第八章酵母基因工程详解

合集下载

酵母菌在基因工程中的应用

酵母菌在基因工程中的应用

酵母菌在基因工程中的应用酵母菌是一类单细胞真核生物,是生物科学研究中的一种常见模式生物。

它们普遍存在于自然界中,可以在发酵食品的制备以及生命科学研究领域发挥着重要的作用。

在基因工程领域中,酵母菌更是被广泛应用,成为了基因工程领域的重要工具之一。

下面我们就来看看,酵母菌在基因工程领域中都有哪些应用吧。

一. 酵母菌作为表达宿主酵母菌是一类常见的蛋白表达宿主,能够快速高效地表达蛋白质,是一种常见的蛋白质产生工具。

一般来说,通过基因工程手段将需要表达的蛋白质的基因导入酵母菌中,利用其自身繁殖特性,迅速高效地表达出需要的蛋白质。

此外,在表达蛋白质的过程中,酵母菌的生长条件相对简单,可以通过温度、氧气、营养等因素的控制来实现高效的表达。

二. 酵母菌在药物研究中的应用当前,越来越多的药物研发都依赖于基因工程技术,而酵母菌则成为了药物研发中的重要工具之一。

通过将需要研发的靶点基因导入酵母菌中,可以模拟药物对生物体内靶点的作用过程。

此外,还可以通过酵母菌对药物副作用的研究,为药物的准确作用机制提供参考。

三. 酵母菌在癌症研究中的应用对于癌症的研究一直以来都是生物学家们所关注的重要问题之一。

而酵母菌则成为了癌症研究中的重要研究工具之一。

通过将癌症相关基因导入到酵母菌中,并通过对其复制、修复和细胞凋亡等过程的研究,可以更好地理解癌症的发生机制和治疗过程,为癌症的诊断和治疗提供更好的参考。

四. 酵母菌在基因组研究中的应用对于生命科学研究而言,基因组研究是一项重要的研究领域。

而目前,酵母菌的基因组研究也在不断地发展。

利用酵母菌基因组研究这一工具,可以揭示基因与生物型之间的关系,探寻基因突变造成遗传性疾病的可能机制,还可以帮助人们更好地理解基因间相互作用,促进基因工程技术的发展。

总之,随着基因工程技术的不断发展,酵母菌作为一种常见的模式生物,也在越来越多的领域中发挥着重要的作用。

通过其快速高效的蛋白表达能力以及对生物学过程的模拟研究,酵母菌为人们揭示了生物世界中的许多秘密。

《基因工程》第八章基因工程的安全防护

《基因工程》第八章基因工程的安全防护

基因工程的安全防护
二. 生物公害的控制
1. 实验人员适应性训练 随着学科之间的交叉和渗透, 大量其它专业的科学家( 随着学科之间的交叉和渗透, 大量其它专业的科学家( 物 理、化学、工程学、数学等) 进入了这一领域. 这些人缺乏生 化学、工程学、数学等) 进入了这一领域. 物学, 特别是有关病原微生物的知识. 物学, 特别是有关病原微生物的知识. 对从事基因操作的实验人员进行以下几方面的训练: 对从事基因操作的实验人员进行以下几方面的训练: 不同危险度微生物的操作技术; 不同危险度微生物的操作技术; 关于物理防护的技术知识; 关于物理防护的技术知识; 关于生物防护的技术知识; 关于生物防护的技术知识; 有关拟开展的实验的安全知识; 有关拟开展的实验的安全知识; 处理事故的能力; 处理事故的能力;
基因工程的安全防护-生物公害的控制 2.生物防护 2.生物防护 ( Biological Containment ) 2) 宿主细胞 宿主细胞应当具有在特定的有选择的条件下生存、 宿主细胞应当具有在特定的有选择的条件下生存、繁 殖, 而在一般自然条件下很难生存和繁殖的生物特性( 例如, 而在一般自然条件下很难生存和繁殖的生物特性( 例如, 营养缺陷型菌株、低温条件生长菌株等) 营养缺陷型菌株、低温条件生长菌株等)。 DNA重组体 3) DNA重组体 DNA重组体在自然条件下对人类和生态环境应当是安全 DNA重组体在自然条件下对人类和生态环境应当是安全 无害的。 无害的。
基因工程的安全防护-生物公害的控制
4. 重组体的保管 除了上述的安全防护外, 除了上述的安全防护外, 还应该 : 建立特殊实验的管理和健康监督安全管理机构和规则; (1) 建立特殊实验的管理和健康监督安全管理机构和规则; (2) 对安全性没有把握的实验, 要进行特殊管理, 对安全性没有把握的实验, 要进行特殊管理, 并进行临 床人体实验; 床人体实验; 在实验前和实验后一年内, 应对实验人员进行健康检查. (3) 在实验前和实验后一年内, 应对实验人员进行健康检查.

《微生物学》主要知识点-08第八章微生物的遗传

《微生物学》主要知识点-08第八章微生物的遗传

第八章微生物的遗传概述:遗传(heredity or inheritanc® 和变异(variation)是生物体的最本质的属性之一。

遗传即生物的亲代将一整套遗传因子传递给子代的行为或功能。

变异指生物体在某种外因或内因的作用下所引起的遗传物质结构或数量的改变。

基因型(ge no type某一生物个体所含有的全部基因的总和。

表型(phe no type)某一生物所具有的一切外表特征及内在特性的总和。

饰变( modification)不涉及遗传物质结构改变而发生在转录、翻译水平上的表型变化。

8.1遗传变异的物质基础8.1.1三个经典实验1. 经典转化实验:1928年F.Griffith以Streptococcus pneumoniae为研究对象进行转化(transformation)实验。

1944年O.T.Avery等人进一步研究得出DNA是遗传因子。

S strun A2. 噬菌体感染实验:1952年Alfred D.Hershey和Martha Chase用32P标记病毒的DNA,用35S标记病毒的蛋白质外壳,证实了T2噬菌体的DNA是遗传物质。

3.植物病毒的重建实1956年H.Fraenkel-Conrat用含RNA的烟草花叶病毒(tobacco mosaic virus,TMV)与TMV 近源的霍氏车前花叶病毒(Holmes ribgrass mosaic virus,HRV)所进行的拆分与重建实验证明,RNA也是遗传的物质基础。

8.2微生物的基因组结构:基因组(genome是指存在于细胞或病毒中的所有基因。

细菌在一般情况下是一套基因,即单倍体(haploid);真核微生物通常是有两套基因又称二倍体(diploid )。

基因组通常是指全部一套基因。

由于现在发现许多非编码序列具有重要的功能,因此目前基因组的含义实际上是指细胞中基因以及非基因的DNA序列的总称,包括编码蛋白质的结构基因、调控序列以及目前功能还尚不清楚的DNA序列。

第8章-酵母基因工程---基因工程原理与技术---刘志国-课件

第8章-酵母基因工程---基因工程原理与技术---刘志国-课件
酵母菌(Yeast)是一群以芽殖或裂殖方式进行无性 繁殖的单细胞真核生物,分属于子囊菌纲、担子菌纲、半知 菌类,共由56个属和500多个种组成。
酵母菌是比较成熟的真核生物表达系统。
作为宿主细胞的酵母需满足的基本要求
①安全无毒,没有致病性。 ②遗传背景清楚,容易进行遗传操作。 ③外源DNA容易导入宿主细胞,转化效率高。 ④培养条件简单,容易进行高密度发酵。 ⑤有较强的蛋白质分泌能力。 ⑥有类似高等真核生物的蛋白质翻译后的修饰加工能 力。
含有酵母菌染色体DNA同源序列的YIp质粒的构建
在大肠杆菌质粒上组装酵母菌染色体DNA特定序列和标 记基因,构建出来的质粒称为YIp。目的基因表达盒通常插 在染色体DNA特定序列中,这样目的基因就能高效整合入 酵母菌特定的染色体DNA区域。
酵母附加体质粒YEp:含有酿酒酵母2m质粒DNA复 制有关的序列,该载体在酵母细胞中稳定,拷贝数 可达60-100。转化效率高(b)。
REP1
A
IR
ori IR
同源重组
接合酵母属中的pSR1和pSB1,以及
克鲁维酵母属中的pKD1等均与2m质
B
粒类似。
FLP REP2
第一节 酵母基因工程表达体系 --------载体
酵母质粒载体既可以在大肠杆菌复制与扩增、又可以 在酵母系统中复制与扩增,故此类载体又称为穿梭载体( shuttle vector)。
由于巴斯德毕赤酵母没有合适的自主复制型载体,所以 外源基因序列一般整合入受体的染色体DNA上。其外源基因 的高效表达在很大程度上取决于整合拷贝数的多寡。目前已有 20余种具有经济价值的重组蛋白在该系统中获得成功表达。
多型汉逊酵母表达系统
多型汉逊酵母也是一种甲基营养菌。其自主复制序列 HARS已被克隆,并用于构建克隆表达载体, HARS质粒 能高频自发地整合在受体的染色体DNA上(可连续整合100多 个拷贝,因此重组多型汉逊酵母的构建也是采取整合的策略。

基因工程 酵母单杂交技术的原理及应用

基因工程 酵母单杂交技术的原理及应用

酵母单杂交是在酵母双杂交的基础上,20世纪90年年代中期又发展起来的--用于核酸和文库蛋白之间的研究。

在酵母单杂交系统中,省略了在酵母双杂交系统中采用的BD-X蛋白质杂交体,而用特异的DNA序列取代DNAGal4结合位点。

将已知的特定顺式作用原件构建到最基本启动子(Pmin)上游,把报告基因连接到Pmin下游。

编码待测转录因子cDNA与已知酵母转录激活结构域(AD)融合表达载体导入酵母细胞,该基因产物如果能够和顺式作用原件结合,就能激活Pmin启动子,使报告基因得到表达。

转录因子与顺式元件结合,激活最基本启动子Pmin,使报告基因表达,若连接如3个以上顺式作用元件,可增强转录因子的识别和结合效率。

优点:简单易行,无需分离纯化蛋白,酵母菌属于真真核生物,杂交体系检测到的与DNA结合的蛋白质是处于自然构象克服了体外研究时蛋白通常处于非自然构象的缺点,因而灵敏性很高。

缺点:有时由于插入的靶元件与酵母内源转录激活因子可能发生相互作用,或插入的靶元件不需要转录激活因子就可以激活报道基因的转录,因而存在假阳性结果。

如果酵母表达的AD杂合蛋白对细胞有毒性或者融合蛋白在宿主细胞内不能稳定的表达,或者融合蛋白发生错误折叠,或者不能定位于细胞核内,以及融合的GAL4-AD封闭了蛋白上与DNA作用的位点则都可能干扰AD杂合蛋白结合于靶元件的能力,从而产生假阴性的结果。

酵母单杂交系统应用:1. 鉴别DNA结合位点,并发现潜在的结合蛋白基因,目前对于酵母单杂交技术的应用主要体现在这方面。

Chew et al(1999)应用酵母单杂交技术证实了在大鼠脑中存在的COUP-TFⅠ、EAR2和NURR1等蛋白质GRIK5基因的内含子结合蛋白。

2. 对DNA结合结构域进行分析如果能得到DNA结合结构域的结构信息,就可以用酵母单杂交技术对该结构进行分析.Mak et al(1996)运用此技术测试哺乳动物具有基本的螺旋- 环- 螺旋(bHLH)结构的转录因子,通过对肌调节因子4(MRF4)的研究,证实其具有转录活性。

大学《基因工程学》教学大纲

大学《基因工程学》教学大纲

《基因工程学》课程教学大纲(Genetic Engineering)一、课程说明课程编码:02200200课程总学时(理论总学时/实践总学时):48(48/0)周学时(理论学时/实践学时):4(4/0)学分:31.课程性质:专业必修课。

2.适用专业与学时分配:适用生物技术专业。

教学内容与学时分配3.课程教学目的与要求:本课程的授课对象是生物技术专业的本科生。

课程简介:《基因工程》是生物技术专业的专业必修课程。

其以分子遗传学理论为基础,以分子生物学和微生物学的现代方法为手段而建立起来的一门技术学科。

基因工程兴起于20世纪70年代初,它的问世带动了生物技术的兴起和发展,是现代生物技术的核心内容。

基因工程课程的主要内容包括基因的分离、基因的克隆、基因的表达、植物基因工程、动物基因工程、药物基因工程和基因治疗等。

它是生命科学学院生物技术专业本科生的主干专业课程之一,它是生物工程(包括基因工程、细胞工程、酶工程、发酵工程)中最重要的课程,其它三大工程是建立在基因工程基础之上的,同时也为生物技术制药等后继学科奠定了重要的理论基础。

课程目标:设置本课程是为了让生物技术专业的学生理解和掌握基因工程的技术原理,通过本课程学习,掌握基因操作的工具酶,基因克隆常用载体,目的基因的分离与合成,重组体的构建,重组体向宿主细胞的导入,重组体克隆的筛选与鉴定以及克隆基因的表达,同时了解基因工程在生物学领域中的应用与发展前景。

对学生达到毕业要求贡献如下:1)了解基因工程学的历史、发展和前沿知识。

2)掌握基因工程学的基础理论、基本知识和基本技能;教学要求:学完基因工程学后,学生将具备以下能力:1)具有良好的自学能力;2)综合运用所掌握的基因工程学理论知识和技能、从事生物科学及其相关领域科学研究的能力。

4.本门课程与其它课程关系:先修课程为生物化学、微生物学、分子生物学、细胞学等,具备基础理论知识及实验能力是基因工程学课程的基础。

基因工程-外源基因在酵母菌中的表达

基因工程-外源基因在酵母菌中的表达

基因工程刘夫锋2019.11.27基因工程5 2 3 4 1 6789重组DNA 技术与基因工程的基本概念重组DNA技术与基因工程的基本原理重组DNA技术所需的基本条件重组DNA技术的操作过程目的基因的克隆与基因文库的构建外源基因在大肠杆菌中的表达外源基因在酵母菌中的表达外源基因在哺乳动物细胞中的表达外源基因表达产物的分离纯化7.1酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌的分类学特征酵母菌(Yeast )是一群以芽殖或裂殖方式进行无性繁殖的单细胞真核生物,分属于子囊菌纲(子囊酵母菌)、担子菌纲(担子酵母菌)、半知菌类(半知酵母菌),共由56个属和500多个种组成。

如果说大肠杆菌是外源基因最成熟的原核生物表达系统,则酵母菌是最成熟的真核生物表达系统。

7.1 酵母菌作为表达外源基因受体菌的特征7 外源基因在酵母菌中的表达酵母菌表达外源基因的优势全基因组测序,基因表达调控机理比较清楚,遗传操作相对简单能将外源基因表达产物分泌至培养基中具有原核细菌无法比拟的真核蛋白翻译后加工系统大规模发酵历史悠久、技术成熟、工艺简单、成本低廉不含有特异性的病毒、不产内毒素,美国FDA 认定为安全的基因工程受体系统,食品工业有数百年历史酵母菌是最简单的真核模式生物7.2 酵母菌的宿主系统7 外源基因在酵母菌中的表达7.2.2提高重组蛋白表达产率的突变宿主菌7.2.3 抑制超糖基化作用的突变宿主菌7.2.4 减少泛素依赖型蛋白降解作用的突变宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌7.2.1 广泛用于外源基因表达的酵母宿主菌目前已广泛用于外源基因表达和研究的酵母菌包括:酵母属如酿酒酵母(Saccharomyces cerevisiae )克鲁维酵母属如乳酸克鲁维酵母(Kluyveromyces lactis )毕赤酵母属如巴斯德毕赤酵母(Pichia pastoris )裂殖酵母属如非洲酒裂殖酵母(Schizosaccharomyces pombe )汉逊酵母属如多态汉逊酵母(Hansenula polymorpha )裂殖酵母属如粟酒裂殖酵母(Schizosaccharomyces pombe )如解脂耶氏酵母(耶氏酵母属Yarrowia lipolytica )如腺嘌呤阿氏酵母(阿氏酵母属Arxula adeninivorans )其中芽殖型酿酒酵母的遗传学和分子生物学研究最为详尽。

第八章基因工程电子教案

第八章基因工程电子教案
的遗传信息转移过程 • 转染(transfection): 真核细胞主动摄取或被动
导入外源DNA片段而获得新的表型的过程。
目的基因的筛选和鉴定
(screening/selection)
• 遗传学方法
– 插入灭活法(insertion inactivation):抗药性标志选择 – 标志补救 表达产物与营养缺陷互补
• 3′→5′外切酶活性 • 5′→3′外切酶活性
3′→5′外 切 酶 活 性
5′
3′
3′
5′
5′→3′外 切 酶 活 性
末端脱氧核 苷酰转移酶 (TDT)
载体 vector
• DNA ,能在宿主细胞中进行自我复制和 表达
• 克隆载体、表达载体 • 原核载体: 质粒(pBR322,pUC…)
Eco RⅠ Hind Ⅲ
氨苄青霉素 抗性基因
(ampr)
Pst Ⅰ
pBR322
Bam HⅠ
Sal Ⅰ
四环素 抗性基因
(terr)
Ava Ⅰ
O ri
Pvu Ⅱ
常用的克隆载体
• λ噬菌体(λphage) • 基因组分三个区域: 左侧区、中间区(非必需
区)、右侧区 • DNA,替换型载体,外源DNA: 9~23kb • 常用: EMBL 系列、 λgt 系列、charon系列 • 粘性质粒(cosmid): λDNA的 cos区+质粒,双链
环状DNA,克隆容量: 40~50kb • M13噬菌体 • 最大优点: 产生单链DNA
特点:
cos:cohesiveend site
RF DNA: replicational form DNA
优点:
表达载体(expressing vector)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

mnn alg och
提高重组蛋白表达产率的突变宿主菌
能导致酿酒酵母中重组蛋白产量提高或质量改善的突变类型
突变类型 生物效应 改善重组蛋白分泌 提高重组蛋白表达 提高重组蛋白表达 作用位点 钙离子依赖型的ATP酶 转录后加工 转录水平
ssc1 ssc2 rgr1
ose1
ssc11 rho-
提高重组蛋白表达
半乳糖诱导、葡萄糖抑制
GAL10 Promoter
GAL80
GAL4
UAS
GAL1
GAL7
GAL10
A、 将GAL4的启动子换成GAL10的诱导型强启动子 B、半乳糖诱导GAL4高表达,不受GAL80产物抑制,激活GAL1等高效转录
3)pho4TS-PHO5启动子
低温诱导、磷酸盐抑制 A、PHO5启动子在培养基缺磷酸盐时启动转录
以酵母标记基因(his3)的5’端和3’ 端作同源序列
3 用于酵母转化子筛选的标记基因
营养缺陷型的互补基因
显性基因
营养缺陷型的互补基因
宿主细胞:为氨基酸或核苷酸生物合成缺陷型突变子
主要有:LEU-、TRP-、HIS-、URA载体:携带相应的合成基因 如:leu1/leu2、trp1、his3/his4 、ura3 选择压力:不完全培养基 如:YNB、无机盐培养基
组成的、复杂分支结构的现象。增加了免疫原性、对活
性与药代稳定性均有影响。
*糖链组成
O型糖链仅由甘露糖组成、而哺乳细胞的还含唾液酸
基团
4、酿酒酵母表达系统的缺陷
1)表达水平普遍不高
A、表达载体传代不稳定(YEp、YRp)
B、所采用的强启动子调控不严谨
C、不能利用简单的无机培养基进行高密度发酵 2)分泌表达产物过糖基化
缺陷是非致死性的
Ubc4 - ubc5 双突变型:
七个泛素连接酶基因的突变对衰减蛋白降解作用同样有效
2、酵母载体系统
野生型质粒:2m质粒(酿酒酵母)
人工构建质粒: 5种
酵母附加型质粒(YEp)
酵母复制型质粒(YRp)
酵母着丝粒质粒(YCp)
酵母人工染色体(YAC) 酵母整合型质粒(YIp)
酿酒酵母中的2μ环状质粒
酵母菌表达系统的选择
巴斯德毕赤酵母表达系统
巴斯德毕赤酵母是一种甲基营养菌,能在低廉的甲醇培养基中生 长,甲醇可高效诱导甲醇代谢途径中各酶编码基因的表达,因此生长 迅速、乙醇氧化酶基因AOX1所属强启动子、表达的可诱导性是巴斯 德毕赤酵母表达系统的三大优势。 由于巴斯德毕赤酵母没有合适的自主复制型载体,所以外源基因 的表达序列一般整合入受体的染色体DNA上。在此情况下,外源基因 的高效表达在很大程度上取决于整合拷贝数的多寡。目前已有20余种 具有经济价值的重组蛋白在巴斯德毕赤酵母系统中获得成功表达。
YRp质粒
*复制子:染色体来源的ARS
*拷贝数50-100
*不稳定 培养几代后,质粒的丢失率高达 50%-70%,主要是由于分配不均 匀所致。 ARS: auto replication sequence
YCp质粒
*在YRp中引入CEN
CEN:着丝粒序列,来源于3号
染色体,有丝分裂稳定,低拷贝数
毕赤酵母:巴斯德毕赤酵母(Pichia pastoris)
汉逊酵母:多型汉逊酵母(Hansenula polymorpha)
其它酵母:已有60多种酵母菌建立了转化系统
乳酸克鲁维酵母(Kluyveromyces lactis)
非洲酒裂殖酵母(Schizosaccharomyces pombe)
抑制超糖基化作用的突变宿主菌
对数生长期关闭 稳定期表达
酵母菌共有七个泛素连接酶基因:
UBC 1、UBC 2、UBC 3、UBC 4、UBC 5、UBC 6、UBC 7
减少泛素依赖型蛋白降解作用的突变宿主菌
UBI 4缺陷型:
在酿酒酵母菌中,泛素主要由UBI 4基因表达,UBI 4-突变株能 正常生长。
UBA 1缺陷型: UBA1编码泛素激活酶E1,UBA1突变是致死性的,但其等位基因
酵母菌表达系统的选择
酿酒酵母表达系统
酿酒酵母的基因表达系统最为成熟,包括转录活性较高的甘油 醛-3-磷酸脱氢酶基因GAPDH、磷酸甘油激酶基因PKG、乙醇脱氢 酶基因ADH所属的启动子,多种重组外源蛋白获得成功表达。 酿酒酵母表达系统的最大问题在于其超糖基化能力,往往使得
有些重组蛋白(如人血清白蛋白等)与受体细胞紧密结合,而不能
2、TATA盒:富含AT;
3、UAS:上游激活序列;
5、DAS:下游激活序列
酿酒酵母表达系统常用启动子
1)糖酵解途径中关键酶的强启动子,受葡萄糖诱导:
甘油醛-3-磷酸脱氢酶基因GAPDH
磷酸甘油激酶基因PKG
乙醇脱氢酶基因ADH
2)半乳糖激酶启动子(GAL1)
半乳糖诱导、葡萄糖抑制
GAL80
GAL4
4 酵母菌转化方法
原生质体转化法
碱金属离子介导转化法
电激转化法
酵母菌原生质体转化法 细胞:去壁的原生质体
原理:以PEG等渗缓冲液稳定原生质体,以Ca2+诱导细胞
摄取外源DNA。
特点:30%以上为多质粒共转化 转化效率:可达原生质体总数的1-2%,但操作周期长,而 且转化效率受到原生质再生率的严重制约。
二、酵母转化系统
酵母宿主系统 酵母载体系统
酵母系统标记基因 酵母转化方法
外源DNA在酵母宿主中的命运
1、酵母宿主系统
用作模式真核生物的酵母宿主菌 用作外源基因表达的酵母宿主菌 提高重组蛋白表达产率的突变宿主菌
抑制超糖基化作用的突变宿主菌
减少泛素依赖型蛋白降解作用的突变宿主菌
用作模式真核生物的酵母宿主菌
野生型,双链、环状、6kb 拷贝数达50至100个
IRs 反向重复序列,600 bp,重组
RAF REP1 FLP
IR
A ori IR 同源重组
REP2
FLP 编码产物驱动IRs的同源重组
REP 编码产物控制质粒的稳定性 STB REP的结合位点
接合酵母属中的pSR1和pSB1,以及 克鲁维酵母属中的pKD1等均与2μ质 粒类似。
三 酵母表达系统
酿酒酵母表达系统 甲醇酵母表达系统 其它酵母表达系统
(一) 酿酒酵母表达系统
酿酒酵母系统启动子 酿酒酵母分泌系统 酿酒酵母糖基化系统 酿酒酵母表达系统存在的问题
1、酿酒酵母启动子
起始 位点 DAS 编码序列
UAS
URS
TATA
mRNA 40-120bp 20-40bp 100-1400bp 1、转录起始位点; 4、URS:上游阻遏序列
STB
B
人工构建酵母质粒的共同特点
含有大肠杆菌质粒的复制元点,以便克隆操作 含有一定数量供克隆操作的单一酶切位点 含有在酵母和大肠杆菌中进行选择的双标记 除YIp型质粒外均为穿梭载体
YEp质粒
*复制子:2m质粒来源的ori
*拷贝数50-100
*不稳定 培养几代后,质粒的丢失率高 达50%-70%,主要是由于分配 不均匀所致。
酿酒酵母(Saccharomyces cereviasiae):
*无性繁殖(芽殖或裂殖)、单细胞、真核生物 *繁殖方式与原核类似,易于操作
*基因表达调控机理与高等真核类似
用作外源基因表达的酵母宿主菌
酿酒酵母: 最成熟的真核细胞表达系统,表达水平低,产物过度糖基化
甲醇酵母:可以利用甲醇作唯一碳源,表达水平高,产物糖基化更合理
特点:转化率高(105 / mg DNA)、操作简便、适用范围广
5 外源DNA在酵母宿主细胞中的命运
单双链DNA均可转化酵母菌,但单链的转化率是双链的10-30倍 含有复制子的单链质粒进入细胞后,能准确地转化为双链并复制 不含复制子的单链质粒进入细胞后,能高效地同源整合入染色体 外源DNA常通过同源或非同源方式与染色体DNA重组 线性化DNA更易于同源重组
*复制子:染色体来源的ARS *拷贝数:1-5
YAC质粒
*在YCp中引入TEL
TEL:端粒,染色体末端序列,
利于线性DNA末端稳定
稳定性:随着插入杆菌的复制子
*引入酵母基因组的同源序列
*载体以同源或非同源重组方式整
合入宿主基因组 *拷贝数:大多情况下为1个
碱金属离子介导的酵母菌完整细胞的转化 细胞:带壁的完整细胞 原理:通过碱金属离子(如Li+等)、PEG和热休克处理诱 导细胞吸收外源DNA。 特点:
吸收线型DNA的能力明显大于环状DNA,两者相差80倍 共转化现象极为罕见
酵母菌电击转化法
细胞:带壁完整细胞或原生质体
原理:通过电脉冲对细胞膜造成DNA摄取通道
改善重组蛋白分泌 提高重组蛋白表达
转录水平
羧肽酶Y 转录水平
减少泛素依赖型蛋白降解作用的突变宿主菌
泛素介导的蛋白质降解作用
靶蛋白
Lys HOOC
Ubiquitin 76 aa
ubiquitin ligase E3
靶蛋白
Lys
ubiquitin ligase E3
靶蛋白
Lys
蛋白酶体
减少泛素依赖型蛋白降解作用的突变宿主菌
大量分泌。这一缺陷可用非酿酒酵母型的表达系统来弥补。
酵母菌表达系统的选择
乳酸克鲁维酵母表达系统
乳酸克鲁维酵母的双链环状质粒pKD1已被广泛用作重组异源
蛋白生产的高效表达稳定性载体,即便在无选择压力的条件下,也
能稳定遗传40代以上。
乳酸克鲁维酵母表达分泌型和非分泌型的重组蛋白,性能均优
于酿酒酵母表达系统。
3、酿酒酵母糖基化系统
糖基化位点:Asn-X-Thr/Ser(X代表任何氨基酸)
相关文档
最新文档