体n 维实向量集合V , 对于通常的向量加法和如下定义的数乘运算,,k V k R ααα=∈∈其中是否构成实数域上的线性空间.解 设,, k l R α∈是集合V 中的非零向量.因为()2k l k l ααααααα+=+=+=而,所以()k l k l ααα+≠+, 故此集合不构成实数域上的线性空间.注 检验集合是否构成线性空间的方法:如果所定义的加法和数乘运算是通常意义下的加法和数乘运算, 则它们满足线性运算的八条运算规则, 因此只需检验集合对运算的封闭性. 如果所定义的加法和数乘运算不是通常意义下的加法数乘运算, 则不仅要检验集合对运算的封闭性, 还要仔细检验加法和数乘运算是否满足八条线性运算规律. 例2 求向量空间(){1212,,,0,,1,2,,,n n i V x x x x x x x R i n =+++=∈=}2n ≥的基和维数.分析 先找出向量空间V 的一组基, 即找出一组线性无关的向量, 使得V 中任一向量可由这组向量线性表示.解 在向量空间V 中取1n -个向量1(1,1,0,0,,0)α=-, 2(1,0,1,0,,0)α=-,,1(1,0,0,,0,1)n α-=-, 显然121,,,n ααα-线性无关.对V 中任一向量12(,,,)n x x x α=, 以121,,,,n αααα-为行构造矩阵A ,则1123110010101001ni i nA x x x x x =--===-∑, 从而121,,,,n αααα-线性相关, 又因为121,,,n ααα-线性无关, 所以α可由121,,,n ααα-线性表示.故121,,,n ααα-是V 的基, V 的维数是1n -.注 这个向量空间V 就是齐次线性方程组120n x x x +++=的解空间, V 的一组基就是齐次线性方程组的一个基础解系. 例3 设12,,,n t t t 是互不相同的实数,证明向量组21(1,,,,),1,2,,n i i i i t t t i n α-==是n 维向量空间n R 中的一组基. 并求出向量()12,,,n b b b β=在这组基下的坐标.分析 12,,,n ααα是n 维向量空间n R 中的n 个向量, 只需证明12,,,n ααα线性无关即可.证 令21111121222221111n n n n nnn t t t t t t A t t t ααα---⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪== ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 因为12,,,n t t t 是互不相同的实数,所以()121111121110n T ji i j nn n n nt t t A A tt ttt≤<≤---===-≠∏⇒12,,,n ααα线性无关.所以12,,,n ααα是n 个线性无关的n 维向量, 构成n 维向量空间n R 中的一组基. 设β在基12,,,n ααα下的坐标为()12,,,n x x x , 则有1122n n x x x βααα=+++⇒β=()()121212,,,,,,n n n x x x x x x A ααα⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭.因为A 可逆, 所以()112,,,n x x x A β-=. 故β在基12,,,n ααα下的坐标为1A β-.例4 设3R 中的向量α在基1231032,1,2111ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下的坐标为123x x x ⎛⎫ ⎪⎪ ⎪⎝⎭,在基123,,βββ下的坐标为123y y y ⎛⎫⎪⎪ ⎪⎝⎭, 且11232123132y x x x y x x y x x =--⎧⎪=-+⎨⎪=+⎩ (1)123123,,,,;βββααα求由基到基的过渡矩阵(2)求基123,,βββ. 解 (1)由题有111232123233(,,)(,,)x y x y x y ααααβββ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭112323111(,,)110102x x x βββ--⎛⎫⎛⎫ ⎪⎪=- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⇒123123111(,,)(,,)110102αααβββ--⎛⎫⎪=- ⎪ ⎪⎝⎭(*),所以123123,,,,C βββααα由基到基的过渡矩阵=111110102--⎛⎫⎪- ⎪ ⎪⎝⎭.(2) 由(*)式得123(,,)βββ=123(,,)ααα1111110102---⎛⎫⎪- ⎪⎪⎝⎭123(,,)ααα=221231110⎛⎫ ⎪ ⎪ ⎪--⎝⎭111431342--⎛⎫⎪=--- ⎪ ⎪⎝⎭,故1231114,3,1342βββ--⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例 5 设,a b 是欧氏空间中的任意向量, 证明平行四边形法则(对角线的平方和等于四边的平方和).证 设,a b 是平行四边形的两条邻边, 则a b a b +-和为两条对角线. 因为22(,)(,)a b a b a b a b a b a b ++-=+++--(,)2(,)(,)(,)2(,)(,)a a a b b b a a a b b b =+++-+ 222()a b =+.所以平行四边形的对角线的平方和等于四边的平方和.例 6 1212,,,,(,)0i j ααββαβ=设线性无关线性无关且满足, 1,2,1,2.i j ==证明:1212,,,ααββ线性无关.证 设有数1212,,,,k k λλ使得112211220k k ααλβλβ+++= (*) 上式两边分别与12,αα做内积, 由(,)0i j αβ=,1,2,1,2.i j ==得111221112222(,)(,)0(,)(,)0k k k k αααααααα+=⎧⎨+=⎩ (**) 由柯西-布捏柯夫斯基不等式及12,αα线性无关得112121122211222(,)(,)(,)(,)(,)0(,)(,)αααααααααααααα=->.故方程组(**)只有零解120k k ==, 将其代入(*), 由已知12,ββ线性无关, 得120λλ==. 于是得1212,,,ααββ线性无关.例7 将R 3的一组基1231100,1,1101ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )利用施密持正交化方法将其正交化取1110,1βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ 1222111111/2(,)1101 (,)2011/2βαβαβββ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,132333*********/22/3(,)(,)11/21012/323/2(,)(,)111/22/3βαβαβαββββββ-⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=--=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭, 123,,βββ则是正交向量组.(2 ) 将123,,βββ单位化11122233322, 62, 3, 3T T Tβββββββββ====3121231236320, 26, 3 263βββηηηβββ⎡⎤⎡-⎡⎢⎥⎢⎢∴======⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢-⎢⎥⎢⎥⎣⎣⎦⎣⎦,则123,,ηηη为R 3的一组标准正交基.例8 设m+n 阶矩阵P O A R Q ⎛⎫= ⎪⎝⎭, 其中P , Q 分别是m , n 阶矩阵, O 为零矩阵.证明: 若A 为正交矩阵, 则P 和Q 也是正交矩阵且R 为零矩阵. 分析 用正交矩阵的定义证 证 由题知TT TTT P R A OQ ⎛⎫= ⎪⎝⎭. 因A 为正交矩阵, 所以 TT T T T mT TT T T n E P O P R P P R R R Q A A E R Q OQ Q R Q Q ⎛⎫⎛⎫⎛⎫+⎛⎫=== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 上式最后一个等号两边比较得 T n Q Q E Q =⇒为n 阶正交矩阵.T R Q O =且Q 可逆⇒R O =.T T m P P R R E +=且R O =T m P P E ⇒=⇒P 是m 阶正交矩阵.五、习题解析习题5. 11. 判断全体n 阶实对称矩阵按矩阵的加法与数乘是否构成实数域上的线性空间.答 是.因为是通常意义的矩阵加法与数乘, 所以只需检验集合对加法与数乘运算的封闭性. 由n 阶实对称矩阵的性质知,n 阶实对称矩阵加n 阶实对称矩阵仍然是n 阶实对称矩阵,数乘n 阶实对称矩阵仍然是n 阶实对称矩阵, 所以集合对矩阵加法与数乘运算封闭, 构成实数域上的线性空间.2.全体正实数R +, 其加法与数乘定义为 ,,k a b ab k a a a b R k R+⊕==∈∈其中 判断R +按上面定义的加法与数乘是否构成实数域上的线性空间. 答 是. 设,R λμ∈.因为,a b R a b ab R ++∀∈⇒⊕=∈,,R a R a a R λλλ++∀∈∈⇒=∈,所以R +对定义的加法与数乘运算封闭. 下面一一验证八条线性运算规律 (1) a b ab ba b a ⊕===⊕;(2)()()()()()a b c ab c ab c abc a bc a b c ⊕⊕=⊕====⊕⊕;(3) R +中存在零元素1, ∀a R +∈, 有11a a a ⊕=⋅=;(4) 对R +中任一元素a ,存在负元素1n a R -∈, 使111a a aa --⊕==; (5)11a a a ==; (6)()()a a a a a λμμλμλμλλμ⎛⎫==== ⎪⎝⎭;(7) ()a a a a a a a a λμμμλλλμλμ++===⊕=⊕;()(8)()().a b ab ab a b a b a b λλλλλλλλλ⊕====⊕=⊕所以R +对定义的加法与数乘构成实数域上的线性空间. 3. 全体实n 阶矩阵,其加法定义为A B AB BA ⊕=-按上述加法与通常矩阵的数乘是否构成实数域上的线性空间. 答 否.,()A B AB BA B A BA AB AB BA ⊕=-⊕=-=--A B B A ∴⊕⊕与不一定相等.故定义的加法不满足加法的交换律即运算规则(1), 全体实n 阶矩阵按定义的加法与数乘不构成实数域上的线性空间.4.在22P ⨯中,{}2222/0,,W A A A P W P ⨯⨯==∈判断是否是的子空间. 答 否.121123123345⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭例如和的行列式都为零,但的行列式不为零, 也就是说集合对加法不封闭.习题1.讨论22P ⨯中1234111111,,,111111a a A A A A a a ⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭的线性相关性.解 设11223344x A x A x A x A O +++=,即123412341234123400ax x x x x ax x x x x ax x x x x ax +++=⎧⎪+++=⎪⎨+++=⎪⎪+++=⎩ . 由系数行列式3111111(3)(1)111111a a a a a a=+- 知, 3 1 , , a a ≠-≠且时方程组只有零解这组向量线性无关; 3 1 , , a a =-=或 时方程组有非零解这组向量线性相关. 2.在4R 中,求向量1234ααααα在基,,,下的坐标.其中1234010011001111ααααα⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭2111,=,=,=,3010解 设11223344x x x x ααααα=+++由()1234100110010111ααααα⎛⎫ ⎪⎪= ⎪- ⎪-⎝⎭2111301010001010000010100010⎛⎫⎪ ⎪−−−−→⎪- ⎪⎝⎭初等行变换 得13ααα=-. 故向量1234ααααα在基,,,下的坐标为 ( 1, 0 , - 1 , 0 ).2212342347P ααααα⨯⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭110-11-1103.在中求在基=,=,=,=下的坐标.11100000 解 设11223344x x x x ααααα=+++则有123412341234123402030040007x x x x x x x x x x x x x x x x +++=⎧⎪--+=⎪⎨+++=⎪⎪+++=-⎩.由101121000711103010011110040010211007000130-⎛⎫⎛⎫⎪ ⎪--⎪ ⎪−−−−→⎪⎪-⎪ ⎪-⎝⎭⎝⎭初等行变换 得12347112130ααααα=-+-+.故向量1234ααααα在基,,,下的坐标为(-7,11,-21,30). 4.已知3R 的两组基(Ⅰ): 123111ααα⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11=,=0,=0-11(Ⅱ):123121βββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23=,=3,=443(1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵;(2) 已知向量123123,,,,,αααααβββ⎛⎫⎪⎪ ⎪⎝⎭1在基下的坐标为0求在基下的坐标-1;(3) 已知向量123123,,,,,βββββααα⎛⎫ ⎪⎪ ⎪⎝⎭1在基下的坐标为-1求在基下的坐标2;(4) 求在两组基下坐标互为相反数的向量γ.解(1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()321321,,,,αααβββ= C即123111234100143111C ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭, 知基(Ⅰ)到基(Ⅱ)的过渡矩阵为1111123234100234010111143101C -⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭.(2)首先计算得11322201013122C -⎛⎫-- ⎪⎪=- ⎪ ⎪ ⎪-⎝⎭, 于是α 在基321,,βββ 下的坐标为131200112C -⎛⎫ ⎪⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪-⎝⎭.(3)β 在基321,,ααα 下的坐标为171123C ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭.(4) 设γ在基321,,βββ 下的坐标为123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭, 据题意有234010101⎛⎫ ⎪- ⎪⎪--⎝⎭123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭123y y y -⎛⎫⎪=- ⎪ ⎪-⎝⎭, 解此方程组可得123y y y ⎛⎫ ⎪ ⎪ ⎪⎝⎭=043k k ⎛⎫ ⎪⎪ ⎪-⎝⎭,为任意常数.231430,7k k k k γββ-⎛⎫⎪∴=-= ⎪ ⎪⎝⎭为任意常数.5.已知P [x ]4的两组基(Ⅰ):2321234()1()()1()1f x x x x f x x x f x x f x =+++=-+=-=,,,(Ⅱ):2323321234()()1()1()1g x x x x x x x x x x x x x =++=++=++=++,g ,g ,g (1) 求由基(Ⅰ)到基(Ⅱ)的过渡矩阵; (2) 求在两组基下有相同坐标的多项式f (x ).解 ( 1 ) 设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 由 ()()12341234,,,,,,g g g g f f f f =C有23230111101*********(1,,,)(1,,)1101110011101000x x x x x x C ⎛⎫⎛⎫ ⎪ ⎪-- ⎪ ⎪= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭,. 10110111100011101110101101000011 1100110100100112100111000011113⎛⎫⎛⎫⎪ ⎪--- ⎪ ⎪−−−−→⎪⎪-⎪ ⎪---⎝⎭⎝⎭初等行变换 1110001101121113C ⎛⎫ ⎪-⎪∴= ⎪- ⎪---⎝⎭. (2)设多项式f (x )在基(Ⅰ)下的坐标为1234(,,,)T x x x x .据题意有111222333444 ()x x x x x x C C E x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇒-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭0 (*)因为01101101100111111001101021021021112C E ---==--==------所以方程组(*)只有零解,则f (x )在基(Ⅰ)下的坐标为(0,0,0,0)T,所以f (x ) = 0习题证明线性方程组1234512345123453642022353056860x x x x x x x x x x x x x x x +--+=⎧⎪+--+=⎨⎪--+-=⎩ 的解空间与实系数多项式空间3[]R x 同构.证明 设线性方程组为AX = 0, 对系数矩阵施以初等行变换.316421568622353043751568600000A -----⎛⎫⎛⎫⎪ ⎪=--−−−−→ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭初等行变换()2()3R A R A =∴=线性方程组的解空间的维数是5-.实系数多项式空间3[]R x 的维数也是3, 所以此线性方程组的解空间与实系数多项式空间3[]R x 同构.习题1. 求向量()1,1,2,3α=- 的长度. 解 22221(1)2315α=+-++.2. 求向量()()1,1,0,12,0,1,3αβ=-=与向量之间的距离.解 (,)d αβ=2222(12)(10)(01)(13)7αβ-=-+--+-+-. 3.求下列向量之间的夹角(1) ()()10431211αβ==--,,,,,,, (2) ()()12233151αβ==,,,,,,,(3)()()1,1,1,2311,0αβ==-,,, 解(1)(),1(1)02413(1)0,,2a παββ=⨯-+⨯+⨯+⨯-=∴=.(2)(),1321253118αβ=⨯+⨯+⨯+⨯=,22222222122318,31516,αβ+++=+++=,4618πβ∴==.(3)(),13111(1)203αβ=⨯+⨯+⨯-+⨯=,11147α=+++, 911011β=+++=,77αβ∴=.3. 设αβγ,,为n 维欧氏空间中的向量,证明: (,)(,)(,)d d d αβαγγβ≤+. 证明 因为22(,)αβαγγβαγγβαγγβ-=-+-=-+--+-22(,)(,)(,)(,)(,)2(,)(,)2αγαγαγγβγβαγγβγβαγαγαγγβγβγβαγαγγβγβ=--+--+--+--=--+--+--≤-+-⋅-+-所以22()αβαγγβ-≤-+-, 从而(,)(,)(,)d d d αβαγγβ≤+.习题1. 在4R 中,求一个单位向量使它与向量组()()()1,1,1,11,1,1,11,1,1,1321--=--=--=ααα,, 正交.解 设向量1234123(,,,)x x x x αααα=与向量,,正交, 则有 112342123431234(0(,0(,)0x x x x x x x x x x x x αααααα=+--=⎧⎧⎪⎪=--+=⎨⎨⎪⎪=-+-=⎩⎩,)0)0即 (*). 齐次线性方程组(*)的一个解为 12341x x x x ====.取*1111(1,1,1,1), ,,,2222ααα=将向量单位化所得向量=()即为所求.2. 将3R 的一组基1231,2,1111ααα ⎪ ⎪ ⎪===- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭化为标准正交基.解 (1 )正交化, 取11111βα⎛⎫ ⎪== ⎪ ⎪⎝⎭ , 12221111311(,)111211221(,)11111131113βαβαβββ⎛⎫- ⎪⎛⎫⎛⎫ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪=-=-= ⎪ ⎪ ⎪⨯+⨯+⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪- ⎪⎝⎭ 132********1122113121020(1)()1(,)(,)2333100121(,)(,)3()()()11333123βαβαβαββββββ⎛⎫-⎛⎫⎪- ⎪⎛⎫⎪-⨯+⨯-+-⨯ ⎪ ⎪ ⎪=--=---= ⎪ ⎪ ⎪ ⎪ ⎪-++- ⎪⎝⎭⎪ ⎪-⎝⎭ ⎪⎝⎭(2 ) 将123,,βββ单位化***123362,,036236βββ⎛⎛ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎝⎭⎝则*1β,*2β,*3β为R 3的一组基标准正交基. 3.求齐次线性方程组123451235300x x x x x x x x x +-+-=⎧⎨+-+=⎩ 的解空间的一组标准正交基.分析 因齐次线性方程组的一个基础解系就是其解空间的一组基,所以只需求出一个基础解系再将其标准正交化即可.解 对齐次线性方程组的系数矩阵施行初等行变换化为行最简阶梯形矩阵11113111011110100014---⎛⎫⎛⎫−−→ ⎪ ⎪--⎝⎭⎝⎭可得齐次线性方程组的一个基础解系123100,,010004001ηηη ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由施密特正交化方法, 取11221331211/21/311/21/3111,,011/3223004001βηβηββηββ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪===+==-+= ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将123,,βββ单位化得单位正交向量组***12311/21/311/21/33,,011/326213004001βββ--⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪- ⎪ ⎪⎪⎪⎪⎪==⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭因为齐次线性方程组的解向量的线性组合仍然是齐次线性方程组的解,所以*1β,*2β,*3β是解空间的一组标准正交基.3. 设1α,2α ,… ,n α 是n 维实列向量空间n R 中的一组标准正交基, A 是n 阶正交矩阵,证明: 1αA ,2αA ,… ,n A α 也是n R 中的一组标准正交基.证明 因为n ααα,,,21 是n 维实列向量空间n R 中的一组标准正交基, 所以⎩⎨⎧=≠==j i j i j T i j i 10),(αααα (,1,2,,)i j n =. 又因为A 是n 阶正交矩阵, 所以T A A E =. 则⎩⎨⎧=≠====j i j i A A A A A A j T i j T T i j T i j i10)()()(),(αααααααα (,1,2,,)i j n = 故n A A A ααα,,,21 也是n R 中的一组标准正交基. 5.设123,,ααα是3维欧氏空间V 的一组标准正交基, 证明112321233123111(22),(22),(22)333βαααβαααβααα=+-=-+=--也是V 的一组标准正交基. 证明 由题知()()1231232211,,,,2123122βββααα⎛⎫ ⎪=-- ⎪ ⎪--⎝⎭1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭因为是一组标准正交基,且的行向量组是单位正交向量组.()1232211,,2123122ααα⎛⎫ ⎪-- ⎪ ⎪--⎝⎭所以和都是正交矩阵.()123,,.βββ从而也是正交矩阵123,,βββ所以是单位正交向量组, 构成V 的一组标准正交基.习题五 (A)一、填空题1.当k 满足 时,()()()31211,2,1,2,3,,3,,3k k R ααα===为的一组基. 解 三个三维向量为3R 的一组基的充要条件是123,,0ααα≠, 即26k k ≠≠且. 2.由向量()1,2,3α=所生成的子空间的维数为 .解 向量()1,2,3α=所生成的子空间的维数为向量组α的秩, 故答案为1.3.()()()()3123,,1,3,5,6,3,2,3,1,0R αααα====中的向量371在基下的坐标为 . 解 根据定义, 求解方程组就可得答案.设所求坐标为123(,,)x x x , 据题意有112233x x x αααα=++. 为了便于计算, 取下列增广矩阵进行运算 ()3213613100154,,133701082025100133αααα⎛⎫⎛⎫⎪ ⎪=−−−−→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭初等行变换,所以123(,,)x x x = (33,-82,154).4. ()()()3123123,,2,1,3,1,0,1,2,5,1R εεεααα=-=-=---中的基到基的过渡矩阵为 . 解 因为123123212(,,)(,,)105311αααεεε---⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, 所以过渡矩阵为212105311---⎛⎫ ⎪- ⎪ ⎪-⎝⎭.5. 正交矩阵A 的行列式为 . 解 21T A A E A =⇒=⇒A =1±.6.已知5元线性方程组AX = 0的系数矩阵的秩为3, 则该方程组的解空间的维数为 . 解 5元线性方程组AX = 0的解集合的极大无关组(基础解系)含5 – 3 =2 个向量, 故解空间的维数为2.()()()()412342,1,1,1,2,1,,,3,2,1,,4,3,2,11,a a a R a αααα====≠7.已知不是的基且a 则满足 .解 四个四维向量不是4R 的一组基的充要条件是1234,,,0αααα=, 则12a =或1. 故答案为12a =. 二、单项选择题1.下列向量集合按向量的加法与数乘不构成实数域上的线性空间的是( ). (A ) (){}R x x x x V n n ∈=,,0,,0,111 (B ) (){}R x x x x x x x V i n n ∈=+++=,0,,,21212 (C ) (){}R x x x x x x x V i n n∈=+++=,1,,,21213(D) (){}411,0,,0,0V x x R =∈解 (C ) 选项的集合对向量的加法不封闭, 故选(C ).2.331,23P A ⨯⎛⎫ ⎪= ⎪ ⎪⎝⎭在中由生成的子空间的维数为( ). (A) 1 (B) 2 (C) 3 (D) 4解 向量组A =123⎛⎫ ⎪⎪ ⎪⎝⎭生成的子空间的维数是向量组A 的秩, 故选(A ). 331231223311223311223123123123123,,( )() ,, ()2,23,3() ,,2 () ,2322,355R R A B C D ααααααααααααααααααααααααααααααα++-+++++++++-++-3.已知是的基,则下列向量组是的基.解 因 ( B )选项1223311231012,23,3=(,,) 220033ααααααααα⎛⎫⎪+++ ⎪ ⎪⎝⎭中(), 又因123101,,220033ααα⎛⎫⎪⎪ ⎪⎝⎭线性无关且可逆, 所以1223312,23,3αααααα+++线性无关.故选(B ).33123122313122331122313122313,, () ,, () 2,2,2() ,, () 2,2,2R R A B C D ααααααααααααααααααααααααααα++++++------4.已知是的基,则下列向量组()不是的基. 解 因122313 ()()()0αααααα-+---=, 所以( C )选项中向量组线性相关, 故选(C ). 5.n 元齐次线性方程组AX = 0的系数矩阵的秩为r , 该方程组的解空间的维数为s, 则( ).(A) s=r (B) s=n-r (C) s>r (D) s<r 选(B )6. 已知A, B 为同阶正交矩阵, 则下列( )是正交矩阵. (A) A+B (B) A-B (C) AB (D) kA (k 为数) 解 A, B 为同阶正交矩阵()T T T T AB AB ABB A AA E ⇒=== 故选(C ).7. 线性空间中,两组基之间的过渡矩阵( ).(A) 一定不可逆 (B) 一定可逆 (C) 不一定可逆 (D) 是正交矩阵 选(B )(B)1.已知4R 的两组基 (Ⅰ): 1234, αααα,,(Ⅱ):11234223433444,βααααβαααβααβα=+++=++=+=,, ( 1 )求由基(Ⅱ)到(Ⅰ)的过渡矩阵; ( 2 )求在两组基下有相同坐标的向量.解 (1)设C 是由基(Ⅰ)到基(Ⅱ)的过渡矩阵, 已知1234123410001100(,,,)(,,,)11101111ββββαααα⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭, 所以由基(Ⅱ)到基(Ⅰ)的过渡矩阵为11000110001100011C -⎛⎫⎪-⎪= ⎪-⎪-⎝⎭. (2)设在两组基下有相同坐标的向量为α, 又设α在基(Ⅰ)和基(Ⅱ)下的坐标均为),,,(4321x x x x , 由坐标变换公式可得11223344x x x x C x x x x ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ , 即 1234()x x E C x x ⎛⎫ ⎪⎪-= ⎪ ⎪ ⎪⎝⎭0 (*) 齐次线性方程(*)的一个基础解系为(0,0,0,1)η=, 通解为(0,0,0,) ()X k k R *=∈. 故在基(Ⅰ)和基(Ⅱ)下有相同坐标的全体向量为12344000 ()k k k R αααααα=+++=∈.312312313123122323133123123123123123,, ,, ,, (1),, ,, ,, ;(3) 2 ,,R R αααβββββαααββααββααββββββαααααααβββ+=+++=++=+=+-2.已知是 的基,向量组满足证明 是的基;(2)求由基 到基的过渡矩阵求向量 在基 下的坐标.解 ( 1 ) 由题有123123110101(,,)011(,,)110101111βββααα⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⇒123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭⇒123123001(,,)(,,)100111222βββααα⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭因 0011001112220≠,所以123,, βββ线性无关. 故123,,βββ是3个线性无关向量,构成3 R 的基. (2 ) 因为123123010(,,)(,,)-1-12100αααβββ⎛⎫ ⎪= ⎪ ⎪⎝⎭所以从123123,,,,βββααα基到基的过渡矩阵为010-1-12100⎛⎫⎪⎪ ⎪⎝⎭(3) 123123123101012,,2,,-1-12211001αααααααβββ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=+-== ⎪ ⎪⎪ ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭()()1232,,-51βββ⎛⎫⎪= ⎪ ⎪⎝⎭()所以1232,,5.1αβββ⎛⎫ ⎪- ⎪ ⎪⎝⎭向量在基下的坐标为412341234123412341234123412002100,,,,0012002121001100,,,,003500121,,2 2R ααααββββααααββββααααααααα⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎪⎪ ⎪ ⎪⎝⎭=++-3.设的两组基,与=,,且由基,到基,的过渡矩阵为()求基,;()求向量1234,,ββββ在基,下的坐标.解 (1) 因为12341234,,,,ααααββββ由基,到基,的过渡矩阵为C = 2100110000350012⎛⎫ ⎪⎪⎪ ⎪⎝⎭, 所以112341234(,,,)(,,,)12001-10013002100-120010000012002-5000100210-13037C ααααββββ-=-⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪==⎪⎪ ⎪⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭所以123413001000,,,00010037αααα-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭.(2 )11234123412341111 2(,,,)(,,,)1122C αααααααααββββ-⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪=++-== ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭123401(,,,)127ββββ⎛⎫⎪ ⎪= ⎪ ⎪-⎝⎭,12341234012,,,12-7αααααββββ⎛⎫ ⎪ ⎪∴=++- ⎪ ⎪⎝⎭向量在基下的坐标为.222123324. ()1,()12,()123[]()6914f x x x f x x x f x x x P x f x x x =++=++=++=++证明是线性空间的一组基,并求在这组基下的坐标.证明 设112233()()()0t f x t f x t f x ++=,则有222123(1)(12)(123)0t x x t x x t x x ++++++++= 即123123123011120*11210230123t t t t t t t t t ++=⎧⎪++==-≠⎨⎪++=⎩()因为系数行列式所以方程组(*)只有零解. 故123(),(),()f x f x f x 线性无关, 构成3[]P x 线性空间的一组基. 设112233()()()()f x y f x y f x y f x =++ 则有1231123212336129223143y y y y y y y y y y y y ++=⎧⎛⎫⎛⎫⎪ ⎪ ⎪++=⇒=⎨ ⎪ ⎪⎪ ⎪⎪++=⎝⎭⎩⎝⎭所以()f x 123(),(),()f x f x f x 在基下的坐标为(1, 2, 3). 5.当a 、b 、c 为何值时,矩阵A = 020010a bc ⎫⎪⎪⎪⎪ ⎪ ⎪ ⎪⎝⎭是正交阵.解 要使矩阵A 为正交阵,应有 T AA E = 001002200100100010001a b a c bc ⎫⎪⎛⎫⎪ ⎪⇒=⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪⎪⎝⎭⎝⎭ 222101002201001000102a ac acbc ⎛⎫++ ⎪⎛⎫ ⎪ ⎪⇒= ⎪ ⎪ ⎪⎪⎝⎭⎪++⎪⎭⇒2221120 21a ac b c ⎧+=⎪⎪+=⇒⎨⎪+=⎪⎩①121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;②121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;③121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩;④121212a b c ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩. 6.设 α 是n 维非零列向量, E 为n 阶单位阵, 证明:T T E A αααα)(/2-=为正交矩阵. 证明 因为α 是n 维非零列向量, T αα所以是非零实数.又22TTT T T T T A E E A αααααααα⎛⎫=-=-= ⎪⎝⎭,所以22 T T T T T A A AA E E αααααααα⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭()()2224444()()T T T T T TTTTTE E Eαααααααααααααααααααα=-+=-+=故A 为正交矩阵.7.设TE A αα2-=, 其中12,,,Tn a a a α=(), 若 ααT = 1. 证明A 为正交阵.证明 因为A E E E A TTTTTTT=-=-=-=αααααα2)(2)2(,所以A 为对称阵.又(2)(2)T T T A A E E αααα=--244()T T T E E αααααα=-+=, 所以A 为正交阵.8. , , , 0.A B n A B A B =-+=设均为阶正交矩阵且证明证明 因为, ,A B n 均为阶正交矩阵 所以0T A A =≠且T T T T T T TA AB E A B B B A B B A BB A B B A B+=+=+=+⋅=+⋅=⋅+()()0200T A B A B A A B A B ⇒-⋅+=⇒⋅+=⇒+=.。

线性代数第六章第一节——线性空间的定义与性质

线性代数第六章第一节——线性空间的定义与性质
0 c

解 (1)不构成子空间. 因为对
1
A B
0
2
有 A B
0
0 0
W1
0 0
0 0
W1 ,
0 0
线性代数
即 W1对矩阵加法不封闭,不构成子空间.
0 0 0
W2 , 即W2非 空.
( 2) 因
0 0 0
对任意
a1 b1 0
定义1 设 V是一个非空集合,R为实数域.如果
对于任意两个元素 , V,总有唯一的一个元
素 V 与之对应,称为 与 的和,记作

若对于任一数 R 与任一元素 V ,总有唯
一的一个元素 V 与之对应,称为 与 的积,记作

( 3) 在V中存在零元素0, 对任何 V , 都有有零元素
0 ;
(4)对任何 V , 都有的负元素 V , 使 有负元素
0;
(5) 1 ;
(6) ; 对数乘运算的结合律和分配律
(7) ;
数 乘 : k (a , b) (lg a , bk ), k R
V是不是向量空间
? 为 什 么?
线性代数

V不是向量空间
.
显 然,V对 加 法 封 闭,因 为 两 个 正 实 数 的 和 与

还 是 正 实 数.
但V对乘法不封闭
.
比如V中的元素(1, b), 对任意实数k ,
k (1, b) (lg 1, bk ) (0, bk ) V .
1 ; 0 0.
4.如果 0 ,则 0 或 0 .

6.1线性空间的概念.

6.1线性空间的概念.
n 1
[ a , b ]上的全体连续实函数对于通常定义的 函数的加法与数乘函数运算构成数域 R 上的 线性空间 C[a, b] 实系数的齐次线性方程组的解的全体构成实数 域上的线性空间 仅由 n 维零向量构成的集合也构成实数域上的 线性空间
例 非通常意义下的加法与数乘运算下的 线性空间
V R , P R def. a, b R , a b a b
2
定义加法为通常意义下的加法; 定义数乘为
k ( x1 , x2 ) (kx1 ,0)
则 V 不构成线性空间 例 n 次的多项式,不构成线性空间
2 线性空间的性质 零元素是唯一的 每个元素的负元素是唯一的 0 0 , (1) , k 0 0 若 k 0 k 0 or 0
T

定义 设 V 是数域 P 上的线性空间, , ,, V
1 2 s

k11 k2 2 k s s ki P, i 1,2,, s L 1 , 2 , , s
称 L 1 , 2 ,, s 为由 , ,, 生成的
则称V 为数域 P 上的线性空间
例如 全体 n 维实向量对于通常定义的加法与数乘 运算构成数域 R 上的线性空间 R
n
全体 m n实矩阵对于通常定义的加法与数乘 运算构成数域 R 上的线性空间 R mn 全体 次数不超过 n 次的变量x 的实系数多项式 对于通常定义的函数的加法与数乘函数运算构 成数域 R 上的线性空间 R[ x]
第四章 线性空间
§ 4.1 线性空间的概念
1 线性空间的概念 定义 ( 数域 ) 若P 是一数集,P包含数0与1,且对 加法、减法、乘法与除法(0 不做除数) 封闭,则称 P 是一个数域。 例如,全体实数R、全体复数C、全体有理数Q

线性空间与线性变换

线性空间与线性变换

线性空间与线性变换线性空间和线性变换是线性代数中的重要概念,在数学和物理等领域有着广泛的应用。

本文将介绍线性空间和线性变换的概念、性质以及它们之间的关系。

一、线性空间的定义和性质线性空间是指具有加法运算和数乘运算的集合,满足以下条件:1. 加法运算闭合性:对于任意两个向量u和v,它们的和u+v仍然属于该集合。

2. 加法交换律:对于任意两个向量u和v,有u+v = v+u。

3. 加法结合律:对于任意三个向量u、v和w,有(u+v)+w =u+(v+w)。

4. 存在零向量:存在一个特殊的向量0,使得对于任意向量v,有v+0 = v。

5. 对于任意向量v,存在其负向量-u,使得v+(-u) = 0。

6. 数乘运算闭合性:对于任意标量c和向量v,它们的乘积cv仍然属于该集合。

7. 数乘结合律:对于任意标量c和d以及向量v,有(c+d)v = cv+dv。

8. 数乘分配律1:对于任意标量c以及向量u和v,有c(u+v) =cu+cv。

9. 数乘分配律2:对于任意标量c和d以及向量v,有(cd)v = c(dv)。

线性空间的例子包括n维向量空间和函数空间等。

它们满足上述定义中的所有条件。

二、线性变换的定义和性质线性变换是指将一个线性空间映射到另一个线性空间的映射,满足以下条件:1. 对于任意向量v和w以及标量c,线性变换T满足T(v+w) =T(v)+T(w)和T(cv) = cT(v)。

2. 线性变换T保持向量的线性组合关系,即对于任意向量v1、v2、...、vn和标量c1、c2、...、cn,有T(c1v1+c2v2+...+cnvn) =c1T(v1)+c2T(v2)+...+cnT(vn)。

3. 线性变换T将零向量映射为目标线性空间的零向量。

线性变换的例子包括平移、旋转和缩放等。

它们保持向量空间的线性结构和线性关系。

三、线性空间与线性变换的关系线性空间和线性变换之间存在着密切的联系。

给定一个线性空间V,定义一个线性变换T:V→W,其中W是另一个线性空间。

第二节线性空间的定义与简单性质ppt课件

第二节线性空间的定义与简单性质ppt课件

例 4 数域 P 上一元多项式环 P[ x ], 按通常 的多项式加法和数与多项式的乘法,构成数域 P 上 的一个线性空间. 如果只考虑其中次数小于 n 的多 项式,再添上零多项式也构成数域 P 上的一个线性 空间,用 P[ x ]n 表示. 但是,数域 P 上的 n 次多 项式集合对同样的运算不构成线性空间,因为两个 n 次多项式的和可能不是 n 次多项式.
§6.2 线性空间的定义与简单性质
3. 0 = 0 ; k0 = 0 ; (-1) = - .
证明 + 0 = 1 + 0 = (1 + 0) = 1 = .
所以
0 = 0 .
k0 + k = k (0 +) = k
所以
k0 = 0 .
(-1) + = (-1) + 1 =[(-1) + 1] = 0 =0 ,
§6.2 线性空间的定义与简单性质
注 ◆ 例 8 中集合 V 满足线性空间定义中的其 他七条公理, 可见第五条虽然比较简单, 但是不可 由其他七条推出.
◆ 在 8 条公理中只有第一条加法满足交换律不 是独立的.
证明 ∵ 2( )=2 2 =(1+1) +(1 +1) =(1 +1 )+(1 +1 )=(+ )+( + )= +( + )+ ,
在数域 P 与集合 V 的元素之间还定义了一种运算 , 叫做数量乘法; 这就是说,对于数域 P 中任一
数 k 与 V 中任一元素 ,在 V 中都有唯一的一个
§6.2 线性空间的定义与简单性质
元素 与它们对应,称为 k 与 的数量乘积,记 = k . 如果加法与数量乘法满足下述规则,那
么 V 称为数域 P 上的线性空间.
+ = 0 ( 称为 的负元素) .

2_9线性空间解析

线性空间是二维, 三维几何空间及n维向量空间的推广, 它 在理论上具有高度的抽象性和概括性. 线性空间的元素统称为“向量”, 但它可以是通常的向量, 也可以是矩阵, 多项式, 函数等各种各样的研究对象.
线 性 空 间
பைடு நூலகம்是一个集合; 对所定义的加法及数乘运算封闭; 所定义的加法及数乘符合线性运算.
0 0 k E + k E + k E + k E = O , 设 1 11 2 12 3 21 4 22 0 0 k 1 k 2 , 而 k1E11 + k2E12 + k3E21 + k4E22 = k3 k4 k1=k2=k3=k4=0. 因此, 有
对p(x)=a0+a1x+· · · +anxn Q[x]n, 0R, 0 p(x)=0(a0+a1x+· · · +anxn) = 0+0x+· · · +0xn = 0Q[x]n. 所以Q[x]n对线性运算不封闭. 例3: 正弦函数的集合 S[x]={ s(x)=Asin(x+B) | A, BR} 对于通常的函数加法及数乘函数的乘法构成线性空间. 对s1(x)=A1sin(x+B1), s2(x)=A2sin(x+B2)S[x], R, 由于, s1(x)+s2(x) = A1sin(x+B1)+A2sin(x+B2) = (a1cosx+b1sinx)+(a2cosx+b2sinx) = (a1+a2)cosx+(b1+b2)sinx = Asin(x+B) S[x],
线性空间的同构

线性空间线性空间的定义及性质知识预备集合笼统的说

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体。

集合的表示:枚举、表达式集合的运算:并(),交()另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R)和复数域(C)。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

1.线性空间的定义:设V是一个非空集合,其元素用zx,,等表示;K是一个数域,y其元素用m,等表示。

如果V满足[如下8条性质,分两类]:k,l(I)在V中定义一个“加法”运算,即当Vx∈,时,有唯一的和y+(封闭性),且加法运算满足下列性质:x∈yV(1)结合律z=+)()(;+y+zxyx+(2)交换律x+;=yyx+(3)零元律存在零元素O,使x+;x=O(4)负元律 对于任一元素V x ∈,存在一元素V y ∈,使O y x =+,且称y 为x 的负元素,记为)(x -。

则有O x x =-+)(。

(II )在V 中定义一个“数乘”运算,即当K k V x ∈∈,时,有唯一的V kx ∈(封闭性),且数乘运算满足下列性质: (5)数因子分配律 ky kx y x k +=+)(; (6)分配律 lx kx x l k +=+)(; (7)结合律 x kl lx k )()(=; (8)恒等律 x x =1; 则称V 为数域K 上的线性空间。

注意以下几点:1)线性空间是基于一定数域来的。

同一个集合,对于不同数域,就可能构成不同的线性空间,甚至对有的数域能构成线性空间,而对其他数域不能构成线性空间。

2)两种运算、八条性质。

数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则是抽象的、形式的。

3)除了两种运算和八条性质外,还应注意唯一性、封闭性是否满足。

线性空间与线性变换

线性空间与线性变换线性空间(也称为向量空间)是线性代数的基本概念之一。

它是指由向量集合组成的集合,满足特定的运算规则。

线性空间中的向量可以是实数域上的实向量,也可以是复数域上的复向量。

线性空间的定义涵盖了许多重要的数学概念和定理,在各个领域中都有广泛的应用。

一、线性空间的定义线性空间的定义遵循以下几个基本条件:1. 封闭性:对于线性空间V中任意向量u和v,它们的线性组合也属于V。

即对于任意的标量a和b,有a*u + b*v∈V。

2. 加法结合性:对于线性空间V中任意向量u、v和w,有(u+v)+w = u+(v+w)。

3. 加法交换性:对于线性空间V中任意向量u和v,有u+v = v+u。

4. 零向量存在性:存在一个特殊的向量0,满足对于线性空间V中任意向量u,有u+0 = u。

5. 加法逆元存在性:对于线性空间V中任意向量u,存在一个向量-v,使得u+(-v) = 0。

6. 数量乘法结合性:对于线性空间V中任意的标量a、b和向量u,有(a*b)*u = a*(b*u)。

7. 标量乘法分配律:对于线性空间V中任意的标量a和向量u、v,有a*(u+v) = a*u + a*v。

8. 向量乘法分配律:对于线性空间V中任意的标量a和b,以及向量u,有(a+b)*u = a*u + b*u。

二、线性变换的定义与性质线性变换是一种将一个线性空间映射到另一个线性空间的函数。

线性变换也被称为线性映射或线性算子。

线性变换保持线性空间的线性结构,即对于线性空间V中任意的向量u和v,以及标量a和b,有以下性质:1. 线性变换将零向量映射到零向量,即T(0) = 0,其中T表示线性变换。

2. 线性变换保持向量的线性组合,即对于线性空间V中任意的向量u和v,以及标量a和b,有T(a*u + b*v) = a*T(u) + b*T(v)。

3. 线性变换的像空间是一个线性空间,即对于线性空间V中的线性变换T,其像空间W也是一个线性空间。

线性空间与线性变换解析

线性空间与线性变换解析线性空间和线性变换是线性代数中重要的概念。

线性空间是指具备了特定性质的向量集合,而线性变换是将一个向量空间映射到另一个向量空间的映射关系。

通过分析线性空间与线性变换的特点和性质,可以深入理解线性代数的基本概念与应用。

一、线性空间的定义与性质1.1 线性空间的定义线性空间,也称为向量空间,是指一个非空集合V及其上的两种运算:加法和标量乘法,满足以下八个条件:(1)加法交换律:对于任意的u和v,u+v=v+u;(2)加法结合律:对于任意的u、v和w,(u+v)+w = u+(v+w);(3)零向量存在:存在一个向量0,使得对于任意的u,u+0=u;(4)负向量存在:对于任意的u,存在一个向量-v,使得u+(-v)=0;(5)标量乘法结合律:对于任意的标量a和b,以及向量u,(ab)u=a(bu);(6)分配律1:对于任意的标量a和向量u、v,a(u+v)=au+av;(7)分配律2:对于任意的标量a和b,以及向量u,(a+b)u=au+bu;(8)单位元存在:对于任意的向量u,1u=u。

1.2 线性空间的基本性质(1)线性空间中的向量可以进行加法和标量乘法运算;(2)线性空间中的向量满足向量加法的封闭性和标量乘法的封闭性;(3)线性空间中的向量满足加法交换律、加法结合律和分配律;(4)线性空间中存在唯一的零向量和负向量;(5)线性空间中存在多个基向量,它们可以线性组合得到任意向量;(6)线性空间中的向量存在唯一的零向量和唯一的负向量。

二、线性变换的定义与性质2.1 线性变换的定义线性变换,也称为线性映射,是指将一个向量空间V映射为另一个向量空间W的一种映射关系。

若对于任意的向量u和v,以及任意的标量a和b,满足以下两个条件,则称该映射关系为线性变换:(1)保持加法运算:T(u+v) = T(u) + T(v);(2)保持标量乘法:T(au) = aT(u)。

2.2 线性变换的基本性质(1)线性变换保持零向量:T(0) = 0;(2)线性变换保持向量的加法和标量乘法运算;(3)线性变换保持向量的线性组合关系;(4)线性变换将线性无关向量映射为线性无关向量;(5)线性变换的核和像是向量空间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高 教 视 野
GAOJIAO SHIYE
13
谈 如何学习线性空间的概念 谈如何学习线性空间的概念
◎孟祥菊 白红信 ( 保定学院数学与计机系 071000 )
+ 例 1 全体正实数的集合 R , 对加法和数量乘法 a k b = ab, k a = a , 构成 R 上的向量空间, 则此空间的零向量为 1 1, a∈R + 的负向量为 . 而有的同学误认为零向量为 0, 负向 a + 0 和 - a∈R + , 量为 - a. 此时只要看一下所讨论的集合 R , 也就是没有意义. + 例 2 全体正实数的集合 R , 对加法和数量乘法 a -k b = ab, k a=a , 构成 R 上的向量空间, 则此空间中的单位 “1 ”= - 1 . 在这个问题上, 元 有同学误认为它不能够构成 R 上的线性空间. 出现以上状况, 都是不能准确把握概念的表现 . 四、 要从整体上把握线性空间的概念, 不要只见树木不 见森林 在学习线性空间的概念时, 我们同学只知道根据所给 题目, 将八条运算规律验算正确, 就认为是大功告成, 结果 线性空间是什么, 只记住了八条运算规律, 这是典型的只见 树木不见森林的学习方法 . 学习数学若仅仅限于微观学习, 是学不到真正的数学思想与方法的, 更谈不上应用所学数 学知识去创造性地解决实际问题了 . 我们要注意养成全面 不仅要看到数学概念的某个局部, 而且能 考虑问题的习惯, 看到整体和局部的关系, 避免研究问题时的片面性 . 五、 体会线性空间概念中的运动思想, 会用辩证法的思 想把握概念 线性空间的概念和函数概念一样体现着变化过程和各 变化的量之间的依赖关系, 同时又指导着一些具体的变化 并不与哪个特别事物相关 . 线性空间在高等代 过程和变量, 数中首先引入抽象的变量向量, 有了变量, 运动就进入了线 性空间的概念, 整个概念体现了运动与变化的相互渗透, 对 . 于后继抽象数学课程打下了一个良好的基础 总之, 线性空间的概念是抽象与具体 、 整体与局部、 运 动与变化完美结合的系统, 初学者一定要深刻体会, 参悟概 以便更好地培养学生学习高等代数及后继课程的 念的美, 兴趣度、 自信度、 意志力和提高学习效率等 .
【摘要】 针对学生在学习线性空间的概念时存在的困 从微观角度与宏观角度提出几点学法建议 . 难, 【关键词】 线性空间; 学法; 概念 在高等代数的学习中, 不少学生认为线性空间的概念是 大 进一步学习高等代数的一道很难逾越的门槛. 究其原因, 多数学生对于比较抽象的高等代数概念难以理解, 还依赖于 中学代数中的数字运算, 还不能从先期学过的多项式、 向量、 矩阵等的运算中体会文字的运算及运算规律, 亦不能体会结 系统的意义; 还停留在只注重运算, 而不注重运算规律的 构、 层面上, 不能从整体上理解一个数学问题, 只能从系统的某 注重系统的某些细节, 不注重元素间的联 些元素进行分析, 系及系统的整体结构. 如果学习不好线性空间的概念, 那么 欧氏空间等概念的学习会形成一定的 学生对今后线性变换、 障碍, 也直接影响着他们学习高等代数的兴趣、 信念, 从而使 他们不能更好地把握认识论维度、 自我维度、 教学维度以及 学习行为维度. 要使学生从微观角度与宏观角度更好地学习 理解线性空间的概念, 下面给出几点学法建议. 、 一 根据教师引导, 积极回忆与概念相关的直观模型 我们在解析几何中讨论的三维空间及空间中的向量 、 向量的基本性质可以按平行四边形法则相加, 也可以与实 数做数量乘法; 矩阵构成的集合, 两个同型矩阵可以进行加 法运算, 某个实数也可以与矩阵做数乘矩阵运算 . 以上这些 有助于帮助我们理解抽象的向量的加法与数乘向量的概 念, 同时, 这些直观模型的概念与抽象的数学概念又有较大 区别, 学会剔除具体概念中特殊的成分, 注重具体概念中共 . 同具有的一些性质 二、 把新概念的学习纳入到已有熟悉的概念系统中去 考察新概念在概念系统中的地位和作用, 熟悉它和相 对新概念进行再认识. 类似的概念的关系与区别, 如线性空间概念中可以参考前面讨论过的 n 元有序数 a2 , …, a n ) 作为元素的 n 维向量空间, 组( a1 , 对于 n 元有序 a2 , …, a n ) + ( b1 , b2 , …, 数组也有加法和数量乘法, 即( a1 , b n ) = ( a1 + b 1 , a2 + b 2 , …, an + bn ) , k ( a1 , a2 , …, a n ) = ( ka1 , ka2 , …, ka n ) . 同时 n 维向量的两种运算满足如下运算规律: ( 1 ) α + β = β + α; ( 2 ) ( α + β ) + γ = α + ( β + γ ) ; ( 3 ) α + 0 = + α; ( 4 ) α + ( - α ) = 0 ; ( 5 ) k ( α + β ) = kα + kβ; ( 6 ) ( k + l) α = kα + lα; ( 7 ) k( lα) = ( kl) α; ( 8 ) 1 α = α. 可以看出上述运算及运算规律正是线性空间的概念应用 但是显然这些运算及运算规律也可应用于 于 n 维向量空间中, 其他系统, 如实数、 复数、 矩阵、 线性方程组等, 也就是说, 线性 空间的概念是存在属于不同系统的共同的代数结构. 三、 对于线性空间的定义, 要字斟句酌, 把握其准确含义 ( 1 ) “在集合 V 的元素之间定 如在线性空间的概念中, “一种代数运算 ” 义了一种代数运算, 叫作加法 ” 中的 表示: 一个对应法则, 也就是一种映射或变换, 而不是一种普通的 “1 ” 负向量、 单位 同样要引起足 数的加法运算. ( 2 ) 零向量、 够重视.
数学学习与研究 2012. 3
【参考文献】 [ 1] . 高等数学研 张顺燕. 从变量数学到现代数学[J] 2006 ( 5 ) : 2 - 4 ; ( 6 ) : 7 - 11. 究, [ 2] 张奠宙. 微积分教学: 从冰冷的美丽到火热的思考 [ J] . 高等数学研究, 2006 ( 2 ) : 2 - 4. [ 3] J] . 高等数学研究, 曹之江. 漫谈如何教数学( 二) [ 2006 ( 2 ) : 5. [ 4] J] . 高等数 李尚志. 从问题出发引入线性代数概念[ 2006 ( 5 ) : 6 - 8. 学研究, [ 5]北 京 大 学 代 数 几 何 教 研 室 . 高 等 代 数 ( 第 三 版) M] . 北京: 高等教育出版社, 2003. [ [ 6 ] Carlson,M. P. The mathematical behavior of six successful mathematics graduate students influences leading to mathematical success. Educational Studies in Mathematics, 1999 , 40 : 237 - 258.
相关文档
最新文档