第三章_杆件横截面上的应力应变分析
工程力学中的应力-应变分析如何进行?

工程力学中的应力-应变分析如何进行?工程力学中的应力应变分析如何进行?在工程力学的领域中,应力应变分析是一项至关重要的工作。
它不仅帮助我们理解材料在受力时的行为,还为工程设计和结构安全性评估提供了关键的依据。
那么,应力应变分析究竟是如何进行的呢?要进行应力应变分析,首先得清楚什么是应力和应变。
简单来说,应力是材料内部单位面积上所承受的力,而应变则是材料在受力作用下发生的相对变形。
我们先来看应力。
应力可以分为正应力和切应力。
正应力是垂直于作用面的应力分量,比如一根杆子受到拉伸,其横截面上的应力就是正应力。
切应力则是平行于作用面的应力分量,像轴在扭转时,其横截面上就会产生切应力。
计算应力时,需要明确受力的情况和作用面的面积。
以简单的拉伸为例,如果一个杆子受到的拉力为 F,横截面积为 A,那么正应力就等于 F/A。
但实际情况往往复杂得多,可能涉及到不均匀的受力分布或者复杂的几何形状。
接下来谈谈应变。
应变分为线应变和角应变。
线应变表示长度的相对变化,比如杆子在拉伸时长度的增加量与原长的比值就是线应变。
角应变则反映了角度的变化,常见于物体的扭转或剪切变形。
为了准确测量应变,通常会使用各种应变测量仪器,比如电阻应变片。
这些仪器能够将微小的应变转化为电信号,从而实现测量和记录。
在实际的工程问题中,应力和应变之间存在着一定的关系,这就是材料的本构关系。
不同的材料具有不同的本构关系,比如线性弹性材料遵循胡克定律,即应力与应变成正比;而对于塑性材料,其应力应变关系则更加复杂。
要进行应力应变分析,第一步是确定结构的受力情况。
这包括外力的大小、方向和作用点,以及内部约束力的分布。
通过对结构进行力学建模,可以将复杂的实际结构简化为便于分析的力学模型。
然后,根据所选的力学模型,运用相应的力学原理和公式来计算应力和应变。
这可能涉及到材料力学中的拉伸、压缩、弯曲、扭转等各种基本变形的理论,以及结构力学中的静定和超静定结构的分析方法。
杆件横截面上的应力

* Sz dM τy = I zb dx
F = ∫ * σ2dA= ∫ *
* N2 A
A
(M + dM) y1 dA
Iz
Fs S τ = I zb
* z
FS S z τ= I zb
上式中符号意义: 式中符号意义: 截面上距中性轴y处的剪应力 τ:截面上距中性轴 处的剪应力 c
S :y以外面积对中性轴的静矩 以外面积对中性轴的静矩 I z :整个截面对中性轴的惯性矩
②正应力: 正应力:
p α
F
α
α
Fα N
σ α = pα cos α = σ cos 2 α
③切应力: 切应力:
α
σα α pα τα
τ α = pα sin α =
σ0
2
sin 2α
1) α=00时, σmax=σ ) 2)α=450时, τmax=σ/2 ) =
例题
试计算图示杆件1-1、2-2、和3-3截面上正 应力.已知横截面面积A=2×103mm2
2.计算截面惯性矩 .
0.12 × (0.02)3 2 I1 z = + (0.12 × 0.02 )(0.045 0.01) = 3.02 ×10 6 m 4 12 0.02 × (0.12) 3 2 I2z = + (0.02 × 0.12)(0.08 0.045) = 5.82 × 10 6 m 4 12
其中:拉应变为正, 其中:拉应变为正, 为正 压应变为负 为负。 压应变为负。
'
d1 d d = 横向应变: 横向应变: ε = d d
O
z
研究一点的线应变: 研究一点的线应变:
x
x
河海大学 材料力学 第三章 杆件横截面上的应力、应变分析第一节

点K处的应力(stress) DF p=lim pm= lim —— DA→0 DA→0 DA
p 正应力s :沿截面法向 n 切应力t :沿截面切向 s p 2= s 2 + t 2
应力单位:Pa(帕斯卡、帕) MPa(兆帕)
1 Pa = 1 N/m2 1MPa =106 Pa
注意:
t
K
s
以上分析可见,应力是受力物体内某个截面上某 一点上内力分布集度。通常情况下,物体内各点 应力是不同的,对于同一点不同方位截面上应力 亦不同。这样,应力离开它的作用点是没有意义 的,同样,离开它的作用面亦是没有意义的。
(shearing strain) 单位: rad。
四、胡克定律
s
s
du e= — dx
u
u+du
如果仅在单方向正应力s 作用下,且正应力不超过某 一限值(比例极限),则正应力与正应变成正比,即
s = Ee ——胡克定律(Hooke's law)
E ——弹性模量。(elastic modulus)
如何描述一点处的应力?
二、一点的应力状态、单元体:
K K
围绕K点取一微小的六面体,称为单元体。
六个面都表示通过同一点K的面,只是方向不同而已。
如果所取的单元体在空间方位不同,则单元体上各面 的应力分量亦不相同。
sy
y
tyz
tyx txy txz sx
x
tzy
z
sz
tzx
若从一复杂受力构件内某点取一单元体,一般 情况下单元体各面上均有应力,且每一面上同时存 在三个应力分量:一个法向分量——正应力;两个 切向分量——切应力。这样,单元体上共有9个应力 分量。
杆件横截面上的应力

F
F:横截面上的轴力 A:横截面的面积
拉压杆斜截面上的应力
横截面----是指垂直杆轴线方向的截面; 斜截面----是指任意方位的截面。
F
F
F
①全应力:
②正应力:
③切应力:
1) α=00时, σmax=σ 2)α=450时, τmax=σ/2
试计算图示杆件1-1、2-2、和3-3截面上正 应力.已知横截面面积A=2×103mm2
在上下边缘处:
y = 0,
b
h
max
图示矩形截面简支梁受均布荷载作用,分别求最大剪力所在的截面上a,b,c三点处的切应力。 作出剪力图 各点处的切应力
矩形截面简支梁,加载于梁中点C,如图示。 求σmax , τmax 。
二、工字形截面梁的切应力
横截面上的切应力(95--97)%由腹板承担,而翼缘仅承担了(3--5) %,且翼缘上的切应力情况又比较复杂.为了满足实际工程中计算和设计的需要仅分析腹板上的切应力.
主应力及最大切应力
①切应力等于零的截面称为主平面 由主平面定义,令tα =0
可求出两个相差90o的a0值,对应两个互相垂直主平面。
②令
得:
即主平面上的正应力取得所有方向上的极值。
③主应力大小:
④由s1、s3、0按代数值大小排序得出:s1≥0≥s3
极值切应力:
①令:
②
可求出两个相差90o 的a1,代表两个相互垂直的极值切应力方位。
C
A
B
40
yc
FS
_
+
M
0.25
0.5
+
_
平面应力状态的应力分析 主应力
一、公式推导:
材料力学一

第三节 杆件变形的基本形式
杆的基本变形可分为: 轴向拉伸或压缩 : 直杆受到一对大小相等、方向相反、
作用线与轴线重合的外力作用时,杆件的变形主要是
轴线方向的伸长或缩短,这种变形称为轴向拉伸或压
缩.
F
F
F
F
剪切:杆件受到一对大小相等、方向相反、作用线相 互平行且相距很近的外力作用时,杆件的变形主要是 两部分沿外力作用方向发生料的机械性能测定(力和变形的关系,
强度指标等〕
2、验证理论和假设
3、实测:对复杂的结构、载荷难以估计的以
及检验设计要求,需要借助于试验来完成。
材料力学是固体力学的一个有机组成部分,是研
究变形固体的第一门课程,在基本概念、基本理 论和基本方法等方面为结构力学、弹性力学等奠 定了基础;同时也是机械设计、结构设计等课程 的先导课程,是工程技术人员必备的基础知识,
在材料力学中则对变形固体作如下假设:
1.连续性假设。假设物质毫无空隙地充满了整个固体。可
把某些力学量用坐标的连续函数来表示。
2.均匀性假设。假设固体内各处的力学性能完全相同。将
物体性能看作各组成部分性能的统计平均量,物体的任一部分 的力学性能都与整体的力学性能相同。
3.各向同性假设。假设固体在各个方向的力学性能完全相
同-----各向同性材料,如铸钢、铸铁、玻璃、塑料等, 还有些材料在不同的方向具有不同的力学性能,称为各向异性
材料,如木材, 还有正交各向异性材料,如胶合板等。
4.小变形假设。如果固体的变形较之其尺寸小得多,这种
变形称为小变形。研究物体的静力平衡时,可略去这种小变形, 按原始尺寸计算,在分析物体的变形规律时,不能忽略。
材料力学
第一章 绪论 第二章 杆件的内力分析 第三章 杆件横截面上的应力应变分析 第四章 杆件的变形计算 第五章 应力状态和应变状态分析 第六章 材料力学性能及实验应力分析基础 第七章 压杆稳定 第八章 杆类构件静力学设计 *第九章 能量方法初步 第十章 简单静不定问题 *第十一章 动荷载 第十二章 交变应力 附录Ⅰ 平面图形几何性质
机械设计基础_03应力分析

剪切与挤压横截面上应力
机械设计基础
Machine Design Foundation
剪切与挤压横截面上应力
解 (1)求内力 显然销钉属于双剪(图3-8b),用截面法计算剪力
FS
F 2
50kN
(2)计算剪应力
FS (50 103 )MPa 40MPa A 402
4
(3)计算挤压力
销钉的挤压应力各处相同,Fbc 100 kN
3.4.1 扭转剪应力分布规律及计算公式
1. 应力分析
(1)实验现象
各圆周线的形状、大小和间距均不 变,只是绕轴线相对转过一个角度; 各纵向线倾斜了相同的角度γ
Machine Design Foundation
3.2 轴向拉压杆的应力
返回
机械设计基础
Machine Design Foundation
3.2.1 横截面上的应力
拉压横截面上应力
拉压杆横截面上只有正应力且均匀分布(图3-4b)。即
FN
A
(3-4)
式中 σ—横截面上的正应力,MPa; FN—横截面上的轴力,N; A—横截面面积,mm2。
Machine Design Foundation
教学内容
3.1 应力与应变 3.2 轴向拉压杆的应力 3.3 剪切变形横截面上的应力 3.4 圆轴扭转时横截面上的剪应力 3.5 梁的应力
首页
机械设计基础
Machine Design Foundation
重点难点
重点:基本变形的应力计算。 难点:扭转、弯曲应力分析方法。
机械设计基础
Machine Design Foundation
bc
Fbc Abc
(3-6)
工程力学杆件的应力

1.变形几何关系
观察到下列现象:
(1)各圆周线的形状、大小以及两圆周线间的距离没有 变化
(2)纵向线仍近似为直线, 但都倾斜了同一角度γ
(3)表面方格变为菱形。
31
• 平面假设: • 变形前为平面的横截面变形后仍为平面,它
像刚性平面一样绕轴线旋转了一个角度。
g
32
g
g
d
g dx rd
• 梁的平面假设:
梁的各个横截面在变形后仍保持为平面,并 仍垂直于变形后的轴线,只是横截面绕某一 轴旋转了一个角度。
46
• 单向受力假设:假设各纵向纤维之间互不挤 压。于是各纵向纤维均处于单向受拉或受压 的状态。
由平面假设得到的推论:
梁在弯曲变形时,上面部分纵向纤维缩短,下 面部分纵向纤维伸长,必有一层纵向纤维既 不伸长也不缩短,保持原来的长度,这一纵向 纤维层称为中性层。
86.6 MPa
17
二 圣维南原理
当作用在杆端的轴向外力,沿横截面 非均匀分布时,外力作用点附近各截面的 应力,也是非均匀分布的。但圣维南原理 指出,力作用于杆端的分布方式,只影响 杆端局部范围的应力分布,影响区的轴向 范围约离杆端1~2个杆的横向尺寸。
此原理已为大量试验与计算所证实。
用与外力系静力等效的合力代替原力系, 除在原力系作用区域内有明显差别外,在 离外力作用区域稍远处,上述代替影响非 常微小,可以略而不计。
所以,在梁的横截面上一般既有 正应力,又有 剪应力
43
弯曲切应力:梁弯曲时横截面上的切应力 弯曲正应力:梁弯曲时横截面上的正应力 基本变形:拉压;扭转;弯曲 组合变形:
对称弯曲:梁至少有一个纵向对称面,且外力作用在对称面 内,此时变形对称于纵向对称面,在这种情况下的变形形式 称为对称弯曲。
横截面上的应力分布

XA A YA
FNCD F C
B
d
4 FNCD [ ]
4 45103 3.14160106
18.93103 m 18.93mm
取 d=19mm
35
[例2-5-3] 如图为简易吊车,AB和BC均为圆形钢杆,已知d1=36mm,d2=25mm, 钢的许用应力[σ]=100MPa。试确定吊车的最大许可起重量。 解:(1) 计算杆AB、BC的轴力
4
F3 3
2
F2 FN1 F2
1 1
F1
E
解:
求约束反力 RA=40kN
RA
A
4 B
D 3 C 2
FN2
10kN
F1 F1
DE 段: CD段:
FN1 20kN
40kN
FN2 30 20 10kN
FN
+
BC段:
AB段:
FN3 FN 2 10kN
FN4 RA 40kN
轴力的大小与杆截面的大小无关,与材料无关。
3、强化阶段ce:
强度极限
b
冷作硬化现象:金属在冷态塑性变形中,使金属的强化
指标,如屈服点、硬度等提高,塑性指标如伸长率降低的现象
e
胡克定律
4、局部颈缩阶段ef
E
E ─ 弹性模量 比例极限
E tg
24
p
0
两个塑性指标: 伸长率:
l1 l0 100% l0 5% 为塑性材料, 5% 为脆性材料 A0 A1 100% A0
FN1 28.3 10 1 π A1 20 2 10 6 4 90 106 Pa 90MPa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3)测截面扭矩
采用全桥桥路如图。
B
R1 R3 C R9 R7
A D 测扭矩
M
ds
2
ds EW M M EW 2
1
ds
4
T E dsW p 41
弯扭组合变形时的应力测量
B Ri A Rt
4、 实验步骤
C
1.打开弯扭组合实验装置。 2.打开应变仪。 R0 R0 3.主应力测定。 D (1) 用标准电阻调零,根据应变片的灵敏系数,计算出标定 值标定。按下“测量”,拆下标准电阻。 (2) 将各应变片按半桥单臂方式接入电阻应变仪各通道,各 通道共用一片温度补偿片。转换开关打到 “切换” (3)调各通道电桥平衡。 (4)采用增量法逐级加载,每次0.1kN。0.1 kN 初载荷调零 0.2 kN , 0.3 kN, 0.4 kN 读出测量值 (5)卸载。
180°III点 R7 R8 R9 B Ri A R0 D 测主应力
2
1) 测各点主应力
在mm截面上下左右四点处贴上应变片花,由电 阻应变仪测出各点三方向应变。测量桥路采用 半桥单臂,如图。由公式可计算各点ห้องสมุดไป่ตู้应力。
45°绿线 0° 白线 -45°蓝线
Rt C R0
主方向
45 45 tan 2 0 45 45 0
主应力
1.2
1 E 1 45 45 2 1 2 2
45 0
0 45
2
弯扭组合变形时的应力测量
2)测截面弯矩
采用半桥双臂桥路如图。
B R5 A R0 D 测弯矩 R0 R11 C
A R0 D 测弯矩
R9
D 测扭矩
R7
弯扭组合变形时的应力测量
5、 实验结果
1.主应力测定 记录I、II两点或III 、Ⅳ两点各应变值,填入表格,按照公式
计算两点主应力、主方向实测值;由弯矩、扭矩、截面尺寸
计算测点正应力、切应力,再计算主应力、主方向理论值。 2.弯矩测定: 将II、Ⅳ两点轴线方向的应变片按半桥双臂接入应变仪主桥 路,记录读数应变,计算M-M截面弯矩,与理论值FL比较。 3.扭矩测定: 将I、III两点±45°方向应变片按全桥方式接入应变仪主桥路, 记录读数应变,计算M-M截面扭矩,与理论值Fb比较。
弯扭组合变形时的应力测量 4.弯矩测定: (1)将II、Ⅳ两点轴线方向的应变片按半桥双 臂接入应变仪主桥路。(2)下同主应力测定。 5.扭矩测定: (1)将I、III两点±45°方向应变片按全桥方 式接入应变仪主桥路。(2)下同主应力测定。 6.实验结束,将仪表恢复原状。
B
R5 R11 C R0 A R1 B R3 C
弯扭组合变形时的应力测量
3、 实验原理和方法
弯扭组合实验装置如图所示,杆AB受弯扭组合作用, mm截面所受弯矩为FL,扭矩Fb,截面上下左右四点 应力状态如图。
II I
A m L m F b C
B
III Ⅳ
180°III点 R7 R8 R9 45°绿线 0° 白线 -45°蓝线
弯扭组合变形时的应力测量
弯扭组合变形时的应力测量
测量
1、实验目的
A、用电测法测定平面应力状态下的主应力大小及 其方向,并与理论值进行比较。 B、 测定弯扭组合变形杆件中的弯矩和扭矩分别引 起的应变,并确定内力分量弯矩和扭矩的实验值。 C、进一步掌握电测应力方法。
2、 实验仪器设备
A、YJ-31型电阻应变仪; B、弯扭组合实验装置