容量瓶误差分析表
实验二--容量仪器的校正

实验二 容量仪器的校正一、目的要求1.了解容量仪器校正的意义。
2.掌握容量仪器校正的方法。
二、实验原理定量分析中要用到各种容量仪器,如滴定管、移液管和量瓶,它们的容积在生产过程中已经检定,其所刻容积有一定的精确度,可满足一般分析的要求。
但也常有质量不合格的产品流人市场,如果不预先进行校正,就可能给实验结果带来误差。
因此,在滴定分析中,特别是在准确度要求较高的分析工作中,必须对容量仪器的容积进行校正。
校正的方法有称量法和相对校正法称量法的原理是,称量一定温度下校正容器中容纳或放出纯水的质量,根据该温度下纯水的密度即可计算出被校正容器的实际容积。
测量液体体积的基本单位是毫升(ml)。
1ml 是指在真空中1g 纯水在最大密度时(3.98℃)所占的体积。
换句话说,在 3.98℃和真空中称量所得的水的克数,在数值上等于它的体积毫升数。
由于玻璃的热胀冷缩,所以在不同温度下,玻璃容器的容积也不同。
因此,规定使用玻璃容器的标准温度为20℃。
各种容器上标出的刻度和容积,称为在标准温度20℃时容器的标准容积。
但是,在实际校正工作中,容器中水的质量是在室温下和空气中称量的。
因此必须考虑如下三个方面的影响:(1)由于空气浮力使质量改变的校正: (2)由于水的密度随温度而改变的校正;(3)由于玻璃容器本身容积随温度而改变的校正。
综合上述影响,可得出在20℃容积为lml 的玻璃容器,在不同温度时所盛水的质量见表2—1。
据此可用下式计算容器的校正值。
ttd m V =20 式中:V 20为在20℃时容器的真实容积;t m 为在空气中t ℃时水的质量;t d 为t ℃时在空气中用黄铜砝码称量1 ml 水(在玻璃容器中)的质量。
如某支25 ml 移液管在25℃放出的纯水质量为24.921 g ,则该移液管在20℃的实际容积为:)(02.2599617.0921.2420ml V ==即这支移液管的校正值为25.02-25.00 = +0.02(ml)温度(℃) )/(ml g d t 温度(℃) )/(ml g d t 温度(℃) )/(ml g d t 10 0.99839 11 0.99833 12 0.99824 13 0.99815 14 0.99804 15 0.99792 16 0.99778 17 0.99764 18 0.9975119 0.99734 20 0.99718 21 0.99700 22 0.99680 23 0.99660 24 0.99638 25 0.99617 26 0.99593 27 0.9956928 0.99544 29 0.99518 30 0.99491 31 0.99464 32 0.99434 33 0.99406 34 0.99375 35 0.99345校正不当和使用不当都是产生误差的主要原因,校正时必须仔细、正确地进行操作,使校正误差减至最小。
(完整word版)校正容量瓶及滴定管

学习情境一药物检测前准备工作任务4 校正容量瓶及滴定管一、任务下达1.子任务子任务一:校正100ml容量瓶。
子任务二:校正50ml酸碱两用滴定管。
2.任务目标通过本任务的教学和实施,预期达到以下目标。
(1)技能目标:能根据掌握容量瓶及滴定管的校正方法。
(2)知识目标:掌握移液管的校准和容量瓶校准的原理及操作注意事项。
二、任务准备1.容量瓶、滴定管的准备容量瓶、滴定管是滴定分析法所用的主要量器。
容量器皿的容积与其所标出的体积并非完全相符合。
因此,在准确度要求较高的分析工作中,必须对容量器皿进行校准。
由于玻璃具有热胀冷缩的特性,在不同的温度下容量器皿的体积也有所不同。
因此,校准玻璃容量器皿时,必须规定一个共同的温度值,这一规定温度值为标准温度。
国际上规定玻璃容量器皿的标准温度为20℃。
既在校准时都将玻璃容量器皿的容积校准到20℃时的实际容积。
2.准备仪器与试药(1)试验仪器:分析天平(0.1mg)、烧杯、锥形瓶、测量范围(10~30)℃,分度值为0.1℃的精密温度计。
(2)试药:纯化水。
三、检验与记录1.必备知识(1)检验原理:在容量分析中作为容积的基本单位是ml,1ml是指在真空中,1g纯水在最大密度时(4℃)所占的体积。
若在4℃真空中称得水的重量(g),在数值上等于它的体积(ml)。
但是,4℃和真空并不是实际的测量环境,在实际的工作中,容器的水重是在室温和空气中称量的,因此必须考虑空气浮力的影响和温度的影响。
将这些因素加以校正后,通过计算即可以得到较准确的校正结果。
表1-1给出了不同温度下1ml水的实际重量,表1-2~1-5为常用玻璃容量仪器的允许偏差。
表1-1 玻璃容器中1ml水在空气中用黄铜砝码称得重量温度(℃)重量(g)温度(℃)重量(g)温度(℃)重量(g)温度(℃)重量(g)10 0.99839 16 0.99780 22 0.99680 28 0.9954411 0.99832 17 0.99766 23 0.99660 29 0.9951812 0.99823 18 0.99751 24 0.99638 30 0.9949113 0.99814 19 0.99735 25 0.99617 31 0.9946814 0.99804 20 0.99718 26 0.99593 32 0.9943415 0.99793 21 0.99700 27 0.99569 33 0.99405表1-2 滴定管级别及允许偏差标称总容量(ml) 5 10 25 50容量允差(ml)A类±0.010 ±0.025 ±0.04 ±0.05B类±0.020 ±0.050 ±0.08 ±0.10表1-3 容量瓶级别及允许偏差标称总容量(ml) 1 5 10 25 50 100 250容量允差(ml)A类±0.010±0.020±0.020±0.03±0.05±0.10±0.15 B类±0.020±0.040±0.040±0.06±0.10±0.20±0.302.检验操作(1)容量瓶的校正将待校正的容量瓶洗净干燥,取烧杯盛放一定量纯化水,将水及容量瓶同放于同一房间中,恒温后,记下水温。
一定物质的量浓度的配置常见的误差分析

一定物质的量浓度的配置常见的误差分析一、配制的主要步骤计算→称量(或取液)→溶解(或稀释)→转移→定容→摇匀→装入试剂瓶→贴标签等。
二、应注意的问题1.配制一定物质的量浓度的溶液是将一定质量或体积的溶质按所配溶液的体积在选定的容量瓶中定容,因而不需要计算水的用量。
2.不能配制任意体积的一定物质的量浓度的溶液。
这是因为在配制的过程中是用容量瓶来定容的,而容量瓶的规格又是有限的,常用的有50mL、100mL、250mL、500mL和1000mL等。
所以只能配制体积与容量瓶容积相同的一定物质的量浓度的溶液。
3.在配制一定物质的量浓度的溶液时,不能直接将溶质放入容量瓶中进行溶解,而要在烧杯中溶解,待烧杯中溶液的温度恢复到室温时,才能将溶液转移到容量瓶中。
这是因为容量瓶的容积是在20℃时标定的,而绝大多数物质溶解时都会伴随着吸热或放热过程的发生,引起温度的升降,从而影响到溶液的体积,使所配的溶液的物质的量浓度不准确。
4.定容后的容量瓶在反复颠倒、振荡后,会出现容量瓶中的液面低于容量瓶刻度线的情况,这时不能再向容量瓶中加入蒸馏水。
这是因为容量瓶是属于“容纳量”式的玻璃仪器(指注入量器的液体的体积等于容器刻度所示的体积)。
用滴管定容到溶液的凹面与容量瓶的刻度线相切时,液体的体积恰好为容量瓶的标定容积。
将容量瓶反复颠倒、振荡后,出现容量瓶中的液面低于容量瓶刻度线的情况,主要是部分溶液在润湿容量瓶磨口时有所损失。
三、误差分析1.使所配溶液的物质的量浓度偏高的主要原因:⑴天平的砝码沾有其他物质或已锈蚀;⑵试剂砝码的左右位置颠倒;⑶调整天平零点时,游码放在了刻度线的右端;⑷用量筒量取液体时,仰视读数,使所读液体的体积偏大;⑸容量瓶内溶液的温度高于20℃,造成所量取的溶液的体积小于容量瓶上所标注的液体的体积,致使溶液浓度偏高;⑹给容量瓶定容时,俯视标线会使溶液的体积减小,致使溶液浓度偏高。
2.使所配溶液的物质的量浓度偏低的主要原因:⑴直接称热的物质;⑵砝码有残缺;⑶在敞口容器中称量易吸收空气中其他成分或易于挥发的物质时的动作过慢;⑷用量筒量取液体时,俯视读数,使所读液体的体积偏小;⑸用于溶解稀释溶液的烧杯,未用蒸馏水洗涤,使溶质的物质的量减少,致使溶液浓度偏低;⑹转移或搅拌溶液时,有部分液体溅出,致使溶液浓度偏低;⑺给容量瓶定容时,仰视标线,会使溶液的体积增大,致使溶液浓度偏低。
滴定分析中的误差及数据处理

滴定分析中的误差及数据处理引言概述:滴定分析是一种常用的定量化学分析方法,通过滴定剂与被测物质反应的滴定过程,可以确定被测物质的含量。
然而,在滴定分析中,由于实验条件、仪器设备和操作技巧等方面的限制,会产生一定的误差。
因此,正确处理滴定分析中的误差是保证分析结果准确性的关键。
一、仪器误差1.1 体积误差:滴定分析中常用的仪器是容量瓶和滴定管。
容量瓶的刻度误差和滴定管的滴定速度不均匀都会导致体积误差。
因此,在使用容量瓶和滴定管时,应该注意校正和标定,确保体积的准确性。
1.2 仪器响应误差:滴定分析中常用的仪器有自动滴定仪和电位滴定仪等,这些仪器在测量过程中会有一定的响应误差。
为了减小这种误差,应该选择合适的仪器,并进行仪器校准和调试。
1.3 仪器漂移误差:由于仪器长时间使用或者环境变化等原因,仪器的测量结果可能会发生漂移。
为了避免仪器漂移误差,应该定期进行仪器维护和校准。
二、试剂误差2.1 试剂纯度误差:滴定分析中使用的试剂纯度不高或者不稳定,会导致分析结果的误差。
因此,在进行滴定分析前,应该选择高纯度的试剂,并进行试剂的标定。
2.2 试剂滴定误差:滴定过程中,试剂滴定速度不均匀会导致误差。
为了减小这种误差,可以采用自动滴定仪进行滴定,或者进行多次滴定取平均值。
2.3 试剂保存误差:试剂的保存条件不当会导致试剂的质量下降,从而影响滴定结果。
因此,在使用试剂前,应该注意试剂的保存条件和有效期,并进行试剂的质量检测。
三、操作误差3.1 滴定终点判断误差:滴定终点的判断是滴定分析中的关键步骤。
如果终点判断不准确,会导致滴定结果的误差。
为了减小这种误差,可以使用指示剂或者仪器进行终点判断。
3.2 操作技巧误差:滴定分析需要熟练的操作技巧,包括滴定速度、试剂注入方式等。
如果操作技巧不熟练,会导致误差的产生。
因此,在进行滴定分析前,应该进行充分的实验训练和技能培训。
3.3 温度误差:温度对滴定分析结果有一定的影响。
高中化学溶液配置误差分析

高中化学溶液配置误差分析一、误差分析的理论依据根据c B=n B/V可得,一定物质的量浓度溶液配制的误差都是由溶质的物质的量n B和溶液的体积V引起的。
误差分析时,关键要看配制过程中引起n和V怎样的变化。
在配制一定物质的量浓度溶液时,若n B比理论值小,或V比理论值大时,都会使所配溶液浓度偏小;若nB比理论值大,或V比理论值小时,都会使所配溶液浓度偏大。
二、误差原因实例归纳为了便于同学们理解,我们对产生误差的原因归纳分析如下:(一)由概念不清引起的误差1.容量瓶的容量与溶液体积不一致例:用500mL容量瓶配制450mL0.1moL/L的氢氧化钠溶液,用托盘天平称取氢氧化钠固体1.8g。
分析:偏小。
容量瓶只有一个刻度线,且实验室常用容量瓶的规格是固定的(50mL、100mL、250mL、500mL、1000mL),用500mL容量瓶只能配制500mL一定物质的量浓度的溶液。
所以所需氢氧化钠固体的质量应以500mL溶液计算,要称取2.0g氢氧化钠固体配制500mL溶液,再取出450mL溶液即可。
2.溶液中的溶质与其结晶水合物的不一致例:配制500mL0.1moL/L的硫酸铜溶液,需称取胆矾8.0g。
分析:偏小。
胆矾为CuSO4·5H2O,而硫酸铜溶液的溶质是CuSO4。
配制上述溶液所需硫酸铜晶体的质量应为12.5g,由于所称量的溶质质量偏小,所以溶液浓度偏小。
(二)由试剂纯度引起的误差3.结晶水合物风化或失水例:用生石膏配制硫酸钙溶液时,所用生石膏已经部分失水。
分析:偏大。
失水的生石膏中结晶水含量减少,但仍用生石膏的相对分子质量计算,使溶质硫酸钙的质量偏大,导致所配硫酸钙溶液的物质的量浓度偏大。
4.溶质中含有其他杂质例:配制氢氧化钠溶液时,氢氧化钠固体中含有氧化钠杂质。
分析:偏大。
氧化钠固体在配制过程中遇水转变成氢氧化钠,31.0g氧化钠可与水反应生成40.0g氢氧化钠,相当于氢氧化钠的质量偏大,使结果偏大。
溶液配制及分析

学生动手操作
将容量瓶中的溶液摇匀
• 10、装瓶贴签 、 • 容量瓶中不能久 放溶液, 放溶液,因此要 把配制好的溶液 转移到试剂瓶中, 转移到试剂瓶中, 贴好标签, 贴好标签,注明 溶液的名称和浓 度。
学生动手操作
装瓶并贴标签
• 思考:配制一定物质的量浓度的溶液的主要步 思考: 骤有哪些? 骤有哪些? • 1计算 2 称量 3 溶解 4 冷却 5 转移 计算 6 洗涤 7振荡 8定容 9 摇匀 10 装瓶 振荡 定容
• 溶质的质量为
m(NaCl)= 0.200mol/L×0.10L×58.5g/mol = 1.17g × ×
• 2 、称量
• 注意:要正确使用 注意: 托盘天平
• 调零——两盘放 等质量纸 —— 放砝码——加药 品 ——准确称 量——放回砝码
用天平称取1.17g NaCl放入烧杯中 放入烧杯中 学生动手操作 用天平称取
学生动手操作 轻轻振荡容量瓶
• • •
8、定容 、 思考:能否直接加水到刻度线? 思考:能否直接加水到刻度线? 向容量瓶中加入蒸馏水,在距离刻度 向容量瓶中加入蒸馏水, 线1~2cm时,改用胶头滴管滴加蒸馏 ~ 时 水至刻度线。 水至刻度线。
学生动手操作
定容
思考:若定容时不小心液面超过了刻度线, 思考:若定容时不小心液面超过了刻度线, 怎么办?能用胶头滴管把多余的液体取出吗? 怎么办?能用胶头滴管把多余的液体取出吗? 必须重新配制
• 思考 :哪些因素可能影响浓度的准确性? 思考1:哪些因素可能影响浓度的准确性? • 称量 ,读数,转移, 洗涤,定容等。 读数,转移, 洗涤,定容等。 • 思考 :这些因素对浓度有怎样的影响? 思考2:这些因素对浓度有怎样的影响? 导致结果是偏高了还是偏低了? 导致结果是偏高了还是偏低了
滴定分析中的误差及数据处理

滴定分析中的误差及数据处理标题:滴定分析中的误差及数据处理引言概述:滴定分析是化学分析中常用的一种方法,通过滴定溶液来确定溶液中某种物质的含量。
然而,在进行滴定分析时,会存在一定的误差,因此正确处理数据是非常重要的。
本文将从误差来源和数据处理两个方面进行详细介绍。
一、误差来源1.1 仪器误差:滴定管、容量瓶等实验仪器的刻度有限,使用不当会引入误差。
1.2 操作误差:滴定操作时,滴液速度、终点判断等操作细节不当会导致误差。
1.3 溶液误差:溶液的浓度、温度等因素会影响滴定结果的准确性。
二、数据处理2.1 重复滴定:进行多次滴定实验,取平均值可以减小误差。
2.2 确定终点:使用指示剂或仪器确定滴定的终点,减少人为判断误差。
2.3 校正误差:根据实验条件和仪器误差,进行误差校正,提高数据准确性。
三、数据分析3.1 计算浓度:根据滴定结果和溶液的体积计算出被测物质的浓度。
3.2 统计分析:对多次实验结果进行统计分析,评估数据的可靠性。
3.3 比较方法:将滴定结果与其他方法进行比较,验证滴定结果的准确性。
四、误差评估4.1 系统误差:对实验中可能存在的系统误差进行评估和修正。
4.2 随机误差:评估实验数据中的随机误差,确定数据的可靠性。
4.3 不确定度分析:根据误差来源和数据处理方法,计算出实验结果的不确定度。
五、结果解释5.1 结果说明:根据滴定实验结果,得出结论并进行结果解释。
5.2 结果验证:通过对比实验结果和理论值,验证滴定结果的正确性。
5.3 结果应用:将滴定结果应用于实际问题中,指导实验或分析。
总结:通过对滴定分析中的误差来源和数据处理方法进行详细介绍,可以帮助实验人员更好地进行滴定实验,并提高数据的准确性和可靠性。
在实际实验中,要注意操作细节,重视数据处理和误差评估,以确保实验结果的准确性和可靠性。
误差分析

@《创新设计》
探究二、一定物质的量浓度溶液的配制与误差分析 【探究讨论】 1.用量筒量取5.8 mL浓硫酸倒入100 mL容量瓶,然后加水定容,配制一定浓度的硫酸
溶液,这样操作可以吗? 提示 不可以,不能直接在容量瓶中稀释浓溶液,应在烧杯中进行。 2.配制一定浓度的氢氧化钠溶液时,氢氧化钠在烧杯中刚好溶解,即把溶液转移到容
↓ —↓
转移
溶液未冷却 玻璃棒末端在刻度线上方引流
—
↓
↑
—
↑
↓
移液前容量瓶内有少量水
— ——
配制步骤
错误操作
洗涤 未洗涤烧或洗涤液未注入容量瓶中
超过刻度线,吸出一部分溶液
定容 仰视刻度线
俯视刻度线
摇匀 摇匀后液面下下降,补充水
装
—↓
↓
—↓
—
↑
↓
—↓ ↑
—
答案 (1)B、C、A、F、E、D
课前自主学习
课堂互动探究
(2)若出现如下情况,对所配溶液浓度将有何影响? (填“偏高”、“偏低”或“无影响”) 若容量瓶中有少量蒸馏水_______________________________________; 若定容时俯视刻度线___________________________________________。 (3)若实验过程中出现如下情况如何处理? 加蒸馏水时不慎超过了刻度___________________; 向容量瓶中转移溶液时不慎有液滴掉在容量瓶外面_______________。
答案:(4)洗净容量瓶后重新配制 洗净容量瓶后重新配制 (5)保证溶质全部转入容量瓶 不冷却就转移到容量瓶并定容,冷却至室温
后会使溶液的体积偏小,浓度偏高
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
n V n 分析判断 c B 的变化。 V
因变量
②分析方法:分析各实验步骤中 n、V 的变化,根据 c B 以配制 0.1mol/L 的 NaOH 溶液为例,误差分析如下: 引起误差的错误操作 砝码生锈或者沾有其他物质 药品、砝码左右位置颠倒,而且称量中用到游码 称量易潮解的物质时间过长(如 NaOH) 用滤纸称易潮解物质(如 NaOH) 溶质含有其他杂质 ①用量筒量取液体溶质时,仰视读数 ②用量筒量取液体溶质时,俯视读数 量取液体溶质时量筒内有水 溶解固体溶质前烧杯内有水 溶解搅拌时有溶液溅出 向容量瓶中转移液体前容量瓶中有水珠 向容量瓶中转移液体时有少量液体溅出 未洗涤烧杯和玻璃棒 洗涤量取浓溶液的量筒并将洗涤液转移到容量瓶中 溶液未冷却到室温就转移到容量瓶中 定容时水加多了,用滴管吸出 摇匀前刻度线以上挂着一滴水珠,摇匀后水珠消失 摇匀前在容量瓶内壁液体中有气泡,摇匀后ቤተ መጻሕፍቲ ባይዱ泡消失 定容、摇匀后液面下降再加水 ③定容时俯视刻度线 ④定容时仰视刻度线 配好的溶液装入试剂瓶时,有少量液体溅出
nB
V
cB