勾股定理应用之立体图形最短距离 (2)

合集下载

勾股定理的应用

勾股定理的应用

勾股定理的应用勾股定理的应用1.长方体(或正方体)面上的两点间的最短距离长方体(或正方体)是立体图形,但它的每个面都是平面.若计算同一个面上的两点之间的距离比较容易,若计算不同面上的两点之间的距离,就必须把它们转化到同一个平面内,即把长方体(或正方体)设法展开成为一个平面,使计算距离的两个点处在同一个平面中,这样就可以利用勾股定理加以解决了.所以立体图形中求两点之间的最短距离,一定要审清题意,弄清楚到底是同一平面中两点间的距离问题还是异面上两点间的距离问题.谈重点长方体表面上两点间最短距离因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况——前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【例1-1】如图①是一个棱长为3 cm的正方体,它的6个表面都分别被分成了3×3的小正方形,其边长为1 cm.现在有一只爬行速度为2 cm/s的蚂蚁,从下底面的A点沿着正方体的表面爬行到右侧表面上的B点,小明把蚂蚁爬行的时间记录了下来,是2.5 s.经过简短的思考,小明先是脸上露出了惊讶的表情,然后又露出了欣赏的目光.你知道小明为什么会佩服这只蚂蚁的举动吗?解:如图②,在Rt△ABD中,AD=4 cm,BD=由勾股定理,AB2=BD2+AD2=32 +42=25,AB=5 cm,∴蚂蚁的爬行距离为又知道蚂蚁的爬行速度为2 cm/s,∴它从点A沿着正方体的表面爬行到点B处,需要时间为52=2小明通过思考、判断,发现蚂蚁爬行的时间恰恰就是选择了这种最优的方式,所以他感到惊讶和佩服.【例1-2】如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为多少?解:蚂蚁由A点沿长方体的表面爬行到C1点,有三种方式,分别展成平面图形如下:如图①,在Rt△ABC1中,AC21=AB2+BC21=42+32=52=25.故AC1=5.如图②,在Rt△ACC1中,AC21=AC2+CC21=62+12=如图③,在Rt△AB1C1中,AC21=AB21+B1C21 =52+22=29.∵2 5<29<37,∴沿图①的方式爬行路线最短,最短的路线是5.点技巧巧展长方体求解此类问题时只需对长方体进行部分展开,画出局部的展开图,若将长方体全部展开,不仅没有必要反而会扰乱视线.2.圆柱体(或圆锥体)面上的两点间的最短距离圆柱体(或圆锥体)是立体图形,从其表面看两点之间的连线绝大部分是曲线,那么怎样确定哪一条是最短的呢?解决问题的方法是将圆柱(或圆锥)的侧面展开,转化为平面图形,应用勾股定理解决,而不能盲目地凭感觉来确定.【例2】如图①所示,一只蚂蚁在底面半径为20 cm,高为30πcm的圆柱下底的点A处,发现自己正上方圆柱上边缘的B处有一只小昆虫,便决定捕捉这只小昆虫,为了不引起这只小昆虫的注意,它故意不走直线,而绕着圆柱,沿一条螺旋路线,从背后对小昆虫进行突然袭击,结果蚂蚁偷袭成功,得到了一顿美餐.根据上述信息,请问蚂蚁至少爬行多少路程才能捕捉到小昆虫?分析:解此题的关键是把圆柱的侧面展开,利用两点之间线段最短和勾股定理作答.解:假设将圆柱体的侧面沿AB剪开铺平如图②,则对角线AB即为蚂蚁爬行的最短路线.在Rt△ACB中,AC=40πcm,BC=30π由勾股定理,得AB2=AC2+BC2=(40π)2+(30π)2=(50π)2,∴AB=50π∴蚂蚁至少爬行50πcm才能捕捉到小昆虫.谈重点圆柱体两点间的最短距离本题文字叙述较多,要求在阅读的基础上提炼有用的信息,具体解题时先将圆柱沿AB剪开,将侧面展开成一矩形,会发现对角线AB即为蚂蚁爬行的最短路线,再运用勾股定理即可求得.3.生活中两点间的最短距离用勾股定理解决实际问题的关键是从实际问题中构建数学模型——直角三角形,再正确利用两点之间线段最短解答.【例3】如图①是一个三级台阶,它的每一级的长、宽和高分别为5 dm,3 dm和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是多少?分析:由于蚂蚁是沿台阶的表面由A爬行到B,故需把三个台阶展开成平面图形(如图②).解:将台阶展开成平面图形后,可知AC=5 dm,BC=3×(3+1)=12 dm,∠C=90°.在Rt△ABC中,∵AB2=AC2+BC2,∴AB2=52+122=132,∴AB=13 dm.故蚂蚁爬到B点的最短路程是13 dm.4.如何正确利用勾股定理及其逆定理解决生活中的问题利用勾股定理及其逆定理解决生活中的实际问题,重要的是将实际问题转化成数学模型(直角三角形模型),将实际问题中的“数”转化为定理中的“形”,再转化为“数”.解题的关键是深刻理解题意,并画出符合条件的图形.解决几何体表面上两点之间的最短距离问题的关键是要设法把立体图形转化为平面图形,具体步骤是:(1)把立体图形展成平面图形;(2)确定点的位置;(3)确定直角三角形;(4)分析直角三角形的边长,用勾股定理求解.【例4】如图①,圆柱形玻璃容器的高为18 cm,底面周长为60 cm,在外侧距下底1 cm的点S处有一只蜘蛛,在与蜘蛛相对的圆柱形容器的上口外侧距上口1 cm的点F处有一只苍蝇,急于捕获苍蝇充饥的蜘蛛需要爬行的最短距离是__________cm.解析:将圆柱的侧面展开得到它的侧面展开图(如图②),CD∥AB,且AD=BC=12底面周长,BS=DF=1 cm.则蜘蛛所走的最短路线的长度即为线段SF的长度.过S点作SM⊥CD,垂足为M,由条件知,SM=AD=12×60=30 cm,MC=SB=DF=1 cm,所以MF=18-1-1=16 cm,在Rt△MFS中,由勾股定理得SF2=162+302=342,所以SF=34 cm.故蜘蛛需要爬行的最短距离是答案:345.勾股定理与方程相结合的应用方程思想是一种重要的数学思想.所谓方程思想是指从分析问题的数量关系入手,将问题中的已知量和未知量之间的数量关系通过适当设元建立起方程(组),然后通过解方程(组)使问题得到解决的思维方式.而勾股定理反映的直角三角形三边的关系正是构建方程的基础.故勾股定理的许多问题的解决都要跟方程相结合.方程思想是勾股定理中的重要思想.【例5】如图,有一张直角三角形状纸片ABC,两直角边AC=6 cm,BC=8 cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?解:设CD=x cm,由题意知DE=x cm,BD=(8-x) cm,AE=AC=6 cm,在Rt△ABC中,由勾股定理得AB=AC2+BC2=10于是BE=10-6=在Rt△BDE中,由勾股定理得42+x2=(8-x)2,解得x=3.故CD的长为。

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计

人教版八年级数学下册《勾股定理的应用——立体图形中的最短距离》教学设计

“勾股定理的应用——立体图形中的最短距离”教学设计三、研学问题活动一:如图有一个圆柱,底面周长为18,高为12.有一只蚂蚁在它下面的A点,它想吃上底面上与A点相对的B点处的食物,教师提问A点和B点在一个曲面上最短路径还能直接连接AB两点吗?引导学生思考后回让学生通过动手操作找到最短路径,培养学生的动手能力和空间想象能力。

蚂蚁爬行的最短路径是多少?变式训练如图,若上述问题中点B在点A的正上方,蚂蚁沿圆柱侧面爬行的最短路程是多少?答。

教师启发学生利用长方形纸卷出圆柱体,引导学生观察,找出A点到B点的最短路径。

学生画出圆柱的侧面展开图与蚂蚁爬行路径,并写出完整的解题过程。

(请一位同学到黑板完成解答,其他学生点评)通过此问题进一步加深学生对两点沿“曲面”的最短路程的解决方法掌握。

1四、学以致用如图,有一个圆柱,底面周长是10厘米,高为14厘米.在距离下底面1厘米的A点有一只蚂蚁,它想吃到距离上底面1厘米且与A点相对的B点处的食物,则沿圆柱侧面爬行的最短路程是多少?教师利用多媒体展示问题。

学生动手操作,独立思考后画出侧面展开图并确定最短路径。

教师请学生代表发表想法,并与上题进行比较,得出结论:蚂蚁在侧面爬行半圈与一圈,点A与点B的位置关系。

教师利用多检查学生对前面知识的理解和掌握情况,让学生学以致用。

五、知识迁移活动二:如图,是一个长为10cm,宽为6cm,高为8cm的长方体牛奶盒,现在A处有一只蚂蚁,想沿着长方体的外表面到达B处吃食物,求蚂蚁爬行的最短距离是多少. 媒体展示问题,学生组内讨论,画图并计算。

教师利用手机拍照展示小组研究成果,请小组代表讲解解题思路。

教师利用多媒体验证学生成果的对错情况。

教师利用多媒体出示问题,在前面知识的基础上,把两点迁移到长方体上,进一步研究折面中的两点的最短距离,同时让学生利用长方体动手找出最短路径,解决问题,培养学生的动手能力,空间想象能力和小组合作探究能力,通过对问题的解决体会分类讨论、转发现规律:如图,若长方体的长,宽,高分别为a,b和c,且a>b>c,则沿长方体表面从A 到Cˊ所走的最短路程是六、强化训练如图,一个长方体盒子,其中AB=9,BC=6,BB′=5,在线通过长方体教具启发学生找出蚂蚁至少要经过几个面,学生分组利用自制长方体探究从A点到B点的不同走法,请小组代表说出不同走法。

勾股定理的应用——立体图形中最短路程问题教案

勾股定理的应用——立体图形中最短路程问题教案

《勾股定理的应用——立体图形中最短路程问题》教案(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--教学过程分析第一环节:情境引入创设情景:如图一圆柱体底面周长为32cm,高AB为12cm,BC是上底面的直径。

一只蚂蚁从A点出发,沿着圆柱的表面爬行到C点,试求出蚂蚁爬行的最短路线长。

意图:创设引入新课,从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,激发学生探究热情.第二环节:合作探究内容:引导学生分析题意,明确已知信息,明确题目问题,引导学生合作探究蚂蚁爬行的最短路线,充分讨论汇总方案,在全班范围内讨论每种方案的路线计算方法,四种方案:A A A(1)(2)(3)(4)通过具体分析,得出最短路线,并计算出最短路线长。

让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,分析能力,发展空间观念.就此问题的解决进行思路小结:将立体图形问题转化为平面图形问题,构建直角三角形利用勾股定理解决此问题,渗透了建模思想。

练习:1.有一圆形油罐底面圆的周长为16m,高为7m,一只蚂蚁从距底面1m的A处爬行到对角B处吃食物,它爬行的最短路线长为多少?2. 如图是一个三级台阶,它的每一级的长、宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是多少?第三环节:拓展一:正方体内容:如果圆柱换成如图的棱长为10cm的正方体盒子,蚂蚁沿着表面从A点爬行到B点的最短路线长又是多少呢?1.如图,在棱长为10 cm的正方体的一个顶点A处有一只蚂蚁,现要向顶点B处爬行,已知蚂蚁爬行的速度是1 cm/s,且速度保持不变,问蚂蚁能否在20 s内从A爬到BBA渗透解题思路:即 1、展 -----(立体图形转为平面图形)2、找-----起点A,终点B或B′3、连-----最短路线AB和AB ′4、算-----利用勾股定理总结:对于正方体展开任意两个面连接起点和终点线段即最短的路线大小相等。

勾股定理应用长方体最短路径

勾股定理应用长方体最短路径

勾股定理的应用之最短距离问题1.如图,是一个棱长为8cm的正方体盒子,在顶点A处有一只蚂蚁,它想沿正方体表面爬行到达顶点C处,则蚂蚁爬行的最短路程是cm.2.如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是cm.3.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为cm(杯壁厚度不计).4.如图,有一棱长为2dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为dm.5.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是.6.有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是m.7.如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是.8.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C 爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为.9.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?10.如图是一个长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放入一根细木条(木条的粗细忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是多少?答案解析1.如图,是一个棱长为8cm的正方体盒子,在顶点A处有一只蚂蚁,它想沿正方体表面爬行到达顶点C处,则蚂蚁爬行的最短路程是8cm.【分析】根据图形是立方体得出最短路径只有一种情况,利用勾股定理求出即可.【解答】解:如图所示:需要爬行的最短距离是AC的长,即AC=.故答案为:8.【点评】此题主要考查了平面展开图最短路径问题以及勾股定理的应用,得出正确的展开图是解决问题的关键.2.如图,一圆柱高8cm,底面圆周长为12cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是10cm.【分析】先把圆柱的侧面展开,连接AB,利用勾股定理求出AB的长即可.【解答】解:如图所示:连接AB,∵圆柱高8cm,底面圆周长为12cm,∴AC=×12=6cm,在Rt△ABC中,AB==10cm.故答案为:10【点评】本题考查的是平面展开﹣最短路径问题,解答此类问题的关键是画出圆柱的侧面展开图,利用勾股定理进行解答.3.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm(杯壁厚度不计).【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===20(cm).故答案为20.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.4.如图,有一棱长为2dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆绑线绳的长至少为2dm.【分析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和D点间的线段长,即可得到捆绑线绳的最短距离.在直角三角形中,一条直角边长等于两个棱长,另一条直角边长等于3个棱长,利用勾股定理可求得.【解答】解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.展开后由勾股定理得:AD2=42+62=2,故AD=2dm.故答案为2.【点评】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.5.如图,一个三级台阶,它的每一级的长宽和高分别为20、3、2,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿着台阶面爬到B点最短路程是25.【分析】先将图形平面展开,再用勾股定理根据两点之间线段最短进行解答.【解答】解:如图所示,∵三级台阶平面展开图为长方形,长为20,宽为(2+3)×3,∴蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x,由勾股定理得:x2=202+[(2+3)×3]2=252,解得:x=25.故答案为25.【点评】本题考查了平面展开﹣最短路径问题,用到台阶的平面展开图,只要根据题意判断出长方形的长和宽即可解答.6.有一个如图所示的凹槽,各部分长度如图中所标.一只蜗牛从A点经过凹槽内壁爬到B点取食,最短的路径长是2m.【分析】根据题意作出图形,然后根据勾股定理即可得到结论.【解答】解:如图,∵AC=1+2+1=4m,BC=10m,∴AB==2,∴最短的路径长是2.故答案为:2.【点评】本题考查了平面展开﹣最短路程问题,勾股定理,正确的作出图形是解题的关键.7.如图,一长方体底面宽AN=5cm,长BN=10cm,高BC=16cm.D为BC的中点,一动点P从A点出发,在长方体表面移动到D点的最短距离是cm.【分析】将图形展开,可得到AD较短的展法两种,通过计算,得到较短的即可.【解答】解:(1)如图1,BD=BC=8cm,AB=5+10=15cm,在Rt△ADB中,AD= =cm;(2)如图2,AN=5cm,ND=8+10=18cm,Rt△ADN中,AD===cm.(3)如图3,AD==,综上,动点P从A点出发,在长方体表面移动到D点的最短距离是cm.故答案为:cm.【点评】本题考查了平面展开﹣﹣最短路径问题,熟悉平面展开图是解题的关键.8.如图,已知圆柱的底面直径BC=,高AB=3,小虫在圆柱表面爬行,从点C 爬到点A,然后在沿另一面爬回点C,则小虫爬行的最短路程为6.【分析】要求最短路径,首先要把圆柱的侧面展开,利用两点之间线段最短,然后利用勾股定理即可求解.【解答】解:把圆柱侧面展开,展开图如右图所示,点A、C的最短距离为线段AC的长.在RT△ADC中,∠ADC=90°,CD=AB=3,AD为底面半圆弧长,AD=3,所以AC=3,∴从C点爬到A点,然后再沿另一面爬回C点,则小虫爬行的最短路程为2AC=6,故答案为:6,【点评】本题考查了平面展开﹣最短路径问题,解题的关键是会将圆柱的侧面展开,并利用勾股定理解答.9.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?,题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是多少尺?【分析】根据题意画出图形,再根据勾股定理求解即可.【解答】解:如图所示,在如图所示的直角三角形中,∵BC=20尺,AC=5×3=15尺,∴AB==25(尺).答:葛藤长为25尺.【点评】本题考查的是平面展开﹣最短路径问题,此类问题应先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.10.如图是一个长、宽、高分别为12cm,4cm,3cm的木箱,在它里面放入一根细木条(木条的粗细忽略不计),要求木条不能露出木箱,请你算一算,能放入的细木条的最大长度是多少?【分析】直接利用勾股定理得出AC的长,进而得出AD的长.【解答】解:连接AC,AD,在Rt△ABC中,AC2=AB2+BC2,则AC===4,在Rt△ACD中,AD2=AC2+DC2,则AD==13,答:能放入的细木条的最大长度是13cm.【点评】此题主要考查了勾股定理,正确应用勾股定理是解题关键.。

1.3 勾股定理的应用 课件 2024-2025学年北师大版数学八年级上册

1.3 勾股定理的应用 课件 2024-2025学年北师大版数学八年级上册

破 设 AE 为 x km,则 BE=(25-x) km,所以 x2+102=(
25-x)2+152,
解得 x=15,所以 E 站应建在距A 地 15 km 处.
1.3 勾股定理的应用
重 思路点拨 难 题 型 突 破
返回目录
1.3 勾股定理的应用
返回目录
重 解题通法
难 题
键.



利用勾股定理列方程是解决此类型题的关
原理 两点之间线段最短
1.3 勾股定理的应用
返回目录

对点典例剖析
点 清
典例1 如图所示的是一个长方体盒子,其长、宽、高分
单 解
别为4,2,9,用一根细线绕侧面绑在点
A,B
处,不计线
读 头,求细线的最短长度.
1.3 勾股定理的应用
考 [解题思路] 点 清 单 解 读
返回目录
1.3 勾股定理的应用
返回目录
考 [答案] 解:如图,连接 AB′,则 AB′

清 即为所用的最短细线长,AA′=4+2+4+2=12,
单 解
A′B′=AB=9,
由勾股定理,

得 AB′2=AA′2+A′B′2=122+92=225,则AB′=15,即细
线的最短长度为 15.
1.3 勾股定理的应用
返回目录
考 ■考点二 勾股定理的实际应用
单 解
一边与另两边的关系,求直角三角形的另两边时,可设未知
读 数,根据勾股定理建立方程,通过解方程回目录

对点典例剖析
点 清
典例2 如图,台风过后,一棵白杨树在某处折断,白杨

(完整版)勾股定理--最短距离问题

(完整版)勾股定理--最短距离问题

蚂蚁爬行的最短路径正方体4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是( )A .A ⇒P ⇒B B .A ⇒Q ⇒BC .A ⇒R ⇒BD .A ⇒S ⇒ B解:根据两点之间线段最短可知选A . 故选A .2. 如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是 .解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB=51222=+.8. 正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为 .解:将正方体展开,连接M 、D1, 根据两点之间线段最短, MD=MC+CD=1+2=3,第6题第7题AB121MD 1=132322212=+=+DD MD .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )解:如图,AB= ()1012122=++.故选C .9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用 2.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB= = cm ;(2)展开底面右面由勾股定理得AB==5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒.长方体10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是 。

解:将长方体展开,连接A 、B ,根据两点之间线段最短,AB==25.A B A 1B 1D CD 1C 121411. 如图,一只蚂蚁从实心长方体的顶点A 出发,沿长方体的表面爬到对角顶点C 1处(三条棱长如图所示),问怎样走路线最短?最短路线长为 .解:正面和上面沿A 1B 1展开如图,连接AC 1,△ABC 1是直角三角形, ∴AC 1=()5342142222212=+=++=+BC AB18.(2011•荆州)如图,长方体的底面边长分别为2cm 和4cm ,高为5cm .若一只蚂蚁从P 点开始经过4个侧面爬行一圈到达Q 点,则蚂奴爬行的最短路径长为 cm .解:∵PA=2×(4+2)=12,QA=5 ∴PQ=13.故答案为:13.19.如图,一块长方体砖宽AN=5cm ,长ND=10cm ,CD 上的点B 距地面的高BD=8cm ,地面上A 处的一只蚂蚁到B 处吃食,需要爬行的最短路径是多少?解:如图1,在砖的侧面展开图2上,连接AB , 则AB 的长即为A 处到B 处的最短路程.解:在Rt △ABD 中,因为AD=AN+ND=5+10=15,BD=8, 所以AB 2=AD 2+BD 2=152+82=289=172. 所以AB=17cm .故蚂蚁爬行的最短路径为17cm .49、如图,长方体盒子(无盖)的长、宽、高分别12cm ,8cm,30cm.(1)在AB 中点C 处有一滴蜜糖,一只小虫从D 处爬到C 处去吃,有无数种走法,则最短路程是多少?(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?12.如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A 点爬到B 点,那么这只蚂蚁爬行的最短路径为 米。

「初中数学」勾股定理与最短距离问题.doc

「初中数学」勾股定理与最短距离问题.doc

「初中数学」勾股定理与最短距离问题勾股定理与最短路径问题最短路径问题的核心理论是:两点之间线段最短,但在不同情形中,会以不同的方式出现,也就会涉及到不同的思路和方法,比如在【几何模型】“将军饮马”问题——作一首小诗这一讲中,主要利用到两点之间线段最短和三角形两边之和大于第三边(三角形的三边关系本质上还是两点之间线段最短),而这一讲,我们主要涉及到立体图形的最短路径问题。

一、立体图形的最短路径问题的解决思路对于立体图形的最短路径问题,我们一般是利用横切或展开等手段,将其转换到平面图形中解决,而这种情形不免会在直角三角形中解决,也自然会和勾股定理扯上关系二、利用横切,转换成平面图形【例】如图,有一个透明的直圆柱状的玻璃杯,现测得内径为5cm,高为12cm,今有一只14cm的吸管任意斜放于杯中,若不考虑吸管的粗细,则吸管露出杯口外的长度最少为多少?(注:内径即底面直径)【分析】若使吸管露出杯口最短,自然留在杯中最长,而最长莫过于下列情况:这样,按照上图将圆柱横切,就可以将其转换到RT△ACB 中解决,而AB可有勾股定理解得:AB=13cm,所以吸管露出杯口的最短长度AD=BD-AB=1cm【练习题】如图,将一根25cm长的细木棒,放入长、宽、高分别为8cm、6cm、10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是多少?(保留1位小数)。

三、利用展开,转换成平面图形这类问题又可以细分为两种情形:直面(正方体或长方体)和曲面(圆柱),但无论直面或曲面,一般都是展开为矩形,进而利用勾股定理解决【例】直面(正方体或长方体)【分析】研究在表面从点M到点C的最短路径,可以将正方体表面局部展开:根据“两点之间线段最短,可知最短路径,即为线段MC。

进而,在RT△CGM中,利用勾股定理,可求MC 【练习题】【例】曲面(圆柱)如图,圆柱高15cm,底面半径为8/兀cm,一蚂蚁从B点爬到A点的最短路径为多少?【分析】请注意:此题的易错点是,很多同学直接连接AB,认为此时线段AB即为最短路径。

人教版八下数学 第17章 勾股定理 微专题三 立体图形中的最短线路问题

人教版八下数学 第17章 勾股定理 微专题三 立体图形中的最短线路问题

人教版八下数学第17章勾股定理微专题三立体图形中的最短线路问题1.如图,圆柱的底面半径为6cm,高为10cm,蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是多少厘米(结果保留小数点后一位)?2.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为( )A.14cm B.15cm C.24cm D.25cm3.如图,透明的圆柱形容器(容器厚度忽路不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且在离容器上部3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路程是( )A.13cm B.2√61cm C.√61cm D.2√34cm4.如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为( )A.13cm B.12cm C.10cm D.8cm5.我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处.则问题中葛藤的最短长度是尺.6.如图①,圆柱的底面半径为4cm,圆柱高AB为2cm,BC是底面直径,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图①所示,设长度为l1.路线2:侧面展开图中的线段AC,如图②所示,设长度为l2.请按照小明的思路补充下面解题过程:(1) 解:l1=AB+BC=2+8=10,l2=√AB2+BC2=√22+(4π)2=√4+16π2;∵l12−l22=.(2) 小明对上述结论有些疑惑,于是他把条件改成:“圆柱底面半径为2cm,高AB为4cm”继续按前面的路线进行计算.(结果保留π)①此时,路线1:l1=;路线2:l2=.②选择哪条路线较短?试说明理由.答案1. 【答案】答图略,将圆柱展开,侧面为矩形,∴AB=√(6π)2+102≈21.3(cm).答:蚂蚁从点A爬到点B的最短路程约是21.3cm.2. 【答案】D3. 【答案】A4. 【答案】A5. 【答案】256. 【答案】(1) 96−16π2(2) ① 8;2√4+π2② ∵l12−l22=82−(16+4π2)=48−4π2=4(12−π2)>0.∴l12>l22,即l1>l2.所以选择路线2较短.【解析】(1) l1=AB+BC=2+8=10,l2=√AB2+BC2=√22+(4π)2=√4+16π2,∵l12−l22=102−(4+16π2)=96−16π2=16(6−π2)<0,∴l12<l22,即l1<l2,所以选择路线1较短.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理应用之立体图形中的最短距离的教学
设计
一、教学目标
(一)知识目标
1.理解回顾直角三角形中三角之间的关系,掌握新知即三边之间关系。

2.会画立体图形展开图
(二)能力目标
1.能用“两点之间线段最短”解决实际问题。

2.通过勾股定理的简单应用,能用数学的眼光观察现实世界和有条理思考与表达的能力。

﹙三﹚情感与价值观
培养学生参与的积极性,及合作交流的意识。

学生通过适当训练,养成数学说理的习惯,逐步体验数学说理的重要性。

在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气。

引导学生积极探索,注意观察生活,体验生活中的数学。

通过了解我国古代在勾股定理研究方面的成就,激发热爱祖国,热爱祖国悠久文化的思想感情。

二、重点难点剖析
(一)重点
1.勾股定理的简单应用
2.在立体图形中寻找最短距离
(二)难点
1.在立体图形中寻找最短距离
2.理解化曲为直、化曲为平的数学思想
(三)难点突破
为了突出重点,突破难点,在应用勾股定理的过程中,按简单到繁琐、由特殊到一般的思想,引导学生步步深入。

在教学中,给学生提供充分实践、探索和交流的时间,鼓励他们积极思考解决问题的办法,并与他人进行合作与交流。

另外对练习的精选,也选择学生易错的题型,让他们养成仔细分析问题的习惯。

三、教学策略及教法设计
(一)教学策略
课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中,熟练运用勾股定理。

学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下主动地从事观察、实验、猜测、验证与交流等数学活动,从而真正有效地理解和掌握勾股定理。

辅助策略:借助多媒体课件,使学生直观形象地观察、动手操作。

(二)教法设计
探索法:让学生在探索中寻找最短距离,积累数学活动经验。

讨论法:在学生进行了自主探索之后,让他们进行合作交流,使他们互相促进、共同学习。

四、教学过程
师生双边教学活动教学手记教学过程学生活动
1、情景创设由将军饮马问题引入勾股定理让学生从会找最短
距离到能求最短距

(1)
情景
导入营地2.
AC=10米 BD=20
米 CD=40米求
AP+BP的最小值?学
生板书回答。

这虽不是本课
重点,但是学
生回答时板书
可以让学生更
快的进入新知
识的状态。

(2)设置问题平面内我可以通过做对称的方式
找到最短距离,并用勾股定理解
决问题,那么在立体图形中应怎
样找最短距离?(板书课题:勾
股定理应用之体力图形的最短距
离)
学生渴求新知,积极
期待。

2、
合作
探究
探索讨论交流
(1)尝试作图画正方体的立体展开图学生也画展开图,并
求简单的最短距

画长方体的展开图注意展开图的分类
讨论
1前上面展开
培养学生分类
讨论的能力,
做到不重不
(2)
发现
猜想较短两段取和,最长段独一边
(a>b>c)2.左上面展开
3.前右面展开
学生用语言描述。

漏。

每种算法板
书,让学生感
受立方体中求
最短距离的规
律性
(3)圆柱展开图探索圆柱中的最短
距离
让学生自主探
究,合作交流
(4)圆锥展开图
3、师生互动感受化曲为平的思想让学生自己动手
操作
规律 1正方体中展开图求最短距离
2长方体中图形虽有三种但比较
后仍有规律
3.圆柱中展开图两种一种图形
三种图形(一个答
案)
两种图形(一个答
案)
学生总结出
来,教师板书
4.
(1)新知应用例1一只蚂蚁沿边长为1正方体表面
从顶点A爬到顶点B,则它走过的路
程最短为()
思考若边长为a呢?
学生能很容易的求
出最短距离
让学生体会由
数字到字母的
变化
例 2. 如图是一块长,宽,高分别是
6cm,4cm和3cm的长方体木块一只
蚂蚁要从长方体木块的一个顶点A
处,沿着长方体的表面到长方体上和
A相对的顶点B处吃食物,那么它需
要爬行的最短路径的长是()
分类说明哪些面能
展开
让学生能够掌
握分类时不重
不漏的思想
22
()
b c a
++
22
()
b c a
++
例 3 如图 在一个底面周长为20cm,高AA ′为4cm 的圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?
学生展开时多种想
法,找最短
5. 习题精选 问题1:由若干个边长为1的小正方体摆放成的长方体,问在A 处的蚂蚁要吃到B 处的食物,最短要爬行多
长?若食物在C 处呢?
具体问题具体分析
6 延伸拓展
拓展学生思维
五.教学总结: (一)内容总结
1、本节课学习勾股定理之立体图形的最短距离求法。

2、运用勾股定理时有什么注意点?
3、勾股定理有什么用途? (二)方法总结
1、研究问题可以从特殊到一般,总结一般性规律。

2、学会探索、猜想的方法,了解数形结合的思想。

六.课后作业 中考精选
(二)课外延伸
立体图形最
短路径之四
圆柱问题
已知底面周长和高,求绕3圈的长度。

相关文档
最新文档