人教版数学高二新课标 《复数的几何意义》 精品教案

合集下载

人教版数学高二教学设计1复数的几何意义

人教版数学高二教学设计1复数的几何意义

3.1.2 复数的几何意义教学目标:1.了解复数的几何意义,会用复平面内的点和向量来表示复数.2.通过建立复平面上的点与复数的一一对应关系,自主探索复数的几何意义.教学重点:复数的几何意义.教学难点:复数的几何意义.教学过程:一、问题情境我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?二、学生活动问题1任何一个复数a+b i都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?问题2平面直角坐标系中的点A与以原点O为起点,A为终点的向量OA是一一对应的,那么复数能用平面向量表示吗?问题3任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?三、建构数学1.复数的几何意义:在平面直角坐标系中,以复数a+b i的实部a为横坐标,虚部b 为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+b i,这就是复数的几何意义.2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量OZ来表示复数z=a+b i,这也是复数的几何意义.四、数学应用例1:实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限?(2)位于第四象限?(3)位于直线x -y -3=0上?解:因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎪⎨⎪⎧ x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 位于第三象限. (2)当实数x 满足⎩⎪⎨⎪⎧x 2+x -6>0,x 2-2x -15<0, 即2<x <5时,点Z 位于第四象限.(3)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上.活学活用:解:(1)若复数z 对应点在虚轴上,则m 2-m -2=0,所以m =-1,或m =2,此时,z =6i 或z =0.(2)若复数z 对应点在实轴负半轴上,则⎩⎪⎨⎪⎧m 2-m -2<0,m 2-3m +2=0, 解得m =1,所以z =-2.例2:当实数m 取何值时,在复平面内与复数z =(m 2-4m )+(m 2-m -6)i 对应点满足下列条件?(1)在第三象限;(2)在虚轴上;(3)在直线x -y +3=0上.解:复数z =(m 2-4m )+(m 2-m -6)i ,对应点的坐标为Z (m 2-4m ,m 2-m -6).(1)点Z 在第三象限,则⎩⎪⎨⎪⎧ m 2-4m <0,m 2-m -6<0,解得⎩⎪⎨⎪⎧0<m <4,-2<m <3, ∴0<m <3.(2)点Z 在虚轴上,则⎩⎪⎨⎪⎧m 2-4m =0,m 2-m -6≠0,解得m =0,或m =4.(3)点Z 在直线x -y +3=0上,则(m 2-4m )-(m 2-m -6)+3=0,即-3m +9=0,∴m =3.例3:已知复数z 对应的向量为OZ →(O 为坐标原点),OZ →与实轴正向的夹角为120°且复数z 的模为2,求复数z .解:根据题意可画图形如图所示:设点Z 的坐标为(a ,b ),∵|OZ →|=|z |=2,∠xOZ =120°,∴a =-1,b =3,即点Z 的坐标为(-1,3),∴z =-1+3i.五、课堂检测1.复数z =3+i 对应的点在复平面( )A .第一象限内B .实轴上C .虚轴上D .第四象限内2.若x ,y ∈R ,i 为虚数单位,且x +y +(x -y )i =3-i ,则复数x +y i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3.若23<m <1,则复数z =(3m -2)+(m -1)i 在复平面上对应的点位于第________象限. 4.已知m ∈R 且满足|log 2m +4i|≤5,求m 的取值范围.【答案】1.A2.【解析】∵x +y +(x -y )i =3-i ,∴⎩⎪⎨⎪⎧ x +y =3,x -y =-1.解得⎩⎪⎨⎪⎧x =1,y =2. ∴复数1+2i 所对应的点在第一象限.【答案】A3.【解析】∵23<m <1, ∴3m -2>0,m -1<0,∴复数对应点位于第四象限.【答案】四4.解:∵|log 2m +4i|=log 22m +42=log 22m +16≤5,∴log 22m ≤9,∴-3≤log 2m ≤3,∴18≤m ≤8.六、要点归纳与方法小结 本节课学习了以下内容:1.复数的几何意义.2.数形结合的思想方法.。

复数的几何意义 精品教案

复数的几何意义 精品教案

复数的几何意义【教学目标】1.知识与技能:理解复数与从原点出发的向量的对应关系。

2.过程与方法:了解复数的几何意义。

3.情感、态度与价值观:画图得到的结论,不能代替论证,然而通过对图形的观察,往往能起到启迪解题思路的作用。

【教学重点】复数与从原点出发的向量的对应关系。

【教学难点】复数的几何意义。

【教学过程】一、新课引入复数z=a+bi(A .b ∈R)与有序实数对(a ,b)是一一对应关系这是因为对于任何一个复数z=a+bi(A .b ∈R),由复数相等的定义可知,可以由一个有序实数对(a ,b)惟一确定。

学生探究过程:1.若(,)A x y ,(0,0)O ,则(),OA x y =;2.若),(11y x a =,),(22y x b =,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。

3.若),(11y x A ,),(22y x B ,则()1212,y y x x AB --=一个向量的坐标等于表示此向量的有向线段的终点坐标减去始点的坐标即 AB =OB -=( x 2, y 2) - (x 1,y 1)= (x 2- x 1, y 2- y 1)二、讲授新课: 复平面、实轴、虚轴:复数z=a+bi(A .b ∈R)与有序实数对(a ,b)是一一对应关系这是因为对于任何一个复数z=a+bi(A .b ∈R),由复数相等的定义可知,可以由一个有序实数对(a ,b)惟一确定,如z=3+2i 可以由有序实数对(3,2)确定,又如z=-2+i 可以由有序实数对(-2,1)来确定;又因为有序实数对(a ,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A ,横坐标为3,纵坐标为2,建立了一一对应的关系 由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系。

高中数学新人教版A版精品教案《3.1.2 复数的几何意义》5

高中数学新人教版A版精品教案《3.1.2 复数的几何意义》5

《复数的几何意义》教学设计教学目标:1知识与技能:理解复数的几何意义;根据复数的几何意义,在复平面内能描出复数的点;会运用复数的几何意义判断复数所在的象限及求复数的模。

2过程与方法:通过类比实数的几何意义学习复数的几何意义,类比向量求模来学习求复数的模,培养学生的逻辑思维能力。

3情感态度与价值观:通过复数的学习,培养学生数形结合的数学思想,从而激发学生学习数学的兴趣。

教学重点:复数的几何意义以及复数的模。

教学难点:复数的几何意义及模的综合应用。

教学方法:主要让学生类比实数的几何意义,探究出复数的几何意义;类比向量的模探究出复数的模。

教学过程:一、复习引入上节课引入了复数,学习了复数的定义,从而把数系由实数系扩充到了复数系,请同学们回忆:复数是如何定义的? 把形如z a bi =+的数叫做复数,其中a ,b 都是实数。

a 叫实部,b 叫虚部,i 叫虚部单位。

i 又是什么特点?21i =-复数(),z a bi a b R =+∈表示实数的条件是?0b =;表示虚数的条件是?0b ≠;表示纯虚数的条件是?0,0a b =≠ 我们上节课知道了,对于一般的两个复数是不能比较大小的,那么为什么不能比较大小?复数的本质是什么?又有什么意义呢?这节课我们从形的角度研究复数,学习复数的几何意义。

二、新课讲解1复数的几何意义(1)师:在几何上,我们可以用什么来表示实数呢?生:数轴上的点!师:实数与数轴上的点有着怎样的对应关系?生:一一对应师:也就是说实数与数轴上的点,在数与形上是一一对应的,因此,在几何上,我们可以用数轴上的点来表示实数;类比实数的表示,在几何上,我们可以用什么来表示复数呢?师:复数的代数式是(),z a bi a b R =+∈,一个复数是由那两部分唯一确定的? 生:由实部a 与虚部b 共同唯一确定的师:若将实部a 与虚部b 构成一个有序实数对(),a b ,那么复数z a bi =+与有序实数对(),a b 之间有怎样的对应关系呢? 生:一一对应师:而有序实数对(),a b 又与直角坐标系中的什么是一一对应的呢?生:直角坐标系中的点 师:这个点横坐标是a ,纵坐标是b !这样,我们就建立了复数z a bi =+与平面直角坐标系中的点(),a b 的这种一一对应的关系,通常这个点用大写的Z 来表示。

复数的几何意义教案

复数的几何意义教案

复数的几何意义教案【最新精选】一、教学目标:1. 让学生理解复数的概念,掌握复数的代数表示方法。

2. 引导学生了解复数的几何意义,能够将复数与复平面上的点对应起来。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学重点与难点:1. 重点:复数的概念,复数的代数表示方法,复数的几何意义。

2. 难点:复数与复平面上的点的对应关系,复数的运算规则。

三、教学方法:1. 采用讲授法,讲解复数的基本概念和运算规则。

2. 运用直观演示法,通过示例让学生了解复数的几何意义。

3. 采用练习法,让学生在实践中掌握复数的运算方法和几何意义。

四、教学准备:1. 教师准备PPT,展示复数的相关概念和图形。

2. 准备黑板,用于板书关键知识点。

3. 准备练习题,巩固学生对复数的理解和运用。

五、教学过程:1. 导入新课:通过复习实数的概念,引入复数的概念。

2. 讲解复数的基本概念:讲解复数的定义,阐述复数的代数表示方法。

3. 展示复数的几何意义:介绍复平面,讲解复数与复平面上的点的对应关系。

4. 复数的运算规则:讲解复数的加减乘除运算方法,并通过示例进行演示。

5. 练习与巩固:让学生在课堂上完成练习题,检验对复数的理解和运用。

6. 课堂小结:对本节课的主要内容进行总结,强调重点知识点。

7. 布置作业:布置课后练习题,让学生巩固所学知识。

8. 课后反思:教师对本节课的教学效果进行反思,为下一步教学做好准备。

六、教学拓展:1. 引导学生了解复数的分类,包括实数、虚数、纯虚数和零数。

2. 讲解复数在实际应用中的例子,如电子电路中的信号处理、物理学中的振动分析等。

七、课堂互动:1. 设置小组讨论环节,让学生探讨复数在实际问题中的应用。

2. 组织学生进行复数运算竞赛,提高学生的运算速度和准确性。

八、教学评估:1. 课后收集学生的练习作业,评估学生对复数的掌握程度。

2. 在下一节课开始时,进行简短的复数知识测试,了解学生的学习效果。

九、教学反馈与调整:1. 根据学生的作业和测试情况,及时给予反馈,指出学生的错误和不足。

《复数的几何意义》教案、导学案、课后作业

《复数的几何意义》教案、导学案、课后作业

《7.1.2 复数的几何意义》教案【教材分析】复数的引入是中学阶段数系的又一次扩充,引入复数以后,这不仅可以使学生对于数的概念有一个初步的、完整的认知,也为进一步学习数学打下基础.通过本节课学习,要使学生在问题情境中了解数系扩充的过程以及引入复数的必要性,学习复数的一些基本知识,体会人类理性思维在数系扩充中的作用.【教学目标与核心素养】课程目标:1.理解可以用复平面内的点或以原点为起点的向量来表示复数及它们之间的一一对应关系;2.掌握实轴、虚轴、模等概念;3.掌握用向量的模来表示复数的模的方法.数学学科素养1.数学抽象:复平面及复数的几何意义的理解;2.逻辑推理:根据平面与向量的关系推出复数与向量的一一对应及复数模公式;3.数学运算:根据复数与复平面的点一一对应求参数和求复数的模;4.数学建模:根据复数的代数形式,数形结合,多方位了解复数的几何意义,提高学生学习数学的兴趣.【教学重点和难点】重点:理解复数的几何意义,根据复数的代数形式描出其对应的点及向量.难点:根据复数的代数形式描出其对应的点及向量.【教学过程】一、情景导入提问:实数可以与数轴上的点一一对应,类比实数,复数能与什么一一对应呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本70-72页,思考并完成以下问题1、复平面是如何定义的,复数的模如何求出?2、复数与复平面内的点及向量的关系如何?复数的模是实数还是虚数? 要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.复平面2.复数的几何意义(1)复数z =a +b i(a ,b ∈R) 复平面内的点Z (a ,b ) .(2)复数z =a +b i (a ,b ∈R )平面向量OZ ―→. [规律总结] 实轴、虚轴上的点与复数的对应关系实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数,原点对应的有序实数对为(0,0),它所确定的复数是z =0+0i =0,表示的是实数.3.复数的模(1)定义:向量OZ ―→的 模 r 叫做复数z =a +b i(a ,b ∈R)的模.(2)记法:复数z =a +b i 的模记为|z |或|a +b i|.(3)公式:|z |=|a +b i|=r =a 2+b 2(r ≥0,r ∈R).四、典例分析、举一反三题型一 复数与复平面内的对应关系例1求实数a 分别取何值时,复数z =a 2-a -6a +3+(a 2-2a -15)i(a ∈R )对应的点Z 满足下列条件:(1)在复平面的第二象限内.(2)在复平面内的x 轴上方.【答案】(1) a <-3. (2)a >5或a <-3.【解析】(1)点Z 在复平面的第二象限内,则⎩⎨⎧ a 2-a -6a +3<0,a 2-2a -15>0,解得a <-3.(2)点Z 在x 轴上方,则⎩⎨⎧ a 2-2a -15>0,a +3≠0,即(a +3)(a -5)>0,解得a >5或a <-3.解题技巧(利用复数与点的对应的解题步骤)(1)复平面内复数与点的对应关系的实质是:复数的实部就是该点的横坐标,虚部就是该点的纵坐标.(2)已知复数在复平面内对应的点满足的条件求参数取值范围时,可根据复数与点的对应关系,建立复数的实部与虚部满足的条件,通过解方程(组)或不等式(组)求解.跟踪训练一1、实数x 取什么值时,复平面内表示复数z =x 2+x -6+(x 2-2x -15)i 的点Z :(1)位于第三象限; (2)位于直线x -y -3=0上【答案】(1)-3<x <2. (2) x =-2.【解析】因为x 是实数,所以x 2+x -6,x 2-2x -15也是实数.(1)当实数x 满足⎩⎨⎧ x 2+x -6<0,x 2-2x -15<0,即-3<x <2时,点Z 位于第三象限.(2)当实数x 满足(x 2+x -6)-(x 2-2x -15)-3=0,即3x +6=0,x =-2时,点Z 位于直线x -y -3=0上.题型二 复数与平面向量的对应关系例2已知平面直角坐标系中O 是原点,向量OA ―→,OB ―→对应的复数分别为2-3i ,-3+2i ,那么向量BA ―→对应的复数是 ( )A .-5+5iB .5-5iC .5+5iD .-5-5i【答案】B . 【解析】 向量OA ―→,OB ―→对应的复数分别为2-3i ,-3+2i ,根据复数的几何意义,可得向量OA ―→=(2,-3),OB ―→=(-3,2).由向量减法的坐标运算可得向量BA ―→=OA ―→-OB ―→=(2+3,-3-2)=(5,-5),根据复数与复平面内的点一一对应,可得向量BA ―→对应的复数是5-5i.解题技巧: (复数与平面向量对应关系的解题技巧)(1)根据复数与平面向量的对应关系,可知当平面向量的起点在原点时,向量的终点对应的复数即为向量对应的复数.反之复数对应的点确定后,从原点引出的指向该点的有向线段,即为复数对应的向量.(2)解决复数与平面向量一一对应的题目时,一般以复数与复平面内的点一一对应为工具,实现复数、复平面内的点、向量之间的转化.跟踪训练二1、在复平面内,A ,B ,C 三点对应的复数分别为1,2+i ,-1+2i.(1)求向量AB ―→,AC ―→,BC ―→对应的复数;(2)若ABCD 为平行四边形,求D 对应的复数.【答案】(1)AB ―→,AC ―→,BC ―→对应的复数分别为1+i ,-2+2i ,-3+i.(2)D 对应的复数为-2+i.【解析】 (1)设O 为坐标原点,由复数的几何意义知:OA ―→=(1,0),OB ―→=(2,1),OC ―→=(-1,2),所以AB ―→=OB ―→-OA ―→=(1,1),AC ―→=OC ―→-OA ―→=(-2,2),BC ―→=OC ―→-OB ―→=(-3,1),所以AB ―→,AC ―→,BC ―→对应的复数分别为1+i ,-2+2i ,-3+i.(2)因为ABCD 为平行四边形,所以AD ―→=BC ―→=(-3,1),OD ―→=OA ―→+AD ―→=(1,0)+(-3,1)=(-2,1).所以D 对应的复数为-2+i.题型三 复数模的计算与应用例3 设复数.(1)在复平面内画出复数对应的点和向量;(2)求复数的模,并比较它们的模的大小.【答案】 (1)图见解析,对应的点分别为,对应的向量分别为,.(2),..【解析】(1)如图,复数对应的点分别为,对应的向量分别为,.(2),.所以.1243,43z i z i =+=-12,z z 12,z z 12,z z 12,Z Z 1OZ 2OZ 15z =25z =12=z z 12,z z 12,Z Z 1OZ 2OZ 1|43|5z i =+==2|43|5z i =-==12=z z例4 设,在复平面内z 对应的点为Z ,那么满足下列条件的点Z 的集合是什么图形?(1);(2).【答案】 (1)以原点O 为圆心,以1为半径的圆.(2)以原点O 为圆心,以1及2为半径的两个圆所夹的圆环,但不包括圆环的边界.【解析】(1)由得,向量的模等于1,所以满足条件的点Z 的集合是以原点O 为圆心,以1为半径的圆.(2)不等式可化为不等式 不等式的解集是圆的内部所有的点组成的集合,不等式的解集是圆外部所有的点组成的集合,这两个集合的交集,就是上述不等式组的解集,也就是满足条件的点Z 的集合.容易看出,所求的集合是以原点O 为圆心,以1及2为半径的两个圆所夹的圆环,但不包括圆环的边界(如图).解题技巧(与复数的模相关的解题技巧)(1)复数的模是非负实数,因此复数的模可以比较大小.(2)根据复数模的计算公式|a +b i|=a 2+b 2可把复数模的问题转化为实数问题解决.(3)根据复数模的定义|z |=|OZ ―→|,可把复数模的问题转化为向量模(即两z C ∈||1z =1||2z <<||1z =OZ ||1z=1||2z <<2,1.z z ⎧<⎪⎨>⎪⎩||2z <||2z =||1z >||1z =1||2z <<点的距离)的问题解决.跟踪训练三1、已知复数z =a +3i(a ∈R)在复平面内对应的点位于第二象限,且|z |=2,则复数z 等于 ( )A .-1+3iB .1+3iC .-1+3i 或1+3iD .-2+3i【答案】A.【解析】由题意得⎩⎨⎧ a 2+3=4,a <0,解得a =-1.故z =-1+3i.五、课堂小结让学生总结本节课所学主要知识及解题技巧六、板书设计七、作业课本73页练习,73页习题7.1的剩余题.【教学反思】本节重在研究复数的几何意义,顾名思义就是从平面和向量两方面研究复数,得出其几何意义,内容比较抽象,学生理解起来有一定难度。

【参考教案】《复数的几何意义》(人教A版)

【参考教案】《复数的几何意义》(人教A版)

【参考教案】《复数的几何意义》(人教A版)一、教学目标1. 理解复数的概念,掌握复数的代数表示方法。

2. 了解复数的几何意义,能够将复数与复平面上的点对应起来。

3. 掌握复数的四则运算规则,能够进行简单的复数运算。

4. 能够运用复数的几何意义解决实际问题。

二、教学重点与难点1. 教学重点:复数的概念,复数的几何意义,复数的四则运算规则。

2. 教学难点:复数的概念的理解和运用,复数的几何意义的理解。

三、教学方法1. 采用问题驱动法,引导学生通过思考问题来理解和掌握复数的几何意义。

2. 利用多媒体课件,展示复数与复平面上的点的对应关系,帮助学生直观理解复数的几何意义。

3. 通过例题讲解和练习,巩固学生对复数的几何意义的理解和运用。

四、教学准备1. 多媒体课件。

2. 练习题。

五、教学过程1. 导入新课利用多媒体课件,展示复数与复平面上的点的对应关系,引导学生思考复数的几何意义。

2. 讲解复数的概念讲解复数的概念,强调复数的代数表示方法,以及复数的实部和虚部的意义。

3. 讲解复数的几何意义讲解复数的几何意义,说明复数与复平面上的点的对应关系,引导学生理解复数的几何意义。

4. 讲解复数的四则运算规则讲解复数的四则运算规则,并通过例题展示运算过程,让学生理解和掌握复数的四则运算规则。

5. 练习与巩固布置练习题,让学生独立完成,巩固对复数的几何意义的理解和运用。

6. 总结与反思对本节课的内容进行总结,让学生明确复数的几何意义,并能够运用复数解决实际问题。

7. 作业布置布置作业,要求学生复习本节课的内容,并完成练习题。

六、教学拓展1. 引入高斯地图:利用高斯地图展示复数在各个象限的分布情况,让学生更加直观地理解复数的几何意义。

2. 举例说明复数在实际问题中的应用:如电路中的电压和电流,流体力学中的速度场和压力场等,让学生了解复数在实际问题中的重要性。

七、课堂互动1. 提问环节:在讲解复数的几何意义时,引导学生思考复数在复平面上的表示方式,以及实部和虚部与复数位置的关系。

【参考教案】《复数的几何意义》(人教A版)

【参考教案】《复数的几何意义》(人教A版)

《复数的几何意义》(人教A版)一、教学目标1. 让学生理解复数的概念,掌握复数的代数表示方法。

2. 引导学生了解复数的几何意义,能够将复数与平面直角坐标系中的点对应起来。

3. 培养学生的空间想象能力和逻辑思维能力。

二、教学内容1. 复数的概念与代数表示方法2. 复数的几何意义3. 复数在平面直角坐标系中的表示4. 复数的四则运算5. 复数的概念拓展与应用三、教学重点与难点1. 教学重点:复数的概念,复数的几何意义,复数的代数表示方法。

2. 教学难点:复数在平面直角坐标系中的表示,复数的四则运算。

四、教学方法1. 采用讲授法,讲解复数的概念、几何意义及相关性质。

2. 利用数形结合法,引导学生将复数与平面直角坐标系中的点对应起来。

3. 通过例题解析,巩固复数的代数表示方法和几何意义。

4. 运用小组讨论法,鼓励学生探讨复数运算的规律。

五、教学过程1. 导入新课:回顾实数的概念,引入复数的概念,让学生了解复数与实数的区2. 讲解复数的代数表示方法:介绍复数的表示形式,如a + bi,并解释实部、虚部的含义。

3. 阐述复数的几何意义:将复数对应到平面直角坐标系中,实部表示横坐标,虚部表示纵坐标。

4. 复数在平面直角坐标系中的表示:讲解复数在坐标系中的表示方法,以及不同类型复数的几何含义。

5. 复数的四则运算:引导学生掌握复数的加、减、乘、除运算规律,并通过例题进行巩固。

6. 课堂练习:布置相关练习题,让学生巩固所学内容。

7. 总结与拓展:对本节课内容进行总结,并提出相关问题,激发学生课后思考。

8. 课后作业:布置作业,让学生进一步巩固复数的相关知识。

六、教学评价1. 课后作业批改:检查学生对复数概念、几何意义和四则运算的掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解其对所学知识的运用能力。

3. 小组讨论:评估学生在小组讨论中的参与程度,以及他们的合作和沟通能力。

4. 课程反馈:收集学生对课程内容的意见和建议,以改进教学方法。

复数的几何意义教学设计

复数的几何意义教学设计

复数的几何意义教学设计教学设计:复数的几何意义一、教学目标:1.了解复数的定义和基本性质;2.掌握复数在复平面上的表示方法;3.认识复数的几何意义;4.能够将复数在复平面上进行运算。

二、教学重点和难点:1.教学重点:复数在复平面上的表示方法、复数的几何意义;2.教学难点:复数的几何意义。

三、教学过程:1.导入新知(1)复习实数的定义与性质;(2)提问:是否存在负数的平方根?为什么?引出复数的引入背景和定义。

2.引入复数和复数的几何意义(1)引导学生思考一个问题:负数平方根是否存在意义?(2)学生进行小组讨论并汇报,教师梳理学生的思路。

(3)引入复数的定义:复数是由实部和虚部组成的,记为a+bi(其中a为实部,b为虚部,i为虚数单位);(4)通过图示方法引入复数的几何意义:将(a,b)看作是一个复数,与平面直角坐标系中的一个点(z)相对应,那么这个点与原点的坐标距离就是复数的模(,z,),复数的实部对应的是点在x轴上的坐标,虚部对应的是点在y轴上的坐标。

3.复数在复平面上的表示方法(1)通过图示方法让学生观察复数的表示方法;(2)分析实部和虚部的正负不同情况,在复平面上进行对应;(3)引入复数的共轭概念:将一个复数的虚部取负得到的数就是这个复数的共轭;(4)通过示例让学生在复平面上表示复数。

4.复数的运算(1)引入复数的加法:复数的加法就是实部相加,虚部相加;(2)通过示例引导学生通过图示方法计算复数的加法;(3)引入复数的乘法:复数的乘法的定义和推导过程;(4)通过示例引导学生通过图示方法计算复数的乘法;(5)通过练习巩固复数的运算方法。

5.拓展应用(1)通过练习,引导学生巩固复数在复平面上的表示方法和运算规律;(2)通过练习提高学生对复数的几何意义的理解。

6.总结与归纳由学生和教师共同总结和归纳复数的定义、表示方法和几何意义。

四、教学反思:通过图示方法介绍复数的几何意义,可以帮助学生更直观地理解复数和复数的计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、归纳总结、提升拓展
例1.(2007年辽宁卷)若 ,则复数 在复平面内所对应的点在( )
A.第一象限B.第二象限C.第三象限D.第四象限
例2复数z1=1+2i,z2=-2+i,z3=-1-2i,它们在复平面上的对应点是一个平行四边形的三个顶点,求这个平行四边形的第四个顶点对应的复数.
例3.设Z为纯虚数,且 ,求复数
(4)你能从几何的角度得出共轭复数的性质吗?
3、练习
(1)、3;i,-1+4i,-3-2i,-i
(2)、已知复数 =3-4i, = ,试比较它们模的大小。
(3)、若复数Z=4a+3ai(a<0),则其模长为
(4)满足|z|=1(z∈R)的z值有几个?满足|z|=1(z∈C)的z值有几个?这些复数对应的点在复平面内构成怎样的图形?其轨迹方程是什么?
四、反馈训练、巩固落实
1、判断正误
(1)实轴上的点都表示实数,虚轴上的点都表示纯虚数
(2) 若|z1|=|z2|,则z1=z2
(3) 若|z1|= z1,则z1>0
2、 ( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
3、已知a,判断z= 所对应的点在第几象限
4、设Z为纯虚数,且|z+2|=|4-3i|,求复数
3.1.2复数的几何意义
【教学目标】
1. 理解复数与复平面的点之间的一一对应关系
2.理解复数的几何意义并掌握复数模的计算方法
3、理解共轭复数的概念,了解共轭复数的简单性质
【教学重难点】
复数与从原点出发的向量的对应关系
【教学过程】
一、复习回顾
(1)复数集是实数集与虚数集的
(2)实数集与纯虚数集的交集是
(3)纯虚数集是虚数集的
(4)设复数集C为全集,那么实数集的补集是
(5)a,b.c.d∈R,a+bi=c+di
(6)a=0是z=a+bi(a,b∈R)为纯虚数的条件
二、学生活动
1、阅读 课本相关内容,并完成下面题目
(1)、复数z=a+bi(a、b∈R)与有序实数对(a,b)是的
(2)、叫做复平面,x轴叫做,y轴叫做
实轴上的点都表示虚轴上的点除原点外,虚轴上的点都表示
(3)、复数集C和复平面内所有的点所成的集合是一一对应关系,即
复数 复平面内的点 平面向量
(4)、共轭复数
(5)、复数z=a+bi(a、b∈R)的模
2、学生分组讨论
(1)复数与从原点出发的向量的是如何对应的?
(2)复数的几何意义你是怎样理解的?
(3)复数的模与向量的模有什么联系?
相关文档
最新文档