用完全平方公式因式分解练习

合集下载

完全平方公式因式分解

完全平方公式因式分解

灵活应用: 灵活应用:
(1)2006 − 6
2 2 2 2
2
(2)13 − 2 ×13 × 3 + 9 (3)11 + 39 + 66 ×13
小结
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 正确选取a,b. 注意 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中 (3)在因式分解中,通常先观察 在因式分解中, 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
注意: 注意
(1)正确选取 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清
分解因式
(1)3am + 3an + 6amn
2 2
(2) − a
2
− 4b + 4ab
2
2
(3) -8a(2a+b)-b
应用范围: 二次三项式. 应用范围 二次三项式 注意:(1)正确选取 注意 正确选取a,b. 正确选取 (2)公式分清 公式分清. 公式分清 (3)在因式分解中,通常先观察 在因式分解中, 在因式分解中 所给多项式是否有公因式, 所给多项式是否有公因式, 然后在考虑用公式。 然后在考虑用公式。 (4)二项式若有负号,要提出符号 )二项式若有负号, (5)对于部分题目需要整理变形 对于部分题目需要整理变形
2 就得到
a + 2ab + b = (a + b) 2 2 2 a − 2ab + b = (a − b )
a + 2ab+ b = (a+ b) 2 2 2 a − 2ab+ b = (a − b )

八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习

八年级数学下册 第4章 因式分解4.3 公式法第2课时 用完全平方公式分解因式习

(2) (x2+16y2)2-64x2y2; =(x2+16y2)2-(8xy)2 =(x2+16y2+8xy)(x2+16y2-8xy) =(x+4y)2(x-4y)2.
(3)a3-a+2b-2a2b; =a(a2-1)+2b(1-a2) =(a-2b)(a+1)(a-1).
(4)【2019·齐齐哈尔】a2+1-2a+4(a-1).
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+ 12b-61,c是△ABC中最短边的长(三边长各不相等), 且c为整数,那么c可能是哪几个数?
解:∵a2+b2=10a+12b-61, ∴(a-5)2+(b-6)2=0, ∴a=5,b=6,∴1<c<11. ∵c 是△ABC 中最短边的长,且 c 为整数,∴c 可能是 2,3,4.
8.如图是一个正方形,分成四部分,其面积分别是a2,ab, ab,b2,其中a>0,b>0,则原正方形的边长是( ) A.a2+b2 B.a+b C.a-b D.a2-b2
【点拨】从图形的特征入手,利用面积公式求解. 【答案】B
9.【2019·哈尔滨】把多项式a3-6a2b+9ab2分解因式 的结果是_a_(_a_-__3_b_)2___.
题.相信你也能很好地解决下面两个问题.请写出你的解题过程.
ห้องสมุดไป่ตู้
解决问题: (1)若x2-4xy+5y2+2y+1=0,求xy的值; 解:∵x2-4xy+5y2+2y+1=0, ∴x2-4xy+4y2+y2+2y+1=0, ∴(x-2y)2+(y+1)2=0,∴x-2y=0,y+1=0, 解得 x=-2,y=-1,故 xy=(-2)-1=-12.
10.【中考·聊城】把8a3-8a2+2a进行因式分解,结果正 确的是( C ) A.2a(4a2-4a+1) B.8a2(a-1) C.2a(2a-1)2 D.2a(2a+1)2 【点拨】8a3-8a2+2a=2a(4a2-4a+1)=2a(2a -1)2.故选C.

第2课时 用完全平方公式因式分解

第2课时 用完全平方公式因式分解

=2×1+(-1)
=1.
(2)已知a-b=4,ab+c2-6c+13=0,求a+b+c的值.
解:(2)∵a-b=4,∴a=b+4,
∴将a=b+4代入ab+c2-6c+13=0,得
b2+4b+c2-6c+13=0,
∴(b2+4b+4)+(c2-6c+9)=0,
∴(b+2)2+(c-3)2=0,
∴b+2=0,c-3=0,
16.小明是个善于思考的同学.在做到多项式(x2-4x+2)(x2-4x+6)+4的因式分解时,观察发现两个括
号中都含有x2-4x.于是他想到设x2-4x=y.请你按照小明同学的思路尝试对多项式(x2-4x+2)(x24x+
6)+4进行因式分解.
解:设x2-4x=y,
原式=(y+2)(y+6)+4
=(x+1-2)
2
2
=(x-1) .
当 x-1= 时,

原式=( ) =3.
10.将多项式4x2+1加上一个单项式后,能用完全平方公式因式分解,则添加单项式的方法共有多少
种?请写出添加的单项式和因式分解的结果.
解:添加单项式的方法共有3种,添加的单项式和因式分解的结果分别是:
添加4x,得4x2+1+4x=(2x+1)2;
3.(2021 莱州期末)下列各式可以用完全平方公式进行因式分解的是( C )
2
2
A.a +a+1 B.x +6x-9

2022-2023学年初一数学第二学期培优专题训练26 完全平方公式因式分解的5个类型

2022-2023学年初一数学第二学期培优专题训练26 完全平方公式因式分解的5个类型

专题26 完全平方公式因式分解五个类型类型一 直接用完全平方公式因式分解1.分解因式:2244a ab b -+=________. 2.因式分解:1-2a +a 2=________.3.分解因式a 2-10a +25的结果是______.4.因式分解:222x xy y -+=______. 5.因式分解:222x xy y ++=________. 6.因式分解:222m mn n ++=__________. 7.分解因式:221x x ++= ___________ . 8.分解因式:x 2﹣8x +16=_____.9.因式分解:244b b -+=____. 10.因式分解221x x -+=______.类型二 完全平方公式因式分解进阶11.分解因式:214a a -+=______. 12.分解因式:214m m -+=__________. 13.分解因式:x 2+x+14=_____. 14.因式分解:2441a a ++=______________ 15.分解因式:2244a ab b -+=______. 16.分解因式221236x xy y -+=______. 17.分解因式:224129x xy y -+=________.18.分解因式:x 2y 2-2xy +1=_______. 19.分解因式:224129m mn n -+= __________.20.因式分解24129m m -+=______. 21.2441x x -+=________;2216249a ab b ++=________;22.因式分解4x 2+12xy +9y 2=_____. 23.24129a a -+分解因式得__________. 24.因式分解:2296x xy y ++=______. 25.因式分解229124x xy y -+=______ 26.分解因式:9﹣12t+4t 2=_____.27.在括号内填上适当的因式:(1)225101x x ++=( ); (2)212b b -+=( )(3)24x x ++( )=(x+__)²(4)24m +( )+9n²=( )² 类型三 先提公因式再完全平方公式因式分解28.分解因式:am 2﹣2amn +an 2=_____. 29.因式分解:2mx 2﹣4mxy +2my 2=_____. 30.因式分解:2xm 2﹣12xm +18x =_____.31.分解因式:ma 2﹣2ma +m =___.32.分解因式x 3y ﹣6x 2y +9xy =___________.33.因式分解:22bx bx b -+=______. 34.分解因式:﹣x 2y +6xy ﹣9y =___. 35.分解因式:﹣m 2+4m ﹣4═_____.36.分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.37.因式分解:-2x 3+4x 2y -2xy 2=________. 类型四 展开后再用完全平方公式因式分解38.分解因式:2(1)4a a +-=_________.39.因式分解:()241x x --=__________.40.因式分解:()44x x ++=___________.41.将(2)1x x -+因式分解的结果是________. 42.因式分解:8(a 2+1)-16a =____________.43.因式分解:()228a b ab +-的结果是______. 44.分解因式(a -b )(a -9b )+4ab 的结果是____.45.分解因式(a+1)(a+3)+1的结果是_____. 46.分解因式()(4)a b a b ab --+的结果是________.47.分解因式:x(x-1)-3x+4=____. 48.分解因式:x 2-4(x-1)= ______. 类型五 其中三项整体用完全平方公式然后再用公式49.因式分解:22421x y y ---=__________.50.因式分解2221b bc c -+-=______. 51.分解因式:2221y x x ---=_____.52.分解因式:2242x y xy --+=___________.专题26 完全平方公式因式分解五个类型类型一 直接用完全平方公式因式分解1.分解因式:2244a ab b -+=________.解:原式=a 2-2×a ×2b +(2b )2=(a -2b )2, 2.因式分解:1-2a +a 2=________.解:由题意可知:1-2a +a 2=(1-a )2,3.分解因式a 2-10a +25的结果是______.【解答】a 2-10a +25=(a -5)24.因式分解:222x xy y -+=______.解:原式()2x y =-,5.因式分解:222x xy y ++=________.解:222x xy y ++=()2x y +.6.因式分解:222m mn n ++=__________.【解答】222m mn n ++=2()m n +,7.分解因式:221x x ++= ___________ .解:221x x ++=2(1)x +8.分解因式:x 2﹣8x +16=_____.【解答】x 2-8x +16,=x 2-2×4×x +42,=(x -4)2. 9.因式分解:244b b -+=____.解:原式=()22b -,10.因式分解221x x -+=______.解:221x x -+=(x ﹣1)2. 类型二 完全平方公式因式分解进阶11.分解因式:214a a -+=______. 解:214a a -+=212a ⎛⎫- ⎪⎝⎭ 12.分解因式:214m m -+=__________.解:221142m m m ⎛⎫-+=- ⎪⎝⎭, 13.分解因式:x 2+x+14=_____. 原式=(x +12)2.14.因式分解:2441a a ++=______________根据完全平方公式可得,原式=()()2224121a a a ++=+,15.分解因式:2244a ab b -+=______.16.分解因式221236x xy y -+=______.17.分解因式:224129x xy y -+=________.原式22(2)2(2)(3)(3)x x y y =-⨯⨯+ 2(23)x y =-.18.分解因式:x 2y 2-2xy +1=_______.【解答】:x 2y 2-2xy +1=(xy -1)². 19.分解因式:224129m mn n -+= ___________________.直接运用完全平方公式分解因式即可,即原式=(2m -3n )2.20.因式分解24129m m -+=______.解:24129m m -+=22(2)2233m m -⨯⨯+=2(23)m -21.2441x x -+=________;2216249a ab b ++=________;【解答】222441(2)41(21)x x x x x -+=-+=-,2222216249(4)24(3)(43)a ab b a ab b a b ++=++=+,22.因式分解4x 2+12xy +9y 2=_____.解:4x 2+12xy +9y 2=(2x +3y )2.23.24129a a -+分解因式得__________.解:224129(23)a a a -+=-,24.因式分解:2296x xy y ++=______.解:()222963x xy y x y ++=+25.因式分解229124x xy y -+=______解:229124x xy y -+=()232x y -.26.分解因式:9﹣12t+4t 2=_____.解:原式=(3﹣2t)2.27.在括号内填上适当的因式:(1)225101x x ++=( ); (2)212b b -+=( )(3)24x x ++( )=(x+__)²(4)24m +( )+9n²=( )² 试题解析:(1)25x 2+10x+1=(5x+1)2;(2)1-2b+b 2=(b-1)2(3)x 2+4x+4=(x+2)2;(4)4m 2+(±12mn )+9n 2=(2m±3n )2. 类型三 先提公因式再完全平方公式因式分解28.分解因式:am 2﹣2amn +an 2=_____.解:am 2﹣2amn +an 2=()()2222a m mn n a m n -+=-, 29.因式分解:2mx 2﹣4mxy +2my 2=_____.解:2mx 2﹣4mxy +2my 2,=2m (x 2﹣2xy +y 2),=2m (x ﹣y )2. 30.因式分解:2xm 2﹣12xm +18x =_____.解:原式=2x (m 2﹣6m+9)=2x (m ﹣3)2.31.分解因式:ma 2﹣2ma +m =___.解:ma 2﹣2ma +m = m (a 2﹣2a +1)=m (a -1)2,32.分解因式x 3y ﹣6x 2y +9xy =_______________________. 解:原式=xy (x 2-6x+9)=xy (x-3)2,33.因式分解:22bx bx b -+=______.由完全平方公式:22bx bx b -+=()221b x x -+ =()21b x -34.分解因式:﹣x 2y +6xy ﹣9y =___.解:﹣x 2y +6xy ﹣9y()()22=693y x x y x --+=--35.分解因式:﹣m 2+4m ﹣4═_____.解:原式=-(m 2-4m +4)=-(m -2)2.36.分解因式:﹣8a 3b +8a 2b 2﹣2ab 3=_____.解:原式=﹣2ab (4a 2﹣4ab +b 2)=﹣2ab (2a ﹣b )2,37.因式分解:-2x 3+4x 2y -2xy 2=__________________________. 原式=-2x (x 2-2xy+ y 2)=-2x (x -y )2,38.分解因式:2(1)4a a +-=___________________________________. 2222(1)412421(1)a a a a a a a a +-=++-=-+=-.类型四 展开后再用完全平方公式因式分解39.因式分解:()241x x --=________________.解:()241x x --244x x =-+()22x =-. 40.因式分解:()44x x ++=___________.41.将(2)1x x -+因式分解的结果是________.原式=x 2-2x+1=(x-1)2.42.因式分解:8(a 2+1)-16a =____________.()()()222811681281.a aa a a +-=+-=-43.因式分解:()228a b ab +-的结果是______.解:()228a b ab +-22448a ab b ab =++-2244a ab b =-+()22a b =- 44.分解因式(a -b )(a -9b )+4ab 的结果是____.解:(a-b )(a-9b )+4ab=a 2-10ab+9b 2+4ab= a 2-6ab+9b 2=(a-3b )2. 45.分解因式(a+1)(a+3)+1的结果是_____.首先去括号,进而利用乘法公式分解因式,(a+1)(a+3)+1=244a a ++=2(2)a +. 46.分解因式()(4)a b a b ab --+的结果是___________.()(4)a b a b ab --+=2254a ab b ab -++=2244a ab b -+=2(2)a b -. 47.分解因式:x(x-1)-3x+4=____.解:x (x-1)-3x+4,=x 2-x-3x+4,=x 2-4x+4,=(x-2)2.48.分解因式:x 2-4(x-1)= ______.x 2-4(x-1)=x 2-4x+4=(x-2)2.类型五 其中三项整体用完全平方公式然后再用公式49.因式分解:22421x y y ---=__________.22421x y y ---224(21)x y y =-++22(2)(1)x y =-+(21)(21)x y x y =++--. 50.因式分解2221b bc c -+-=______.解:原式=2()1b c --=[][]()1()1b c b c ---+=()()11b c b c ---+, 51.分解因式:2221y x x ---=_____.解:2221y x x ---=()22+2+1y x x -()22+1y x =-()()=11y x y x ++-- 52.分解因式:2242x y xy --+=__________________.原式=()()()()22242422x y xy x y x y x y -=--=+--++-.。

用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)

用完全平方公式分解因式 浙教版数学七年级下册同步练习(含解析)

4.3用乘法公式分解因式第2课时用完全平方公式分解因式基础过关全练知识点1完全平方式1.若关于x的多项式x2-4x+a(其中a是常数)是完全平方式,则a的值是()A.2B.-2C.4D.-42.【新独家原创】若关于x的多项式x2+mx+n是完全平方式,则m,n 的值可能是()A.-1,14B.12,14C.14,-14D.-14,143.下列各式中,与2x2-6x的和是完全平方式的是()A.x+9B.3C.9D.9-x2知识点2用完全平方公式分解因式4.下列可以用完全平方公式因式分解的是()A.4a2-4a-1B.4a2+2a+1C.1-4a+4a2D.2a2+4a+15.(2022浙江杭州余杭期末)下列因式分解正确的是()A.x2+y2=(x+y)2B.x2+2xy+y2=(x-y)2C.x2+x=x(x-1)D.x2-y2=(x+y)(x-y)6.(2022贵州黔东南中考)分解因式:2 022x2-4 044x+2 022=.7.【一题多变】(2022黑龙江绥化中考)分解因式: (m+n)2-6(m+n)+9=.[变式] 分解因式:19-13(a+b)+14(a+b)2= . 8.【教材变式·P108T5变式】因式分解:(1)m 2-4mn+4n 2; (2)-a+2a 2-a 3;(3)4+12(a-b)+9(a-b)2; (4)(x 2+4)2-16x 2.9.(2021浙江杭州余杭模拟)给出三个多项式:①a 2+3ab-2b 2;②b 2-3ab;③ab+6b 2.请任意选择两个多项式进行加法运算,并把结果分解因式.知识点3 简便运算10.用简便方法计算: 1012+198×101+992.能力提升全练11.下列因式分解正确的是( ) A.ab+ac+a=a(b+c)B.a 2-4b 2=(a+4b)(a-4b)C.9a 2+6a+1=3a(3a+2)D.a 2-4ab+4b 2=(a-2b)212.(2022浙江绍兴柯桥期中,7,)若x 2+2(k+1)x+4是完全平方式,则k 的值为( ) A.1 B.-3 C.-1或3 D.1或-313.把(a+b)2-4(a 2-b 2)+4(a-b)2因式分解为( )A.(3a-b)2B.(3b+a)2C.(3b-a)2D.(3a+b)214.若ab=2,b-a=3,则-a 3b+2a 2b 2-ab 3的值为 .15.因式分解:a 2-b 2-x 2+y 2-2ay+2bx= .16.【新独家原创】下列单项式:①3x;②-5x;③-154;④-1516x 2;⑤-3x 中,加上x 2-x+4后成为一个完全平方式的有 .(填序号)17.【作差法比大小】已知P=2x2+4y+13,Q=x2-y2+6x-1,试比较P,Q的大小.18.【学科素养·运算能力】(2022浙江杭州外国语学校期中,22,)配方法是一种重要的解决问题的数学方法,它不仅可以将一个看似不能分解的多项式因式分解,还能解决一些与非负数有关的问题或代数式最大值、最小值的问题.请用配方法解决以下问题.(1)试说明:无论x,y取何值,多项式x2+y2-4x+2y+6的值总为正数;(2)分解因式:a4+a2+1;(3)已知实数a,b满足-a2+5a+b-3=0,求a+b的最小值.素养探究全练19.【运算能力】我们知道(x+a)(x+b)=x2+(a+b)x+ab,若将该式从右到左使用,就可得到用“十字相乘法”因式分解的公式:x2+(a+b)x+ab=(x+a)(x+b).实例:分解因式:x2+5x+6=x2+(2+3)x+2×3=(x+2)(x+3).(1)分解因式:x2+6x+8=(x+)(x+);(2)请用上述方法解方程:x2-3x-4=0.答案全解全析基础过关全练1.C ∵关于x 的多项式x 2-4x+a(其中a 是常数)是完全平方式,∴a=4,故选C.2.A 当m=-1,n=14时,x 2+mx+n=x 2-x+14=(x −12)2,故选A. 3.D (2x 2-6x)+(9-x 2)=2x 2-6x+9-x 2=x 2-6x+9.故选D.4.C 1-4a+4a 2=(1-2a)2,故选C.5.D x 2+y 2不能分解,故A 错误;x 2+2xy+y 2=(x+y)2,故B 错误; x 2+x=x(x+1),故C 错误;x 2-y 2=(x+y)(x-y),故D 正确.故选D.6.答案 2 022(x-1)2解析 原式=2 022(x 2-2x+1)=2 022(x-1)2.7.答案 (m+n-3)2解析 原式=(m+n)2-2·(m+n)·3+32=(m+n-3)2.[变式] 答案 (13−12a −12b)2解析 原式=[13−12(a +b)]2=(13−12a −12b)2. 8.解析 (1)原式=m 2-2·m·2n+(2n)2=(m-2n)2.(2)原式=-a(a 2-2a+1)=-a(a 2-2·a·1+12)=-a(a-1)2.(3)原式=22+2·2·3(a-b)+[3(a-b)]2=[2+3(a-b)]2=(2+3a-3b)2.(4)原式=(x 2+4)2-(4x)2=(x 2+4+4x)(x 2+4-4x)=(x 2+4x+4)(x 2-4x+4)=(x+2)2(x-2)2.9.解析答案不唯一,写出以下任意一个即可.①+②得a2+3ab-2b2+b2-3ab=a2-b2=(a+b)(a-b).①+③得a2+3ab-2b2+ab+6b2=a2+4ab+4b2=(a+2b)2.②+③得b2-3ab+ab+6b2=7b2-2ab=b(7b-2a).10.解析1012+198×101+992=1012+2×99×101+992=(101+99)2=2002=40 000.能力提升全练11.D ab+ac+a=a(b+c+1),故A错误;a2-4b2=(a+2b)(a-2b),故B错误; 9a2+6a+1=(3a+1)2,故C错误;a2-4ab+4b2=(a-2b)2,故D正确.故选D.12.D∵x2±2·x·2+22=(x±2)2,∴k+1=±2,∴k=1或-3,故选D.13.C(a+b)2-4(a2-b2)+4(a-b)2=(a+b)2-2×2(a+b)(a-b)+[2(a-b)]2=(a+b-2a+2b)2=(3b-a)2.14.答案-18解析当ab=2,b-a=3时,-a3b+2a2b2-ab3=-ab(a2-2ab+b2)=-ab(b-a)2= -2×32=-18.15.答案(a-y+b-x)(a-y-b+x)解析a2-b2-x2+y2-2ay+2bx=(a2-2ay+y2)-(b2-2bx+x2)=(a-y)2-(b-x)2=(a-y+b-x)(a-y-b+x).16.答案③④⑤解析 ①3x+x 2-x+4=x 2+2x+4,不是完全平方式;②-5x+x 2-x+4=x 2-6x+4,不是完全平方式;③-154+x 2-x+4=x 2-x+14=(x −12)2,是完全平方式; ④-1516x 2+x 2-x+4=116x 2-x+4=(14x −2)2,是完全平方式; ⑤-3x+x 2-x+4=x 2-4x+4=(x-2)2,是完全平方式.综上,满足条件的有③④⑤.故答案为③④⑤.17.解析 ∵P=2x 2+4y+13,Q=x 2-y 2+6x-1,∴P-Q=(2x 2+4y+13)-(x 2-y 2+6x-1)=2x 2+4y+13-x 2+y 2-6x+1=x 2-6x+9+y 2+4y+4+1=(x-3)2+(y+2)2+1>0,∴P>Q.18.解析 (1)x 2+y 2-4x+2y+6=x 2-4x+4+y 2+2y+1+1=(x-2)2+(y+1)2+1,∵(x-2)2≥0,(y+1)2≥0,∴(x-2)2+(y+1)2+1>0,∴无论x,y 取何值,多项式x 2+y 2-4x+2y+6的值总为正数.(2)a 4+a 2+1=a 4+2a 2+1-a 2=(a 2+1)2-a 2=(a 2+a+1)(a 2-a+1).(3)∵-a 2+5a+b-3=0,∴b=a 2-5a+3,∴a+b=a 2-4a+3=(a-2)2-1,∴当a=2时,a+b 有最小值,为-1,∴a+b的最小值为-1.素养探究全练19.解析(1)2;4或4;2.(2)因为x2-3x-4=x2+(1-4)x+1×(-4)=(x-4)·(x+1)=0,所以x-4=0或x+1=0, 所以x=4或x=-1.。

6.3(2)运用完全平方公式因式分解[下学期]

6.3(2)运用完全平方公式因式分解[下学期]

1.分解因式: 分解因式:
1) 9a 2 − 6ab + b 2 ) − a 2 − 10a − 25 ( (2 3 ) 49b 2 + a 2 + 14ab ) 4x 3y + 4x 2y 2 + xy 3 ( (4
( 5 ) x 4 − 18x 2 + 81
2 2
2.下面因式分解对吗?为什么? 2.下面因式分解对吗?为什么? 下面因式分解对吗
两个数的平方和,加上(或减去)这两个数的 两个数的平方和, 平方和 或减去) 积的两倍,等于这两数和 或者差)的平方. 积的两倍,等于这两数和(或者差)的平方.
a 2 + 2 ab + b 2 = (a + b)2 a
2
− 2ab + b
2
= (a − b )
2
两个数的平方和,加上(或减去) 两个数的平方和,加上(或减去)这两个数 平方和 积的两倍,等于这两数和 或者差)的平方. 的积的两倍,等于这两数和(或者差)的平方.
1.判别下列各式是不是完全平方式. .判别下列各式是不是完全平方式.
(1) x + y ; 不是
2 2
(2) x + 2 xy + y ; 是
2 2
(3) x − 2 xy + y ; 是
2 2
(4) x + 2 xy − y ; 不是
2 2
(5) − x + 2 xy − y . 是
2 2
你能总结出完全平方式的特点吗? 你能总结出完全平方式的特点吗?
± 2 × 首 × 尾+ 首 尾
2
2
a 2 + 2ab + b 2 = (a + b) 2 ; a 2 − 2ab + b 2 = (a − b) 2 判别下列各式是不是完全平方式, 判别下列各式是不是完全平方式,若是说出

平方差公式和完全平方公式、因式分解强化练习题

平方差公式和完全平方公式、因式分解强化练习题

平方差公式、完全平方公式应用例说例1 计算(1))1)(1(+-ab ab ;(2))32)(32(---x x ;(3)1022;(4)992. 解:(1))1)(1(+-ab ab =11)(222-=-b a ab ;(2))32)(32(---x x = )23)(23(x x --+-=22249)2()3(x x -=--;(3)1022= 2)2100(+=1040444001000022100210022=++=+⨯⨯+;(4)992=2)1100(-=98011200100001110021002=+-=+⨯⨯-.例2 计算 (1))1)(1(-+++b a b a ;(2)2)2(p n m +-.解:(1))1)(1(-+++b a b a =121)(]1)][(1)[(222-++=-+=-+++b ab a b a b a b a ;(2)2)2(p n m +-=222)2(2)2(])2[(p p n m n m p n m +⋅-⋅+-=+- =2224244p np mp n mn m +-++-.例3 当2)2()23)(23(1,1b a b a b a b a ---+=-=时,求的值.【点拨】先用乘法公式计算,去括号、合并同类项后,再将a 、b 的值代入计算出结果.解:)44(49)2()23)(23(22222b ab a b a b a b a b a +---=---+=2222228484449b ab a b ab a b a -+=-+--;当时,1,1=-=b a222848)2()23)(23(b ab a b a b a b a -+=---+=8(-1)81)1(42-⨯-+=-4. 例4 求证:当n 为整数时,两个连续奇数的平方差22)12()12(--+n n 是8的倍数.证明:22)12()12(--+n n =)144(14422+--++n n n n=n n n n n 814414422=-+-++,又∵n 为整数,∴8n 也为整数且是8的倍数.例5 观察下列等式:10122=-,31222=-,52322=-,73422=-,……请用含自然数n 的等式表示这种规律为:________________.例6已知2294y Mxy x +-是一个完全平方式,求M 的值.解:根据2)32(y x ±=229124y xy x +±得: 12±=-M .∴12±=M答:M 的值是±12.例7 计算 1584221)211)(211)(211)(211(+++++. 【点拨】若按常规思路从左到右逐个相乘,比较麻烦;如果乘或除以一个数或一个整式,将本来复杂的问题转化成我们已知的、熟悉的,从而找到问题的捷径.解:1584221)211)(211)(211)(211(+++++ =158422121)211)(211)(211)(211)(211(+÷++++- =1584222121)211)(211)(211)(211(+÷+++- =158442121)211)(211)(211(+÷++- =15882121)211)(211(+÷+- =15162121)211(+÷-=2-15152121+=2. 第一种情况:直接运用公式1.(a+3)(a-3)2..( 2a+3b)(2a-3b)3. (1+2c)(1-2c)4. (-x+2)(-x-2)5. (2x+12)(2x-12) 6. (a+2b)(a-2b)7. (2a+5b)(2a-5b) 8. (-2a-3b)(-2a+3b)第二种情况:运用公式使计算简便1、 1998×20022、498×5023、999×10014、1.01×0.995、30.8×29.26、(100-13)×(99-23)7、(20-19)×(19-89)第三种情况:两次运用平方差公式1、(a+b)(a-b)(a2+b2)2、(a+2)(a-2)(a2+4)3、(x-12)(x2+14)(x+12)第四种情况:需要先变形再用平方差公式1、(-2x-y)(2x-y)2、(y-x)(-x-y) 3.(-2x+y)(2x+y) 4.(4a-1)(-4a-1) 5.(b+2a)(2a-b) 6.(a+b)(-b+a) 7.(ab+1)(-ab+1)第五种情况:每个多项式含三项1.(a+2b+c)(a+2b-c)2.(a+b-3)(a-b+3)3.x-y+z)(x+y-z)4.(m-n+p)(m-n-p)完全平方公式公式:语言叙述:两数的 ,. 。

用完全平方公式因式分解4

用完全平方公式因式分解4

将4x2+1再加上一项,使它成为完全 平方式,你有几种方法?
求学问,需学问, 只学答,非学问.
---李政道
分解因式4x2-9 =(2x)2-32=(2x+3)(2x-3) 能用平方差公式进行因式分解的多项式有 什么特点?
(1)两项 (2)平方差
下面的多项式能用平方差公式分解因式吗? (1) a2+2ab+b2 (2) a2-2ab+b2
完全平方公式:
完全平方公式 反过来就是: (a+b)2 = a²+2ab+ b² 两个数的平方 (a-b)2 = a²-2ab+ b² 和,加上(或减 去)这两数的积 的2倍,等于这 整式乘法 a²+2ab+ b² (a+b)2 两数和(或差)的 = 平方。 a²-2ab+ b² (a-b)2 =
因式分解
我们把多项式a² +2ab+b²和
a² -2ab+b²叫做完全平方式。
完全平方式有什么特征? (1)二次三项式。 (2)两数的平方和,两数积的2倍。
例1 把下列各式分解因式: (1)4a² +12ab+9b² (2)-x² +4xy-4y² (3)3ax² +6axy+3ay² (4)(2x+y) 2-6 (2x+y)+9
注意啦!首先要考虑能不能提取公因式! 灵活地把(2x+y)看成一个整体,这需要你 的智慧哟。
把下列各式因式分解:
(1) a ab
2
1 4
b
2
28 4 x 12 xy 49 y 9 (2)
2
2
把下列各式分解因式: (1)9a2-6ab+b2 (2)-a2-10a-25 (3)49b2+a2+14ab (4)4x3y+4x2y2+xy3 (5)x4-ห้องสมุดไป่ตู้8x2+81
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用完全平方公式因式分解练习
例1(1)把229124b ab a +-分解因式. (2)把2
2816y x xy +-分解因式.
(3)把241
1x x ++分解因式.
(4)把xy y x 4422-+分解因式.
练习:把下列各式分解因式:
(5).1692+-t t (6).412
r r +-
(7).236121a a +- (8).42242b b a a +-
例2.把下列各式分解因式:
(9).122++n n m m

10).222n m mn --
(11).ax y ax y ax ++2232
(12).22224)1(4)1(a a a a ++-+
练习:把下列各式分解因式:
(13).n n m m y y x x
42242510+- (14).222y xy x -+-
(15)21222+-x x (16)16
1)(21)(2+---y x y x (17)n n m m y y x x 2245105-+-
例3.把下列各式分解因式:
(18).222)1(4+-a a (19).2)(4y x y x --
练习:把下列各式分解因式:
(20).222)4
1
(+-m m (21).222224)(b a b a -+
(22).)(42
s t s s -+- (23).1)3)(2)(1(++++x x x x
例4(24).已知054222=+++-b b a a 求b a ,的值.
【课堂操练】
一.填空:
(25).-2x ( )+29y =(x - 2
)
(26).+-244x x =-2(x 2)
(27).++x x 32 =+x ( 2) (28).++22520r r =( +52
)r
二.填空,将下列各式填上适当的项,使它成为完全平方式(222b ab a ++)的形式: (29).+-x x 2 (30).++22
4
1y x (31).242x xy -+ (32).++24414b a (33).++469n m (34).+-x x 52
三.把下列各式分解因式:
(36).244x x +- (37).49142
++x x
(38).9)(6)(2++-+n m n m (39).n n n x x x 7224212+-++
【课后巩固】
一.填空
1.( )2+=+2
2520y xy ( )2.
2.=+⨯-227987981600800( -- 2)= . 3.已知3=+y x ,则222
121y xy x ++= .
4.已知0106222=++-+y x y x ,则=+y x .
5.若4)3(2+-+x m x 是完全平方式,则数m 的值是 .
6.158-能被20至30之间的两个整数整除,那么这两个整数是 .
二.把下列各式分解因式:
7.32231212x x y xy -+ 8.442444)(y x y x -+
9.22248)4(3ax x a -+ 10.2222)(4)(12)(9b a b a b a ++-+-
(11).2222224)(b a c b a --+ (12).22222)(624n m n m +-
(13).115105-++-m m m x x x
三.利用因式分解进行计算:
(14).
4
19.36.7825.03.2541⨯-⨯+⨯ (15).2298196202202+⨯+
(16).225.15315.1845.184+⨯+
四.(17).将多项式1362+x 加上一个单项式,使它成为一个整式的平方.
五.(18).已知212=
-b a ,2=ab 求:42332444b a b a b a -+-的值.
(19).已知n b a m b a =-=+22)(,)(,用含有m ,n 的式子表示:
(1)a 与b 的平方和;
(2)a 与b 的积;
(3)
b
a a
b +.。

相关文档
最新文档