多元中心极限定理及其证明
中心极限定理证明

中心极限定理证明正文第一篇:中心极限定理证明中心极限定理证明一、例子高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.二、中心极限定理设是独立随机变量序列,假设存在,若对于任意的,成立称服从中心极限定理.设服从中心极限定理,则服从中心极限定理,其中为数列.解:服从中心极限定理,则表明其中.由于,因此故服从中心极限定理.三、德莫佛-拉普拉斯中心极限定理在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,由此即得第一类问题是已知,求,这只需查表即可.第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.第三类问题是已知,求.解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:.抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:的随机变量.求.解:因为很大,于是所以利用标准正态分布表,就可以求出的值.某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.解:以表示第个分机用不用外线,若使用,则令;否则令.则.如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,查表得,,故取.于是取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.由德莫佛—拉普拉斯极限定理,有其中,即有四、林德贝格-勒维中心极限定理若是独立同分布的随机变量序列,假设,则有证明:设的特征函数为,则的特征函数为又因为,所以于是特征函数的展开式从而对任意固定的,有而是分布的特征函数.因此,成立.在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.设有个数,它们的近似数分别是,.,.令用代替的误差总和.由林德贝格——勒维定理,以,上式右端为0.997,即以0.997的概率有设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于. 证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.作业:p222ex32,33,34,35五、林德贝尔格条件设为独立随机变量序列,又令,对于标准化了的独立随机变量和的分布当时,是否会收敛于分布?除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.设是独立随机变量序列,又,,这时(1)若是连续型随机变量,密度函数为,如果对任意的,有(2)若是离散型随机变量,的分布列为如果对于任意的,有则称满足林德贝尔格条件.以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.证明:令,则于是从而对任意的,若林德贝尔格条件成立,就有这个关系式表明,的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.六、费勒条件设是独立随机变量序列,又,,称条件为费勒条件.林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.七、林德贝尔格-费勒中心极限定理引理1对及任意的,证明:记,设,由于因此,,其次,对,用归纳法即得.由于,因此,对也成立.引理2对于任意满足及的复数,有证明:显然因此,由归纳法可证结论成立.引理3若是特征函数,则也是特征函数,特别地证明定义随机变量其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.林德贝尔格-费勒定理定理设为独立随机变量序列,又.令,则(1)与费勒条件成立的充要条件是林德贝尔格条件成立.证明:(1)准备部分记(2)显然(3)(4)以及分别表示的特征函数与分布函数,表示的分布函数,那么(5)这时因此林德贝尔格条件化为:对任意,(6)现在开始证明定理.设是任意固定的实数.为证(1)式必须证明(7)先证明,在费勒条件成立的假定下,(7)与下式是等价的:(8)事实上,由(3)知,又因为故对一切,把在原点附近展开,得到因若费勒条件成立,则对任意的,只要充分大,均有(9)这时(10)对任意的,只要充分小,就可以有(11)因此,由引理3,引理2及(10),(11),只要充分大,就有(12)因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.(2)充分性先证由林德贝尔格条件可以推出费勒条件.事实上,(13)右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.其次证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知,当时,当时,因此(14)对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.(3)必要性由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,(15)上述被积函数的实部非负,故而且(16)因为对任意的,可找到,使,这时由(15),(16)可得故林德贝尔格条件成立.八、李雅普诺夫定理设为独立随机变量序列,又.令,若存在,使有则对于任意的,有第二篇:大数定理中心极限定理证明一,大数定律的证明二,中心极限定理的证明第三篇:中心极限定理§5.3中心极限定理我们曾特别强调了正态分布在概率论与数理统计中的地位与作用.为什么客观实际中许多随机变量服从正态分布?是经验猜测还是确有科学的理论依据,下面我们就来解释这一问题.我们已经知道,炮弹的弹着点射击误差服从正态分布,我们来分析其原因.要知道误差是什么样的随机变量,有必要研究一下造成误差的原因是什么?每次射击后,炮弹会因为震动而造成很微小的偏差x1,炮弹外形细小的差别而引起空气阻力不同而出现的误差x2,炮弹前进时遇到的空气流的微小扰动而造成的误差x3,……等等,有许多原因,每种原因引起一个微小的误差都是随机的,而弹着点的总误差x是许多随机误差的总和,即x=?xk,而且xk之间可以看成是相互独立的,因此要讨论x的分布就要讨论这些相互独k立的随机变量之和的分布.在概率论中,我们把研究在一定条件下,大量独立随机变量和的极限分布是正态分布的那些定理通常叫做中心极限定理.本节只介绍两个条件简单,也较常用的中心极限定理.定理4(同分布中心极限定理)设随机变量x1,x2,…,xn…相互独立,服从同一分布,且具有有限的数学期望和方差,e(xk)=?,d(xk)=???(k=1,2,…)则随机变量2?xk-n? k=1?n的分布函数对任意的x,满足n?? n?? ?xk-n? k=1 ?n?x1 ?2 ?? e-? x t22dt第四篇:中心极限定理应用中心极限定理及其应用【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。
中心极限定理证明

中心极限定理证明目录第一篇:中心极限定理证明第二篇:大数定理中心极限定理证明第三篇:中心极限定理第四篇:中心极限定理应用第五篇:中心极限定理更多相关范文正文第一篇:中心极限定理证明中心极限定理证明一、例子高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.二、中心极限定理设是独立随机变量序列,假设存在,若对于任意的,成立称服从中心极限定理.设服从中心极限定理,则服从中心极限定理,其中为数列.解:服从中心极限定理,则表明其中.由于,因此故服从中心极限定理.三、德莫佛-拉普拉斯中心极限定理在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,由此即得第一类问题是已知,求,这只需查表即可.第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.第三类问题是已知,求.解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:.抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:的随机变量.求.解:因为很大,于是所以利用标准正态分布表,就可以求出的值.某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.解:以表示第个分机用不用外线,若使用,则令;否则令.则.如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,查表得,,故取.于是取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.由德莫佛—拉普拉斯极限定理,有其中,即有四、林德贝格-勒维中心极限定理若是独立同分布的随机变量序列,假设,则有证明:设的特征函数为,则的特征函数为又因为,所以于是特征函数的展开式从而对任意固定的,有而是分布的特征函数.因此,成立.在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.设有个数,它们的近似数分别是,.,.令用代替的误差总和.由林德贝格——勒维定理,以,上式右端为0.997,即以0.997的概率有设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于.证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.作业:p222ex32,33,34,35五、林德贝尔格条件设为独立随机变量序列,又令,对于标准化了的独立随机变量和的分布当时,是否会收敛于分布?除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.设是独立随机变量序列,又,,这时(1)若是连续型随机变量,密度函数为,如果对任意的,有(2)若是离散型随机变量,的分布列为如果对于任意的,有则称满足林德贝尔格条件.以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.证明:令,则于是从而对任意的,若林德贝尔格条件成立,就有这个关系式表明,的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.六、费勒条件设是独立随机变量序列,又,,称条件为费勒条件.林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.七、林德贝尔格-费勒中心极限定理引理1对及任意的,证明:记,设,由于因此,,其次,对,用归纳法即得.由于,因此,对也成立.引理2对于任意满足及的复数,有证明:显然因此,由归纳法可证结论成立.引理3若是特征函数,则也是特征函数,特别地证明定义随机变量其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.林德贝尔格-费勒定理定理设为独立随机变量序列,又.令,则(1)与费勒条件成立的充要条件是林德贝尔格条件成立.证明:(1)准备部分记(2)显然(3)(4)以及分别表示的特征函数与分布函数,表示的分布函数,那么(5) 这时因此林德贝尔格条件化为:对任意,(6)现在开始证明定理.设是任意固定的实数.为证(1)式必须证明(7)先证明,在费勒条件成立的假定下,(7)与下式是等价的:(8)事实上,由(3)知,又因为故对一切,把在原点附近展开,得到因若费勒条件成立,则对任意的,只要充分大,均有(9)这时(10)对任意的,只要充分小,就可以有(11)因此,由引理3,引理2及(10),(11),只要充分大,就有(12)因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.(2)充分性先证由林德贝尔格条件可以推出费勒条件.事实上,(13)右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.其次证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知, 当时,当时,因此(14)对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.(3)必要性由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,(15)上述被积函数的实部非负,故而且(16)因为对任意的,可找到,使,这时由(15),(16)可得故林德贝尔格条件成立.八、李雅普诺夫定理设为独立随机变量序列,又.令,若存在,使有则对于任意的,有第二篇:大数定理中心极限定理证明一,大数定律的证明二,中心极限定理的证明第三篇:中心极限定理§5.3中心极限定理我们曾特别强调了正态分布在概率论与数理统计中的地位与作用.为什么客观实际中许多随机变量服从正态分布?是经验猜测还是确有科学的理论依据,下面我们就来解释这一问题.我们已经知道,炮弹的弹着点射击误差服从正态分布,我们来分析其原因.要知道误差是什么样的随机变量,有必要研究一下造成误差的原因是什么?每次射击后,炮弹会因为震动而造成很微小的偏差x1,炮弹外形细小的差别而引起空气阻力不同而出现的误差x2,炮弹前进时遇到的空气流的微小扰动而造成的误差x3,……等等,有许多原因,每种原因引起一个微小的误差都是随机的,而弹着点的总误差x 是许多随机误差的总和,即x=?xk,而且xk之间可以看成是相互独立的,因此要讨论x的分布就要讨论这些相互独k立的随机变量之和的分布.在概率论中,我们把研究在一定条件下,大量独立随机变量和的极限分布是正态分布的那些定理通常叫做中心极限定理.本节只介绍两个条件简单,也较常用的中心极限定理.定理4(同分布中心极限定理)设随机变量x1,x2,…,xn…相互独立,服从同一分布,且具有有限的数学期望和方差,e(xk)=?,d(xk)=???(k=1,2,…)则随机变量2?xk-n? k=1?n的分布函数对任意的x,满足n?? n?? ?xk-n? k=1 ?n?x1 ?2 ?? e-? x t22dt第四篇:中心极限定理应用中心极限定理及其应用【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。
为什么中心极限定理是正态分布证明过程

中心极限定理是概率论中的一个重要定理,它表明在一定条件下,大量独立同分布随机变量的和的分布会趋近于正态分布。
正态分布在统计学和自然科学中具有重要地位,因此中心极限定理的证明过程对于理解正态分布的性质和应用具有重要意义。
本文将通过以下几个方面解析为什么中心极限定理是正态分布的证明过程。
1. 中心极限定理的概念和表述中心极限定理是指在一定条件下,大量独立同分布随机变量的和的分布会趋近于正态分布。
具体来说,设X1,X2,...,Xn是n个独立同分布的随机变量,它们具有相同的数学期望μ和方差σ^2,那么它们的和Sn=(X1+X2+...+Xn)在n趋向于无穷大时,其分布函数将趋近于正态分布的分布函数。
2. 大数定律与中心极限定理的关系中心极限定理与大数定律都是描述随机变量序列的性质的定理,但它们的对象不同。
大数定律是描述随机变量序列的数学期望的性质,而中心极限定理是描述随机变量序列的和的分布的性质。
在证明过程中,我们会分析这两个定理之间的通联和区别。
3. 极限定理的数学推导为了证明中心极限定理,首先需要利用数学分析和概率论的理论知识,对随机变量序列的和的分布进行推导。
我们将会详细介绍中心极限定理的数学推导过程,包括利用特征函数进行推导、应用Moments生成函数以及利用独立同分布的性质等。
4. 中心极限定理的应用与意义我们将讨论中心极限定理在实际问题中的应用和意义。
正态分布在自然界和社会现象中具有广泛的应用,而中心极限定理为我们理解和应用正态分布提供了重要的理论基础。
我们也将介绍中心极限定理在统计学、金融学、医学等领域中的实际应用,以及它对于风险管理、决策分析和科学研究的重要意义。
5. 总结通过对中心极限定理的证明过程进行分析和讨论,我们将更深入地理解中心极限定理的内在含义和数学原理,以及它在现实生活中的重要应用。
也能够更好地理解正态分布的性质和特点,为进一步深入研究概率论和统计学提供理论基础和指导。
中心极限定理是概率论中的一个基本概念,它向我们展示了独立随机变量的和的分布是如何趋向于正态分布的。
中心极限定理证明

中心极限定理证明一、例子高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且那么由图形知小珠最后的位置的分布接近正态.可以想象,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.二、中心极限定理设是独立随机变量序列,假设存在,若对于任意的,成立称服从中心极限定理.设服从中心极限定理,则服从中心极限定理,其中为数列.解:服从中心极限定理,则表明其中.由于,因此故服从中心极限定理.三、德莫佛-拉普拉斯中心极限定理在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,由此即得第一类问题是已知,求,这只需查表即可.第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.第三类问题是已知,求.解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计:.抛掷一枚均匀的骰子,为了至少有0.95的把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?解:由例4中的第二类问题的结论,.即.查表得.将代入,便得.由此可见,利用比利用契比晓夫不等式要准确得多.已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:的随机变量.求.解:因为很大,于是所以利用标准正态分布表,就可以求出的值.某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.解:以表示第个分机用不用外线,若使用,则令;否则令.则.如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,查表得,,故取.于是取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.由德莫佛—拉普拉斯极限定理,有其中,即有四、林德贝格-勒维中心极限定理若是独立同分布的随机变量序列,假设,则有证明:设的特征函数为,则的特征函数为又因为,所以于是特征函数的展开式从而对任意固定的,有而是分布的特征函数.因此,成立.在数值计算时,数用一定位的小数来近似,误差.设是用四舍五入法得到的小数点后五位的数,这时相应的误差可以看作是上的均匀分布.设有个数,它们的近似数分别是,.,.令用代替的误差总和.由林德贝格——勒维定理,以,上式右端为0.997,即以0.997的概率有设为独立同分布的随机变量序列,且互相独立,其中,证明:的分布函数弱收敛于.证明:为独立同分布的随机变量序列,且互相独立,所以仍是独立同分布的随机变量序列,易知有由林德贝格——勒维中心极限定理,知的分布函数弱收敛于,结论得证.作业:p222ex32,33,34,35五、林德贝尔格条件设为独立随机变量序列,又令,对于标准化了的独立随机变量和的分布当时,是否会收敛于分布?除以外,其余的均恒等于零,于是.这时就是的分布函数.如果不是正态分布,那么取极限后,分布的极限也就不会是正态分布了.因而,为了使得成立,还应该对随机变量序列加上一些条件.从例题中看出,除以外,其余的均恒等于零,在和式中,只有一项是起突出作用.由此认为,在一般情形下,要使得收敛于分布,在的所有加项中不应该有这种起突出作用的加项.因为考虑加项个数的情况,也就意味着它们都要“均匀地斜.设是独立随机变量序列,又,,这时(1)若是连续型随机变量,密度函数为,如果对任意的,有(2)若是离散型随机变量,的分布列为如果对于任意的,有则称满足林德贝尔格条件.以连续型情形为例,验证:林德贝尔格条件保证每个加项是“均匀地斜.证明:令,则于是从而对任意的,若林德贝尔格条件成立,就有这个关系式表明,的每一个加项中最大的项大于的概率要小于零,这就意味着所有加项是“均匀地斜.六、费勒条件设是独立随机变量序列,又,,称条件为费勒条件.林德贝尔格证明了林德贝尔格条件是中心极限定理成立的充分条件,但不是必要条件.费勒指出若费勒条件得到满足,则林德贝尔格条件也是中心极限定理成立的必要条件.七、林德贝尔格-费勒中心极限定理引理1对及任意的,证明:记,设,由于因此,,其次,对,用归纳法即得.由于,因此,对也成立.引理2对于任意满足及的复数,有证明:显然因此,由归纳法可证结论成立.引理3若是特征函数,则也是特征函数,特别地证明定义随机变量其中相互独立,均有特征函数,服从参数的普哇松分布,且与诸独立,不难验证的特征函数为,由特征函数的性质即知成立.林德贝尔格-费勒定理定理设为独立随机变量序列,又.令,则(1)与费勒条件成立的充要条件是林德贝尔格条件成立.证明:(1)准备部分记(2)显然(3)(4)以及分别表示的特征函数与分布函数,表示的分布函数,那么(5)这时因此林德贝尔格条件化为:对任意,(6)现在开始证明定理.设是任意固定的实数.为证(1)式必须证明(7)先证明,在费勒条件成立的假定下,(7)与下式是等价的:(8)事实上,由(3)知,又因为故对一切,把在原点附近展开,得到因若费勒条件成立,则对任意的,只要充分大,均有(9)这时(10)对任意的,只要充分小,就可以有(11)因此,由引理3,引理2及(10),(11),只要充分大,就有(12)因为可以任意小,故左边趋于0,因此,证得(7)与(8)的等价性.(2)充分性先证由林德贝尔格条件可以推出费勒条件.事实上,(13)右边与无关,而且可选得任意小;对选定的,由林德贝尔格条件(6)知道第二式当足够大时,也可以任意地小,这样,费勒条件成立.其次证明林德贝尔格条件能保证(1)式成立.注意到(3)及(4),可知,当时,当时,因此(14)对任给的,由于的任意性,可选得使,对选定的,用林德贝尔格条件知只要充分大,也可使.因此,已证得了(8),但由于已证过费勒条件成立,这时(8)与(7)是等价的,因而(7)也成立.(3)必要性由于(1)成立,因此相应的特征函数应满足(7).但在费勒条件成立时,这又推出了(8),因此,(15)上述被积函数的实部非负,故而且(16)因为对任意的,可找到,使,这时由(15),(16)可得故林德贝尔格条件成立.八、李雅普诺夫定理设为独立随机变量序列,又.令,若存在,使有则对于任意的,有一,大数定律的证明二,中心极限定理的证明§5.3中心极限定理我们曾特别强调了正态分布在概率论与数理统计中的地位与作用.为什么客观实际中许多随机变量服从正态分布?是经验猜测还是确有科学的理论依据,下面我们就来解释这一问题.我们已经知道,炮弹的弹着点射击误差服从正态分布,我们来分析其原因.要知道误差是什么样的随机变量,有必要研究一下造成误差的原因是什么?每次射击后,炮弹会因为震动而造成很微小的偏差x1,炮弹外形细小的差别而引起空气阻力不同而出现的误差x2,炮弹前进时遇到的空气流的微小扰动而造成的误差x3,……等等,有许多原因,每种原因引起一个微小的误差都是随机的,而弹着点的总误差x 是许多随机误差的总和,即x=?xk,而且xk之间可以看成是相互独立的,因此要讨论x的分布就要讨论这些相互独k立的随机变量之和的分布.在概率论中,我们把研究在一定条件下,大量独立随机变量和的极限分布是正态分布的那些定理通常叫做中心极限定理.本节只介绍两个条件简单,也较常用的中心极限定理.定理4(同分布中心极限定理)设随机变量x1,x2,…,xn…相互独立,服从同一分布,且具有有限的数学期望和方差,e(xk)=?,d(xk)=(k=1,2,…)则随机变量2?xk-n?k=1n的分布函数对任意的x,满足n??nxk-n?k=1?n?x1?2??e-?xt22dt中心极限定理及其应用【摘要】中心极限定理的产生具有一定的客观背景,最常见的是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。
高中生最新的中心极限定理证明

高中生最新的中心极限定理证明高中生最新的中心极限定理证明中心极限的定理很是高级,但这个定理不好证明的,因为需要严谨的态度。
下面就是店铺给大家整理的中心极限定理证明内容,希望大家喜欢。
中心极限定理证明例子[例1] 高尔顿钉板试验.图中每一个黑点表示钉在板上的一颗钉子.每排钉子等距排列,下一排的每个钉子恰在上一排两相邻钉子之间.假设有排钉子,从入口中处放入小圆珠.由于钉板斜放,珠子在下落过程中碰到钉子后以的概率滚向左边,也以的概率滚向右边.如果较大,可以看到许多珠子从处滚到钉板底端的格子的情形如图所示,堆成的曲线近似于正态分布.如果定义:当第次碰到钉子后滚向右边,令;当第次碰到钉子后滚向左边,令.则是独立的,且那么由图形知小珠最后的位置的分布接近正态.可以,当越来越大时接近程度越好.由于时,.因此,显然应考虑的是的极限分布.历史上德莫佛第一个证明了二项分布的极限是正态分布.研究极限分布为正态分布的极限定理称为中心极限定理.中心极限定理介绍设是独立随机变量序列,假设存在,若对于任意的,成立称服从中心极限定理.[例2] 设服从中心极限定理,则服从中心极限定理,其中为数列.解:服从中心极限定理,则表明其中.由于,因此故服从中心极限定理.三、德莫佛-拉普拉斯中心极限定理在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则[例3] 用频率估计概率时的误差估计.由德莫佛—拉普拉斯极限定理,中心极限定理证明解答第一类问题是已知,求,这只需查表即可.第二类问题是已知,要使不小于某定值,应至少做多少次试验?这时利用求出最小的.第三类问题是已知,求.解法如下:先找,使得.那么,即.若未知,则利用,可得如下估计: .[例4] 抛掷一枚均匀的骰子,为了至少有0.95的`把握使出现六点的概率与之差不超过0.01,问需要抛掷多少次?解:由例4中的第二类问题的结论,.即.查表得.将代入,便得. 由此可见,利用比利用契比晓夫不等式要准确得多.[例5] 已知在重贝努里试验中,事件在每次试验中出现的概率为为次试验中事件出现的次数,则服从二项分布:的随机变量.求.解:因为很大,于是所以利用标准正态分布表,就可以求出的值.[例6] 某单位内部有260架电话分机,每个分机有0.04的时间要用外线通话,可以认为各个电话分机用不用外线是是相互独立的,问总机要备有多少条外线才能以0.95的把握保证各个分机在使用外线时不必等候.解:以表示第个分机用不用外线,若使用,则令;否则令.则.如果260架电话分机同时要求使用外线的分机数为,显然有.由题意得,查表得,,故取.于是取最接近的整数,所以总机至少有16条外线,才能有0.95以上的把握保证各个分机在使用外线时不必等候.[例7] 根据孟德尔遗传理论,红黄两种番茄杂交第二代结红果植株和结黄果植株的比率为3:1,现在种植杂交种400株,试求结黄果植株介于83和117之间的概率.解:将观察一株杂交种的果实颜色看作是一次试验,并假定各次试验是独立的.在400株杂交种中结黄果的株数记为,则.下载全文。
大数定律和中心极限定理的证明及应用

大数定律和中心极限定理的证明及应用大数定律和中心极限定理是概率论中的两个重要定理,它们在实际应用中具有重要的作用。
随着21世纪的到来,计算机科学的发展和人工智能技术的不断突破,这些定理在数据分析、机器学习等领域中的应用也越来越广泛。
大数定律是概率论中的一条非常重要的定理,它描述了重复实验的结果会越来越接近于总体的平均值。
具体而言,如果我们对某个随机事件进行了N次实验,并对N个数据点求平均值,那么这个平均值在N变得越来越大时,会趋近于总体的期望值。
在实际中,大数定律可以用于各种数字数据的分析。
例如,我们可以在股市交易中使用大数定律,以预测股市的长期结果。
我们可以通过对每天的股票价格进行记录并验证大数定律是否成立,从而得到预测指数。
另外,在物理学中,大数定律也有重要的应用。
例如,我们可以使用大数定律来确定大量粒子的平均位置。
这种方法可以在许多物理领域中找到应用,如计算电磁场的平均值。
大数定律的证明比较复杂。
一种常用的证明方法是通过上极限和下极限来证明。
上极限和下极限分别代表了随着实验次数增加,平均值逐渐趋向于总体期望值的上限和下限。
根据大数定律的规定,这两个极限应该相等。
证明的核心是要建立一个独立的同分布序列,通过样本与总体一致性的性质,尽可能接近于总体。
中心极限定理是另一个与大数定律相关联的概率论定理。
它描述了当N次独立实验的结果之和趋近于一个标准正态分布时,经过N次标准化后的分布会趋向于一个正态分布。
中心极限定理在实际中的应用非常广泛。
例如,在医学研究中,我们可以使用中心极限定理来估计医疗样本的均值和标准偏差。
我们还可以使用该定理来评估航空公司的航班订购量。
通过使用中心极限定理来计算航班预订量的分布,我们就可以确定需要多少飞机来完成航班任务。
与大数定律的证明相比,中心极限定理的证明相对简单。
它使用了矩母函数和生成函数等概率论方法,通过对傅里叶变换的应用,将一些信息从时域转移到了频域,实现了由多个随机事件的组合到高斯分布的转化。
概率论与数理统计§中心极限定理

• 引言 • 中心极限定理的基本概念 • 中心极限定理的证明 • 中心极限定理的应用 • 中心极限定理的扩展与推广 • 案例分析与实践应用 • 总结与展望
01
引言
主题简介
中心极限定理是概率论与数理统计中的重要概念,它描述了在独立同分布的随机 变量序列下,无论这些随机变量的分布是什么,它们的平均值的分布将趋近于正 态分布。
03
中心极限定理的证明
证明方法概述
方法一:基于特征函数的 证明
方法二:基于概率密度函 数的证明
ABCD
通过对特征函数的性质进 行分析,利用泰勒展开和 收敛性质,证明中心极限 定理。
通过分析概率密度函数的 性质,利用大数定律和收 敛定理,证明中心极限定 理。
重要极限公式
公式一: $lim_{{n to infty}} frac{S_n}{sqrt{n}} = N(0,1)$
中心极限定理的应用范围广泛,不仅限于金融、保险、医学等领域,还涉来研究的展望
01
随着大数据时代的到来,中心极限定理在处理大规模数据和复杂 随机现象方面的应用价值将更加凸显。未来研究可以进一步探索 如何优化中心极限定理的应用,提高其在实际问题中的适用性和 准确性。
02
随着数学和其他学科的交叉融合,中心极限定理与其他理 论或方法的结合应用将成为一个重要的研究方向。例如, 如何将中心极限定理与机器学习、人工智能等新兴技术相 结合,以解决更加复杂和具体的问题。
03
中心极限定理的理论基础和证明方法仍有进一步完善的空 间。未来研究可以深入探讨中心极限定理的数学原理,发 现新的证明方法和技巧,推动概率论与数理统计理论的进 一步发展。
07
总结与展望
5-2中心极限定理

故近似地有
查表得
6000 6000 1 / 6 5 / 6
2.58,
0.0124 .
中心极限定理
§5.2 中心极限定理
李雅普诺夫定理 独立同分布的中心极限定理
德莫佛-拉普拉斯定理
1
中心极限定理
一、中心极限定理 李雅普诺夫(Liapunov)定理
设有独立的随机变量序列X1,X2,…,Xn…, 且有有限
的期望 E( X k ) k,D( X k ) k 0, (k 1,2,),
V - 20 5 105 - 20 5 P{V 105} P 2 2 20 10 / 12 20 10 / 12 V - 100 P 0.387 1 (0.387) 0.348 20 (10 / 12 )
9
中心极限定理
r 120 ( ) 0.999, 48
r - 120 48 3. 1 ,
所以 r 141.
查表得
即供给141千瓦电就能以99.9%的概率保证这个车 间正常生产。
10
中心极限定理
例2 今从良种率为1/6的种子中任取6000粒,问能以0.99 的概率保证在这6000粒种子中良种所占的比例与1/6的 差的绝对值不超过多少?相应的良种粒数在哪个范围内? 解 设良种数为X,则X~B(6000,1/6) 设不超过的界限为α,则有 德莫佛-拉普拉斯定理
2
二项分布即可以用帕松分布近似代替,也可用正态 说明 当p很小,n很大时用帕松分布近似代替,p不太 分布近似代替,如何选择? 接近0或1,n又较大时用此推论计算有关二项分布的