数值分析第4章答案

合集下载

数值分析第四章习题

数值分析第四章习题

数值分析第四章习题第四章习题1. 采用数值计算方法,画出dt t t x y x ?=0sin )(在]10 ,0[区间曲线,并计算)5.4(y 。

〖答案〗1.65412. 求函数x e x f 3sin )(=的数值积分?=π 0 )(dx x f s ,并请采用符号计算尝试复算。

〖答案〗s = 5.1354Warning: Explicit integral could not be found. > In sym.int at 58s =int(exp(sin(x)^3),x = 0 .. pi)3. 用quad 求取dx x e x sin 7.15?--ππ的数值积分,并保证积分的绝对精度为910-。

〖答案〗1.087849437547794. 求函数5.08.12cos 5.1)5(sin )(206.02++-=t t t et t f t 在区间]5,5[-中的最小值点。

〖答案〗最小值点是-1.28498111480531 相应目标值是-0.186048010065455. 设0)0(,1)0(,1)(2)(3)(22===+-dt dy y t y dt t dy dt t y d ,用数值法和符号法求5.0)(=t t y 。

〖答案〗数值解y_05 = 0.78958020790127符号解ys =1/2-1/2*exp(2*t)+exp(t)ys_05 =.789580356470605529168507052137806. 求矩阵b Ax =的解,A 为3阶魔方阵,b 是)13(?的全1列向量。

〖答案〗x =0.06670.06670.06677. 求矩阵b Ax =的解,A 为4阶魔方阵,b 是)14(?的全1列向量。

〖答案〗解不唯一x =-0.0074 -0.0809 0.1397 0.0662 0.0588 0.1176 -0.0588。

数值分析-第4章 数值积分和数值微分

数值分析-第4章  数值积分和数值微分

A0+A1=2 A0x0+A1x1=0 A0x02+A1x12=2/3 A0x03+A1x13=0
A0 A1 1 解得: 1 x 0 x1 3
求积公式为
1 1 1 f ( x)dx f ( ) f ( ) 3 3
x f(x)
数值分析
1 4
2 4.5
3 6
4 8
5 8.5
1
一、数值积分的基本概念 求积节点 数值积分定义如下:是离散点上的函数值的线性组合
I [ f ] f ( x)dx I n [ f ] Ai f ( xi )
b a i 0 n
称为数值积分公式
称为求积系数,与f (x)无关,与积分区间和求积节点有关
b a
Rn ( x) dx
定理:形如 Ak f ( xk ) 的求积公式至少有 n 次代数精度
A 该公式为插值型(即: k a l k ( x)dx )
数值分析
b
5
例1 试确定参数A0,A1,A2,使求积公式
1 f ( x)dx A0 f (1) A1 f (0) A2 f (1)
证明 因为Simpson公式对不高于三次的多项式精确成立。即

b
a
p 2 ( x)dx
ba ab [ p 2 (a) 4 p 2 ( ) p 2 (b)] 6 2
构造三次多项式H3(x),使满足 H3(a)=(a) ,H3(b)=(b),
H 3 (( a b) / 2) f (( a b) / 2), H 3 (( a b) / 2) f (( a b) / 2), 这时插值误差为
1

数值方法课后习题答案第4章

数值方法课后习题答案第4章
第四章
解线性方程组迭代法
第四章 解线性方程组迭代法
习题4-1
第四章
解线性方程组迭代法
Байду номын сангаас
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
解线性方程组迭代法
第四章
习题4
习题4
习题4
习题4
8.
设A为严格对角优势阵,证明:
习题4
9. A是n阶非奇异阵,B是n阶奇异阵,试求证:
习题4
习题4
P91
P91.
x0
p0 r0
Ap0
x1
r1
p1
Ap1
x2
r2
0
3
7
30/29=
17/29=
1360/841=
1530/841=
14/9=
0.3
P91
1.034482758 0 1 8 10/29= 0.344827586
0.570796875 0.493315839 0.500166165 0.499999398 1.001438281 0.998173633 1.000074653 1.000013383 -0.49943416 -
0.500558834 0.499923587 0.500003961
w=1.03
10 29 a0 =10/29=0.344827586
2890/841=3.436385254 260100/24389=10.66464388 a1 =8381/26010=0.322222222 -289/29= -9.965517218 b0 =289/841=0.343638524

《数值分析》第四章答案

《数值分析》第四章答案

习题41. 给定x x f =)(在144,121,100=x 3点处的值,试以这3点建立)(x f 的2次(抛物)插值公式,利用插值公式115求的近似值并估计误差。

再给13169=建立3次插值公式,给出相应的结果。

解:x x f =)( 2121)(-='x x f ,2341)(--=''x x f ,2583)(-='''x x f ,27)4(1615)(--=x x f,72380529.10)115(=f1000=x , 1211=x , 1442=x , 1693=x 100=y , 111=y , 122=y , 133=y))(())(())(())(())(())(()(1202102210120*********x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ----+----+----= )121144)(100144()121115)(100115(12)144121)(100121()144115)(100115(11)144100)(121100()144115)(121115(10)115(2----⨯+----⨯+----⨯=L=2344)6(1512)23(21)29(1511)44)(21()29)(6(10⨯-⨯⨯+-⨯-⨯⨯+----⨯72276.1006719.190683.988312.1=-+=))()((!3)()()(2102x x x x x x f x L x f ---'''=-ξ ,144100<<ξ )44115()121115()100115()(max 61)115()115(1441002-⨯-⨯-⋅'''≤-≤≤x f L f x 296151083615⨯⨯⨯⨯⨯≤-001631.0101631.02=⨯=- 实际误差 22101045.0)115()115(-⨯=-L f))()(())()(())()(())()(()(312101320130201032103x x x x x x x x x x x x y x x x x x x x x x x x x y x L ------+------= ))()(())()(())()(())()((23130321033212023102x x x x x x x x x x x x y x x x x x x x x x x x x y ------+------+ )169100()144100()121100()169115()144115()121115(10)115(3-⨯-⨯--⨯-⨯-⨯=L )169121()144121()100121()169115()144115()100115(11-⨯-⨯--⨯-⨯-⨯+)169144()121144()100144()169115()121115()100115(12-⨯-⨯--⨯-⨯-⨯+)144169()121169()100169()144115()121115()100115(13-⨯-⨯--⨯-⨯-⨯+)48()23(21)54()29(1511)69()44()21()54()29()6(10-⨯-⨯-⨯-⨯⨯+-⨯-⨯--⨯-⨯-⨯= 254869)29()6(1513)25(2344)54()6(1512⨯⨯-⨯-⨯⨯+-⨯⨯-⨯-⨯⨯+ 723571.10409783.0305138.2145186.11473744.1=+-+= ))()()((!4)()()(3210)4(3x x x x x x x x f x L x f ----=-ξ,169100<<ξ)169115)(144115)(121115)(10115(101615241)115()115(73----⨯⨯⨯≤--L f )54()29()6(151016152417-⨯-⨯-⨯⨯⨯⨯=- 0005505.0105505.03=⨯=-实际误差 321023429.0)115()115(-⨯=-L f 2. 设j x 为互异节点),,1,0(n j =求证: (1)k nj j k j x x l x =∑=)(0),,1,0(n k =;(2)0)()(0=-∑=x l x x j knj j ),,1(n k =。

数值分析课后习题及答案

数值分析课后习题及答案

第一章 绪论(12) 第二章 插值法(40-42)2、当2,1,1-=x 时,4,3,0)(-=x f ,求)(x f 的二次插值多项式。

[解]372365)1(34)23(21)12)(12()1)(1(4)21)(11()2)(1()3()21)(11()2)(1(0))(())(())(())(())(())(()(2221202102210120120102102-+=-++--=+-+-⨯+------⨯-+-+-+⨯=----+----+----=x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L 。

3、给出x x f ln )(=的数值表用线性插值及二次插值计算54.0ln 的近似值。

X 0.4 0.5 0.6 0.7 0.8 x ln -0.916291 -0.693147 -0.510826 -0.357765 -0.223144[解]若取5.00=x ,6.01=x ,则693147.0)5.0()(00-===f x f y ,510826.0)6.0()(11-===f x f y ,则604752.182321.1)5.0(10826.5)6.0(93147.65.06.05.0510826.06.05.06.0693147.0)(010110101-=---=--⨯---⨯-=--+--=x x x x x x x x x y x x x x y x L ,从而6202186.0604752.19845334.0604752.154.082321.1)54.0(1-=-=-⨯=L 。

若取4.00=x ,5.01=x ,6.02=x ,则916291.0)4.0()(00-===f x f y ,693147.0)5.0()(11-===f x f y ,510826.0)6.0()(22-===f x f y ,则 217097.2068475.404115.2)2.09.0(5413.25)24.0(3147.69)3.01.1(81455.45)5.06.0)(4.06.0()5.0)(4.0()510826.0()6.05.0)(4.05.0()6.0)(4.0()693147.0()6.04.0)(5.04.0()6.0)(5.0(916291.0))(())(())(())(())(())(()(22221202102210120120102102-+-=+--+-⨯++-⨯-=----⨯-+----⨯-+----⨯-=----+----+----=x x x x x x x x x x x x x x x x x x x x x x y x x x x x x x x y x x x x x x x x y x L ,从而61531984.0217097.21969765.259519934.0217097.254.0068475.454.004115.2)54.0(22-=-+-=-⨯+⨯-=L补充题:1、令00=x ,11=x ,写出x e x y -=)(的一次插值多项式)(1x L ,并估计插值余项。

数值分析第4章答案

数值分析第4章答案

第四章 数值积分与数值微分 1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:10121012112120(1)()()(0)();(2)()()(0)();(3)()[(1)2()3()]/3;(4)()[(0)()]/2[(0)()];hhhh hf x dx A f h A f A f h f x dx A f h A f A f h f x dx f f x f x f x dx h f f h ah f f h -----≈-++≈-++≈-++''≈++-⎰⎰⎰⎰解:求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m 的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。

(1)若101(1)()()(0)()hhf x dx A f h A f A f h --≈-++⎰令()1f x =,则1012h A A A -=++令()f x x =,则110A h A h -=-+令2()f x x =,则3221123h h A h A -=+ 从而解得011431313A h A h A h -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩令3()f x x =,则3()0hhhhf x dx x dx --==⎰⎰101()(0)()0A f h A f A f h --++=故101()()(0)()hhf x dx A f h A f A f h --=-++⎰成立。

令4()f x x =,则4551012()52()(0)()3hhhhf x dx x dx h A f h A f A f h h ---==-++=⎰⎰故此时,101()()(0)()hhf x dx A f h A f A f h --≠-++⎰故101()()(0)()h hf x dx A f h A f A f h --≈-++⎰具有3次代数精度。

《数值分析》杨大地 答案(第四章)

《数值分析》杨大地 答案(第四章)
6 2 1 1 1 1
⑴ 2 3 1 ,求按模最大特征值和对应的特征向量,精确到小数三位。
解:由幂法公式有:
1i n
//P67 页
(1) | a r | max | a i | ,其中 ai 是uk −1 = (a1 , a2 , . . . , an )T 的各分量; (2) y k 1
∴ i t 为������ − ������������ 的特征值。 令 为 A 的特征向量,则有: A i 又∵ A tI A tI i t i t ∴ 也为������ − ������������ 的特征向量; ∴ i t 是 A tI 的特征值,且 A 和������ − ������������特征向量相同。
T
1
当计算到第 9 次时,λ 1 的小数点前三位精度开始稳定,满足题目要求,所以此时 A 矩阵的按模最大特 征值 1 =7.288,对应的特征向量为(1.000,0.523,0.242)T 5.若 A 的特征值为 1, 2 ,, n , t 是一实数,证明: i t 是 A tI 的特征值,且特征向量不变. 证明: ∵ A 的特征值为 ∴| i I A |=0 假设������是 A tI 的特征值,则有:
k 0 1 2 3 4 5 6 7 8 9 ukT 1.000,1.000,1.000 9.000,6.000,3.000 7.6667,4.3333,2.000 7.3913,3.9565,1.8261 7.3177,3.8530,1.7824 7.2966,3.8231,1.7701 7.2906,3.8146,1.7666 7.2887,3.8119,1.7655 7.2882,3.9112,1.7652 7.2880,3.8109,1.7651 ykT 1.000,1.000,1.000 1.000,0.6667,0.3333 1.000,0.5653,0.2609 1.000,0.5353,0.2471 1.000,0.5265,0.2436 1.000,0.5240,0.2426 1.000,0.5232,0.2423 1.000,0.5230,0.2422 1.000,0.5229,0.2422 9.0000 7.6667 7.5913 7.3177 7.2966 7.2916 7.2887 7.2882 7.2880

华中科技大学出版社—数值分析第四版—课后习题及答案

华中科技大学出版社—数值分析第四版—课后习题及答案

14. 由于 x1 , x 2 , , x n 是 f ( x ) 的 n 个互异的零点,所以 f ( x) a 0 ( x x1 )( x x 2 ) ( x x n )
a 0 ( x xi ) a 0 ( x x j ) ( x xi ),
i 1 i 1 i j n n
4 7 h 3 时,取得最大值 max | l 2 ( x ) |
10 7 7 x 0 x x3 27 . k x , x , , x n 处进行 n 次拉格朗日插值,则有 6. i) 对 f ( x) x , (k 0,1, , n) 在 0 1 x k Pn ( x ) Rn ( x ) l j ( x) x k j

14.
1000000000 999999998 x1 1.000000, x2 1.000000 999999999 999999999 方程组的真解为 ,
x 1.00, x2 1.00 , 而无论用方程一还是方程二代入消元均解得 1 结果十分可 靠。 s b sin ca a sin cb ab cos cc a b c tan c c s ab sin c a b c 15.
可 得


( f1 ) ln(1
( f 2 ) ln(1

x x 1
2
) )
1 ( x x 2 1) 60 104 3 103 2 x x 1 ,
2


x x 1
2

x x 1
2

1 1 104 8.33 107 60 2

(Y100 ) 100
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章数值积分与数值微分
1.确定下列求积公式中的特定参数,使其代数精度尽量高,并指明所构造出的求积公式所具有的代数精度:
解:
求解求积公式的代数精度时,应根据代数精度的定义,即求积公式对于次数不超过m的多项式均能准确地成立,但对于m+1次多项式就不准确成立,进行验证性求解。
(1)若
令 ,则
令 ,则
令 ,则
1.098726
1.098641
1.098613
4
1.099768
1.098620
1.098613
1.098613
1.098613
故有
(2)采用高斯公式时
此时
令 则
利用三点高斯公式,则
利用五点高斯公式,则
(3)采用复化两点高斯公式
将区间 四等分,得
作变换 ,则
作变换 ,则
作变换 ,则
作变换 ,则
因此,有

1.564646
1.564648
2
1.564646
1.564646
1.564646
即人造卫星轨道的周长为48708km
11。证明等式
试依据 的值,用外推算法求 的近似值。



此函数的泰勒展式为
当 时,
当 时,
当 时,
由外推法可得
n
3
2.598076
6
3.000000
3.133975
9
3.105829
10地球卫星轨道是一个椭圆,椭圆周长的计算公式是
这是 是椭圆的半径轴,c是地球中心与轨道中心(椭圆中心)的距离,记h为近地点距离,H为远地点距离,R=6371(km)为地球半径,则
我国第一颗地球卫星近地点距离h=439(km),远地点距离H=2384(km)。试求卫星轨道的周长。
解:
从而有。
0
1.564640
令 ,则
故此时,
因此,
具有3次代数精度。
2.分别用梯形公式和辛普森公式计算下列积分:
解:
复化梯形公式为
复化辛普森公式为
复化梯形公式为
复化辛普森公式为
复化梯形公式为
复化辛普森公式为
复化梯形公式为
复化辛普森公式为
3。直接验证柯特斯教材公式(2。4)具有5交代数精度。
证明:
柯特斯公式为
令 ,则
令 ,则
令 ,则
3.141105
3.141580

12。用下列方法计算积分 ,并比较结果。
(1)龙贝格方法;
(2)三点及五点高斯公式;
(3)将积分区间分为四等分,用复化两点高斯公式。

(1)采用龙贝格方法可得
k
0
1.333333
1
1.166667
1.099259
2
1.116667
1.100000
1.099259
3
1.103211
又 且

即计算值比准确值大。
其几何意义为, 为下凸函数,梯形面积大于曲边梯形面积。
8。用龙贝格求积方法计算下列积分,使误差不超过 .
解:
0
0.7717433
1
0.7280699
0.7135121
2
0.7169828
0.7132870
0.7132720
3
0.7142002
0.7132726
0.7132717
10.2075712
10.2075943
10.2075939
10.2075936
5
10.2112607
10.2075909
10.2075922
10.2075922
10.2075922
10.2075922
因此
9。用 的高斯-勒让德公式计算积分
解:
令 ,则
用 的高斯—勒让德公式计算积分
用 的高斯—勒让德公式计算积分
13.用三点公式和积分公式求 在 ,和1.2处的导数值,并估计误差。 的值由下表给出:
x
1.0 1.1 1.2
F(x)
0.2500 0.2268 0.2066
解:
由带余项的三点求导公式可知



故误差分别为
利用数值积分求导,

由梯形求积公式得
从而有



从而有


解方程组可得
令 ,则
令 ,则
令 ,则
令 ,则
因此,该柯特斯公式具有5次代数精度。
4。用辛普森公式求积分 并估计误差。
解:
辛普森公式为
此时,
从而有
误差为
5。推导下列三种矩形求积公式:
证明:
两边同时在 上积分,得

两边同时在 上积分,得

两连边同时在 上积分,得

6。若用复化梯形公式计算积分 ,问区间 应人多少等分才能使截断误差不超过 ?若改用复化辛普森公式,要达到同样精度区间 应分多少等分?
从而解得
令 ,则
故 成立。
令 ,则
故此时,

具有3次代数精度。
(2)若
令 ,则
令 ,则
令 ,则
从而解得
令 ,则
故 成立。
令 ,则
故此时,
因此,
具有3次代数精度。
(3)若
令 ,则
令 ,则
令 ,则
从而解得

令 ,则
故 不成立。
因此,原求积公式具有2次代数精度。
(4)若
令 ,则
令 ,则
令 ,则
故有
令 ,则
0.7132717
因此
0
3.451313
1
8.628283
-4.446923
因此
0
14.2302495
1
11.1713699
10.1517434
2
10.4437969
10.2012725
10.2045744
3
10.2663672
10.2072240
10.2076207
10.2076691
4
10.2222702
解:
采用复化梯形公式时,余项为


若 ,则
当对区间 进行等分时,
故有
因此,将区间213等分时可以满足误差要求
采用复化辛普森公式时,余项为

若 ,则
当对区间 进行等分时
故有
因此,将区间8等分时可以满足误差要求。
7。如果 ,证明用梯形公式计算积分 所得结果比准确值 大,并说明其几何意义。
解:采用梯形公式计算积分时,余项为
相关文档
最新文档