有理数及其运算教案
第二章有理数及其运算第一讲有理数(教案)

-突破方法:通过具体案例,强调运算顺序的重要性,并引导学生用括号明确运算顺序。
-实际应用题的解决:难点在于如何将实际问题抽象成有理数运算问题,以及如何列式和计算。
-突破方法:提供多样化的实际应用题,引导学生逐步学会提取信息、建立数学模型并解决问题。
2.培养学生运用有理数进行逻辑推理,提高逻辑思维能力,增强数学抽象素养。
3.培养学生熟练掌握有理数的运算,提高运算速度和准确性,强化数学运算素养。
4.引导学生通过解决实际问题,培养数据分析素养,提高解决问题的能力。
5.激发学生主动探究有理数性质和运算规律的意识,培养数学探究素养,增强创新精神。
6.培养学生合作交流、分享学习心得的习惯,提高数学交流素养,增进团队合作意识。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数比的数,如分数、整数。它是数学运算的基础,广泛应用于各个领域。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了有理数在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调有理数的分类和运算规则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示有理数运算的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“有理数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
有理数及其运算教案

体系搭建一、知识框架二、知识概念1、有理数的定义及分类(1)有理数:整数与分数统称为有理数。
有理数按照符号分类可以分为正有理数、0、负有理数;按照定义分类可以分为整数、分数。
2、数轴、相反数和绝对值(1)数轴的概念:画一条水平直线,在直线上取一点表示0(叫做原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,这样的直线叫做数轴,如下图所示:数轴三要素:原点、正方向、单位长度。
三者缺一不可。
任何一个有理数都可以用数轴上的一个点来表示。
(2)相反数的概念:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数。
特别地,0的相反数为0。
两个数互为相反数,那么这两个数之和为0。
(3)绝对值的概念:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值。
一个数的绝对值可以表示为下式,可以看出绝对值的一个重要性质就是非负性,对于任意实数a,有|a |≥03、倒数倒数的概念:乘积为1的两个有理数,那么就称其中的一个数是另一个数的倒数,也称这两个有理数互为倒数。
0没有倒数。
4、有理数的运算法则(1)加、减法运算加法运算:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不相等时,取绝对值较大数的符号,并用较大的绝对值减去较小的绝对值。
一个数同0相加,仍得这个数。
减法运算:减去一个数等于加上这个数的相反数。
(2)乘、除法运算乘法运算:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数与0相乘,积仍为0除法运算:除以一个等于乘这个数的倒数.(3)乘方及混合运算①一般的,任意多个相同的有理数相乘,我们通常记作:读作:a 的n 次方(或a 的n 次幂)其中a 代表相乘的因数,n 代表相乘因数的个数,即:...n ana a a a a=⨯⨯⨯6444447444448个②有理数的混合运算:混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的。
有理数及其运算北师大版数学初一上册教案

有理数及其运算北师大版数学初一上册教案有理数与之对应的是无理数,其小数部分是无限不循环的数。
有理数是“数与代数”领域中的重要内容之一,在现实生活中也有广泛的应用。
以下是小编整理的有理数及其运算北师大版数学初一上册教案,欢迎大家借鉴与参考!《有理数及其运算》教案【学习目标】1.了解正数与负数是从实际需要中产生的;理解正数与负数的概念,会判断数是正数还是负数;2.会用正负数表示具有相反意义的量,体会数学知识与生活的密切联系;3.在负数概念的形成过程中,培养观察、归纳与概括的能力。
【学习方法】自主学习与合作探究相结合。
【学习重难点】重点:用正负数表示具有相反意义的量。
难点:理解正数与负数的概念,会按要求进行数的分类。
【学习过程】模块一预习反馈一、学习准备1.小学我们学过的数有:自然数,如:_______________;整数,如________________;分数,如:___________________;小数,如:____________________。
2.正数和负数的概念⑴像5,1.2,,……这样的数叫做_________,它们都比____大;⑵在正数前面加上“-”号的数叫做_________,如-10,-3等,它们都比____小;⑶0 既不是_________,也不是_________。
0是_______和________的分界点,0是____数,也是____数,也是____数。
3.请同学们阅读教材p23—p25,注意:⑴不懂的地方要用红笔标记符号;⑵完成你力所能及的课后作业和习题.二、教材精读4.用正数和负数表示具有相反意义的量观察下面给出的每一对数量,指出各对数量有什么共同特点。
⑴零上3℃和零下12℃; ⑵收入800元和支出500元;⑶增加5kg和减少2kg; ⑷水位升高0.5m和降低1.3m通过观察,发现这里给出的每一对数量,都有一个共同的特点:每个语句中都含有一对具有相反意义的量:如“零上”和“_________”、“收入”和“_________”、“增加”和“_________”、“升高”和“_________”。
七年级数学上册有理数及其运算复习教案9篇

七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
有理数及其运算教案

教师: 科目:学生:上课时间: 授课内容:有理数及其运算 第二章 有理数及其运算第一节、有理数的意义1. 数怎么不够用了知识点:大于零的数叫正数,在正数前面加上“﹣”(读作负)号的数叫负数;如果一个正数表示一个事物的量,那么加上“﹣”号后这个量就有了完全相反的意义;3,182,5.2也可写作+3,182+,+5.2;零既不是正数,也不是负数。
或巩固练习:选择题 1.关于数“0”,以下各种说法中,错误的是 ( )A. 0是整数B. 0是偶数C. 0是自然数D. 0既不是正数也不是负数2.–3.782 ( )A. 是负数,不是分数B. 不是分数,是有理数C. 是分数,不是有理数D. 是分数,也是负数二、将下列各数填入相应的集合中。
17,-1,12,0,-3.01,0.62,-15,182-,180,-42,-45%,π,1 整数:______________________ 自然数:__________________________正数:______________________ 负数: __________________________偶数:______________________ 奇数: __________________________分数:______________________ 非负数:__________________________非负整数: _________________ 非正分数:________________________非负有理数:________________ 有理数: ________________________填空题1、一个数的绝对值是 6 ,这个数是 。
2、绝对值小于3的整数有 个。
3、119-的相反数的倒数是 。
4、计算:20022(1)(2)0-⨯-⨯= 。
5、如果216a =,那么 a= 。
6、如果规定上升8米记作8米,那么-7米表示 ______________。
六年级数学上册 第2章《有理数及其运算》教案 鲁教版五四制

第2章有理数及其运算一、教学目标:1.使学生体会具有相反意义的量,并能用有理数表示。
2.能在数轴上表示有理数,并借助数轴理解相反数和绝对值的意义。
3.会求有理数的相反数和绝对值(绝对值符号内不含字母)。
4.会比较有理数的大小。
5.了解乘方的意义,掌握有理数的加、减、乘、除法和乘方的运算法则,能进行有理数的加、减、乘、除法、乘方运算和简单的混合运算。
6.会用计算器进行有理数的简单运算。
7.理解有理数的运算律,并能用运算律简化运算。
8.能运用有理数的运算解决简单的问题。
9.了解近似数和有效数字的有关概念,能对较大的数字信息作合理的解释和推断。
二、教材的特点:1.本章教材注意突出学生的自主探索,通过一些熟悉的、具体的事物,让学生在观察、思考、探索中体会有理数的意义,探索数量关系,掌握有理数的运算。
教学中要注重让学生通过自己的活动来获取、理解和掌握这些知识。
2.与传统的教材相比,本章教材注意降低了对运算的要求,尤其是删去了繁难的运算。
本章教材注重使学生理解运算的意义,掌握必要的基本的运算技能。
同时引进了计算器来完成一些有理数的运算。
教学中要注意正确地把握。
3.数轴是理解有理数的概念与运算的重要工具,教学中要善于利用好这个工具,尤其要使学生善于借助数轴学习、理解。
4.本章的导图是天气预报图,是引入负数的实际情景。
应该结合教材内容,充分利用导图与导入语,使学生对相反意义的量,对负数有直观的认识。
三、课时安排:本章的教学时间大约需要23课时,建议分配如下:四、教学建议①整体把握基本概念和运算法则的引入;②整体把握基本运算能力的培养;③处理好笔算与使用计算器的尺度,避免繁、难的笔算。
有理数及其运算 教案
第二章 有理数及其运算2.1 有理数1.在具体情境中,进一步认识负数,学会用正负数表示具有相反意义的量,体会负数是实际生活的需要. 2.会判断一个数是正数还是负数,能按一定的标准对有理数进行分类.(重点)阅读教材P23~24,完成预习内容. (一)知识探究1.正整数、0和负整数统称为整数.正分数和负分数统称为分数. 2.整数和分数统称为有理数. (二)自学反馈1.(1)某人转动转盘,如果用+5圈表示沿逆时针方向转了5圈,那么沿顺时针方向转了12圈怎样表示? (2)在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克,记作+0.02克,那么-0.03克表示什么? (3)某大米包装袋上标注着“净重量:10 kg ±150 g ”,这里的“10 kg ±150 g ”表示什么? 解:(1)沿顺时针方向转了12圈记作-12圈.(2)-0.03克表示乒乓球的质量低于标准质量0.03克. (3)每袋大米的标准质量应为10 kg ,但实际每袋大米可能有150 g 的误差,即每袋大米的净含量最多是10 kg +150 g ,最少是10 kg -150 g.2.把下列各数写在相应的集合里.-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16.正整数集合:{10,+66,2 009,…}负整数集合:{-5,-16,…}负分数集合:{-4.5,-2.15,-35,…}正分数集合:{+235,0.01,15%,227,…}整数集合:{-5,10,0,+66,2 009,-16,…} 负数集合:{-5,-4.5,-2.15,-35,-16,…}正数集合:{10,+235,0.01,+66,15%,227,2 009,…}有理数集合:{-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 009,-16,…}3.有理数的分类(分两类).有理数的分类标准要统一.活动1 小组讨论例1 在知识竞赛中,如果用“+10”表示加10分,那么扣20分记作什么? 解:记作-20分.例2 在数-5,23,0,-0.24,7,4 076,-59,-2中,正数有23,7,4 076,负数有-5,-0.24,-59,-2,整数有-5,0,7,4 076,-2,分数有23,-0.24,-59,有理数有-5,23,0,-0.24,7,4__076,-59,-2.例3 下列说法不正确的是(A)A .正整数和负整数统称为整数B .正有理数和负有理数和零统称有理数C .整数和分数统称有理数D .正分数和负分数统称为分数 活动2 跟踪训练1.下列说法正确的是(D)A .一个有理数不是正数就是负数B .正有理数和负有理数组成有理数C .有理数是指整数、分数、正有理数、负有理数和零这五类数D .负整数和负分数统称为负有理数2.有理数:-7,3.5,-12,112,0,π,1317中正分数有(C)A .1个B .2个C .3个D .4个3.下列各数:-8,-113,2.03,0.5,67,-44,-0.99,其中整数是-8,-44,负分数有-113,-0.99.4.有理数中,是整数而不是负数的是非负整数,是负有理数而不是分数的是负整数.活动3 课堂小结通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.2.2 数轴1.了解数轴的概念,学会画数轴,知道如何在数轴上表示有理数.(重点)2.能说出数轴上表示有理数的点所表示的数,知道任何一个有理数在数轴上都有唯一的点与之对应.(重点) 3.体会数形结合的思想方法.阅读教材P27~28,完成预习内容. (一)知识探究1.规定了原点、正方向、单位长度的直线叫做数轴. 2.数轴是一条直线,它可以向两端无限延伸. 3.数轴上原点左侧是负数,正数在原点的右侧. (二)自学反馈1.数轴的三要素是原点、正方向、单位长度.2.如图,数轴上点A 、B 表示的数分别是-2.5、2.3.指出图中所画数轴的错误:解:略.活动1 小组讨论例 (1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75; (2)画一条数轴,并表示出如下各点:1 000,5 000,-2 000; (3)画一条数轴,在数轴上标出到原点的距离小于3的整数; (4)画一条数轴,在数轴上标出-5和+5之间的所有整数. 解:略.数轴的三要素、画法、适当地选择单位长度和原点的位置.活动2 跟踪训练1.在数轴上点A 表示-4,如果把原点向负方向移动1.5个单位,那么在新数轴上点A 表示的数是(C) A .-512B .-4C .-212D .2122.在数轴上表示-1.2的点在(B)A .-1与0之间B .-2与-1之间C .1与2之间D .-1与1之间 3.数轴上表示-8的点在原点的左侧,距离原点8个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是-5.4.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有4个.5.写出数轴上点A ,B ,C ,D ,E 所表示的数:解:0,-2,1,2.5,-3.6.画一条数轴表示下列各数,并用“<”把这些数连接起来. 13,2,-4.5,0,52,-0.5,-14. 解:略.7.一个点在数轴上表示的数是-5,这个点先向左边移动3个单位长度,然后再向右边移动6个单位长度,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数? 解:-2,-1.利用数轴数形结合解题.活动3 课堂小结1.数轴的出现对数学的发展起了重要作用,以它作基础师生共同研究,什么是数轴?如何画数轴?如何在数轴上表示有理数?2.利用数轴很多数学问题都可以借助图直观地表示.2.3 绝对值1.借助数轴,理解绝对值和相反数的概念,知道|a|的含义以及互为相反数的两个数在数轴上的位置关系. 2.能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小.(重点) 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用.(难点)阅读教材P30~31,完成预习内容. (一)知识探究1.一般地,数轴上表示数a 的点与原点的距离,叫做数a 的绝对值.2.一个正数的绝对值是它本身,即:若a>0,则|a|=a ;一个负数的绝对值是它的相反数,即:若a<0,则|a|=-a ;0的绝对值是0(双重性). (二)自学反馈1.数轴上有一点到原点的距离为6.03,那么这个点表示的数是±6.03.所以|6.03|=6.03,|-6.03|=6.03. 2.(1)|+13|=13; (2)|-8|=8; (3)|+315|=315;(4)|-8.22|=8.22.3.-213的绝对值是213,绝对值等于213的数是±213,它们是一对相反数.非负数的绝对值是它本身,负数的绝对值是它的相反数.活动1 小组讨论例1 -2的相反数是(A)A .2B .-2C .0.5D .-0.5 例2 下列四组数中不相等的是(C)A .-(+3)和+(-3)B .+(-5)和-5C .+(-7)和-(-7)D .-(-1)和|-1| 例3 下列说法正确的是(B)A .一个数的绝对值的相反数一定不是负数B .一个数的绝对值一定不是负数C .一个数的绝对值一定是正数D .一个数的绝对值一定是非正数例4 若|x -3|+|y -2|=0,则x =3,y =2. 例5 比较下列每组数的大小: (1)-1和-5; (2)-56和-2.7.解:(1)-1>-5.(2)-56>-2.7.活动2 跟踪训练1.在|-7|,5,-(+3),-|0|中,负数共有(A)A .1个B .2个C .3个D .4个 2.一个数的绝对值等于这个数本身,这个数是(D) A .1 B .+1,-1,0 C .1或-1 D .非负数3.在数轴上距离原点2个单位长度的点表示的数是±2,也就是说绝对值等于2的数是±2. 4.在数轴上表示下列各数,并求它们的绝对值:-32,6,-3,-8.6. 解:32;6;3;8.6.图略.5.已知|a|=3,|b|=5,a 与b 异号,求a 、b 两数在数轴上所表示的点之间的距离. 解:8.6.比较下列各组数的大小: (1)-110,-27;(2)-0.5,-23;(3)0,|-23|;(4)|-7|,|7|. 解:(1)-110>-27.(2)-0.5>-23.(3)0<|-23|.(4)|-7|=|7|.7.下面的说法是否正确?请将错误的改正过来. (1)有理数的绝对值一定比0大; (2)有理数的相反数一定比0小;(3)如果两个数的绝对值相等,那么这两个数相等; (4)互为相反数的两个数的绝对值相等. 解:(1)错误,可能等于0. (2)错误,可能比0大. (3)错误,可能互为相反数. (4)正确.活动3 课堂小结1.求一个有理数的相反数.2.绝对值的定义:有理数到原点的距离3.化简绝对值. |a|=⎩⎪⎨⎪⎧a (a>0)0(a =0)-a (a<0)4.两个负数比较大小,绝对值大的反而小.2.4 有理数的加法第1课时 有理数的加法法则1.了解有理数加法的意义,理解有理数加法法则的合理性. 2.能运用有理数加法法则正确进行有理数加法运算.(重点)阅读教材P34~36,完成预习内容. (一)知识探究结合课本对两个有理数相加的7个计算式,类似地再列举出相应的计算式并结合数轴解释,得出结果(如(+3)+(+4)、(-3)+(-4)、(-3)+(+4)、(+3)+(-4)、(+3)+(-3)、(-3)+0、(+3)+0),根据以上7个算式,思考:你能总结出有理数相加的符号如何确定?和的绝对值如何确定?互为相反数相加,一个有理数和0相加,和分别为多少?结合以上内容,总结得出有理数加法法则:1.同号两数相加,取相同符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数. (二)自学反馈计算:(1)16+(-8)=8; (2)(-12)+(-13)=-56;(3)(+312)+(-72)=0;(4)(+8)+(-3)=5; (5)(-0.125)+(18)=0;(6)0+(-9.7)=-9.7.在进行有理数加法运算时,一要辨别加数是同号还是异号;二要确定和的符号;三要计算和的绝对值.即“一辨、二定、三算”.活动1 小组讨论 例1 计算:(1)(-3)+(-9); (2)(-4.7)+3.9.解:(1)-12. (2)-0.8.例2 足球循环比赛中,红队胜黄队4∶1,黄队胜蓝队1∶0,蓝队胜红队1∶0,计算各队的净胜球数. 解:黄队净胜球:-2,红队净胜球:2,蓝队净胜球:0. 活动2 跟踪训练1.两个数的和为负数,则下列说法中正确的是(D) A .两个均是负数 B .两个数一正一负 C .至少有一个正数 D .至少有一个负数 2.一个正数与一个负数的和是(D)A .正数B .负数C .零D .不能确定符号 3.计算:(1)(+3)+(+8);(2)(+14)+(-12);(3)(-312)+(-3.5);(4)(-314)+(+213);(5)(-19)+8.3;(6)-3.4+4.解:11,-14,-7,-1112,-10.7,0.6.注意计算的符号,特别是负号.4.某县某天夜晚平均气温是-10 ℃,白天比夜晚高12 ℃,那么白天的平均温度是多少? 解:2 ℃.活动3 课堂小结 有理数的加法法则:1.同号相加,取相同的符号,并把绝对值相加.2.异号相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值. 3.任意有理数和零相加,仍得这个数.第2课时 有理数的加法运算律1.掌握有理数加法的运算律,理解小学中加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算,会根据算式的特点选择适当的简便运算方法.(重难点)阅读教材P37~38,完成预习内容. (一)知识探究加法的交换律的文字表达:两个数相加,交换加数的位置,和不变. 加法的交换律的字母表达:a +b =b +a . 加法的交换律的例子说明:1+2=2+1.加法的结合律的文字表达:三个数相加,先用前两个数相加,或者先用后两个数相加,和不变. 加法的结合律的字母表达:(a +b)+c =a +(b +c). 加法的结合律的例子说明:(1+2)+3=1+(2+3). (二)自学反馈 计算:(1)(-7.34)+(-12.74)+7.34+12.4; (2)(-35+15)+(-45);(3)(-37)+(+15)+(+27)+(-115); (4)(-20.75)+314+(-4.25)+1934;(5)(-6.8)+425+(-3.2)+635+(-5.7)+(+5.7).解:(1)-0.34.(2)-65.(3)-117.(4)-2.(5)1.活动1 小组讨论例1 计算:(1)(-2)+3+1+(-3)+2+(-4); (2)16+(-25)+24+(-35); (3)314+(-235)+534+(-825);(4)(-7)+6+(-3)+10+(-6); 解:(1)-3.(2)-20.(3)-2.(4)0.例2 有一批食品罐头,标准质量为每听454 g ,现抽取10听样品进行检测,结果如下表:这10听罐头的总质量是多少? 解:解法一:这10听罐头的总质量为444+459+454+459+454+454+449+454+459+464=4 550(g).解法二:把超过标准质量的克数用正数表示,不足的用负数表示,列出10听罐头与标准质量的差值表:这10(-10)+5+0+5+0+0+(-5)+0+5+10 =[(-10)+10]+[(-5)+5]+5+5=10(g). 因此,这10听罐头的总质量为454×10+10=4 540+10=4 550(g).注意运算律的运用.活动2 跟踪训练1.用适当的方法计算:(1)23+(-17)+6+(-22); (2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33). 解:(1)-10.(2)23.(3)-3.(4)-10.2.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米? (2)若汽车耗油量为a 公升/千米,这天下午汽车共耗油多少公升?解:(1)15+14-3-11+10-12+4-15+16-18=0,距出发地0千米. (2)118a.活动3 课堂小结有理数加法交换律、结合律: 1.加法交换律:a +b =b +a ;加法结合律:(a +b)+c =a +(b +c). 2.简便运算: ①运用运算律;②运用相反数的和为零; ③凑整.2.5 有理数的减法1.掌握有理数的减法法则,熟练地进行有理数的减法运算.(重点) 2.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.阅读教材P40~41,完成预习内容. (一)知识探究通过实际例子,一方面,利用加法与减法互为逆运算可知:计算4-(-3),就是求一个数x ,使x +(-3)=4,易知x =7,所以4-(-3)=7.① 另一方面,4+(+3)=7,② 由①②有4-(-3)=4+(+3).再试把减数-3换成正数,任意列出一些算式进行计算,如: 计算:9-8与9+(-8);15-7与15+(-7). 由上述内容,得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为:a -b =a +(-b).减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.有理数的减法法则是:减去一个数,等于加这个数的相反数; 用字表示为:a -b =a +(-b). (二)自学反馈 计算:(1)(-3)-(-6); (2)0-8; (3)6.4-(-3.6);(4)-312-(+514).解:(1)3.(2)-8. (3)10.(4)-834.(1)减法转化为加法,减数要变成相反数.(2)法则适用于任何两有理数相减.(3)用字母表示一般形式为:a -b =a +(-b)活动1 小组讨论 例 计算:(1)(-38)-(-36); (2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234);(6)(-334)-(+1.75).解:(1)-2.(2)711.(3)5.2.(4)-114.(5)6512.(6)-5.5.活动2 跟踪训练1.计算:(1)(-23)-(+112)-(-14);(2)(-0.1)-(-813)-1123-(-110);(3)(-1.5)-(-1.4)-(-3.6)-4.3-(+5.2);(4)(5-6)-(7-9).解:(1)-2312.(2)-313.(3)-6.(4)1.2.根据题意列出式子计算.(1)一个加数是1.8,和是-0.81,求另一个加数; (2)-13的绝对值的相反数与23的相反数的差.解:(1)-0.81-1.8=-2.61. (2)-|-13|-(-23)=-13+23=13.活动3 课堂小结1.有理数的减法法则:a -b =a +(-b). 2.转化原则:减号变加号,减数变成相反数.2.6 有理数的加减混合运算 第1课时 有理数的加减混合运算1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,能把有理数加法运算省略加号和括号,理解有理数的和.(重难点)阅读教材P43,完成预习内容. (一)知识探究把下列算式统一为加法,并写成省略加号的形式:(-20)+(+3)-(-5)-(+7)=(-20)+(+3)+(+5)+(-7)=-20+3+5-7, (-7)+(+5)+(-4)-(-10)=(-7)+(+5)+(-4)+(+10)=-7+5-4+10. 认识算式:①2-5;②-5+3;③-2-8;④-4+2-6的意义.注意有理数的加减混合运算写成省略加号的和的形式的意义.(二)自学反馈把(+23)+(-45)-(+15)-(-13)-(+1)写成省略加号的和的形式,并计算.解:23-45-15+13-1=-1.活动1 小组讨论例1 计算:(1)(+27)+(-49)-(+59)-(-57)-(+1);(2)-7-(-8)-(-712)-(+9)+(-10)+1112;(3)-99+100-97+98-95+96+ (2)(4)-1-2-3- (100)解:(1)-1.(2)1.(3)50.(4)-5 050.例2 银行储蓄所办理了8件工作业务,取出950元,存进500元,取出800元,存进1 200元,存进了2 500元,取出1 025元,取出200元,存进400元,这时,银行现款是增加了,还是减少了?增加或减少了多少元? 解:增加了,增加了1 625元.例3 把-a +(+b)-(-c)+(-d)写成省略加号的和的形式为-a +b +c -d .总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练1.把下列算式先统一为加法运算再写成省略括号和的形式,并把结果用两种读法读出来. (1)(+9)-(+10)+(-2)-(-8)+3; (2)(-13)-(+22)+(-17)-(-18). 解:(1)9-10-2+8+3. (2)-13-22-17+18. 2.计算:(1)(-7)-(+5)+(-4)-(-10); (2)1-4+3-0.5;(3)34-72+(-16)-(-23)-1; (4)-2.4+3.5-4.6+3.5.解:(1)-6.(2)-0.5.(3)-314.(4)0.活动3 课堂小结1.有理数的加减混合运算可以利用运算顺序进行计算. 2.熟练进行含有整数、小数、分数的加减混合运算.第2课时 有理数加减混合运算中的简便计算1.运用加法交换律和结合律简化有理数加减混合运算.(重难点) 2.能熟练地进行有理数的加减混合运算.阅读教材P44~45,完成预习内容. (一)知识探究计算:4.5+(-3.2)+1.1+(-1.4). 解:原式=4.5+1.1+[(-3.2)+(-1.4)] =5.6+(-4.6) =1.运用加法交换律和结合律可以简化运算.(二)自学反馈运用交换律和结合律计算: (1)3-10+7=3+7-10=0;(2)-6+12-3-5=-6-3-5+12=-2.活动1 小组讨论 例1 计算:(1)(-9)-(-7)+(-6)-(+4)-(-5); (2)(+4.3)-(-4)+(-2.3)-(+4).解:(1)原式=-9+7-6-4+5=(-9-6-4)+7+5=-19+12=-7. (2)原式=4.3+4-2.3-4=2.例2 已知上周周五(周末不开盘)收盘时股市指数以2 880点报收,本周内股市涨跌情况如下表,则本周四收盘时的股市指数为(D)A.2 880 B .2 877 C .2 855 D .2 887正数表示涨,负数表示跌,每天的变化是相对于前一天来比较的,所以周四的股市指数为2 880+50-21-100+78=2 887.总结:有理数的加减混合运算的计算有如下几个步骤:(1)将减法转化成加法运算; (2)省略加号和括号;(3)运用加法交换律和结合律,将同号两数相加; (4)按有理数加法法则计算. 活动2 跟踪训练 1.计算:(1)(-8)-(-15)+(-9)-(-12); (2)(-13)-15+(-23);(3)(-18)-(-65)+(+8)-(+710);(4)-23+(-16)-(-14)-12.解:(1)10.(2)-16.(3)-9.5.(4)-1312.2.甲、乙两队进行拔河比赛,标志物先向乙队方向移动了0.2米,又向甲队方向移动了0.5米,相持一会后,又向乙队方向移动了0.4米,随后又向甲队方向移动了1.3米,在大家的欢呼鼓励中,标志物又向甲队方向移动了0.9米,若规定标志物向某队方向移动2米该队即可获胜,那么现在谁赢了?用算式说明你的判断.解:甲队获胜,因为-0.2+(+0.5)+(-0.4)+(+1.3)+(+0.9)=+2.1(米)>2(米),所以甲队获胜.活动3 课堂小结在加减运算时,适当运用加法运算律,把正数与负数分别相加,可使运算简便.但要注意交换加数的位置时,要连同前面的符号一起交换.第3课时有理数加减混合运算的应用1.能综合运用有理数及其加、减法的有关知识灵活地解决简单的实际问题.(重难点)2.感受到有理数运算的实用性,增强学好数学的信心.阅读教材P47,完成预习内容.知识探究折线统计图可以表示同一种量在不同时间的变化规律,如北京周一到周日的天气变化情况.正确地画出折线统计图是观察变化情况的依据.画法及步骤:①写出统计图名称,如天气、水位等;②画出横、纵两条互相垂直的数轴(有时不画箭头,一般向上为正方向,向右为正方向),分别表示两个量,标出单位和单位长度;③根据统计数据,分别描出对应点,描点时可借助三角板来完成;④用线段把所描的点顺次连接起来.活动1 小组讨论例下表是一个水文站在雨季对某条河一周内水位变化情况的记录.其中,水位上升用正数表示,水位下降用负数表示(②上周日12时的水位高度为2米.(1)请你通过计算说明本周末水位是上升了还是下降了.(2)用折线图表示本周每天的水位,并根据折线图说明水位在本周内的升降趋势.分析:计算这七天水位变化量的和,看结果是正、还是负,若是正,说明周末水位上升了;若是负,说明水位下降了.解:(1)因为(+0.4)+(-0.3)+(-0.4)+(-0.3)+(+0.2)+(+0.2)+(+0.1)=0.4-0.3-0.4-0.3+0.2+0.2+0.1=-0.1(米),所以本周末水位下降了.(2)折线图如图所示:由折线图可看出,本周水位先上升,再下降,最后上升.①画折线统计图时,要先确定哪一个量或哪一个数值为0,即基准;②要标出横线和竖线的单位;③选择单位长度时要考虑使统计图有明显的上升和下降的幅度,能看出变化情况.活动2 跟踪训练1.光明中学初一(1)班学生的平均身高是160厘米.(1)下表给出了该班6名同学的身高情况(单位:厘米),试完成下表:(2)(3)最高和最矮的学生身高相差多少?解:(1)依次填入:162 160 163 -6 +5.(2)小山最高,小亮最矮.(3)最高和和最矮的学生身高相差11厘米.2.9.11事故后,美国股市出现狂跌,股市指数一度跌到历史最低点,后经政府宏观调控,稍有反弹,下表是某周(周末不开盘)的股市指数升跌情况,+号表示指数比头一天上升,-号表示指数比头一天下跌:(1)本周内哪天股市指数最高?哪天股市指数最低?(2)本周五的股市指数比上周五的股市指数高还是低?(3)若将上周五的股市指数记为0点,请你画出本周的股市指数折线图.解:(1)本周内星期四股市指数最高,星期二股市指数最低.(2)本周五的股市指数比上周五的股市指数高(3)图略.活动3 课堂小结1.知识归纳:利用正、负数表示相反意义的量,进行有理数的加减混合运算解决实际问题.2.数学思想方法:用已学知识解决新问题的转化思想.2.7 有理数的乘法第1课时 有理数的乘法法则1.了解有理数乘法的实际意义.2.理解有理数的乘法法则,能熟练地进行有理数乘法运算.(重点)阅读教材P49~51,完成预习内容. (一)知识探究有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.通过有理数的乘法,进一步体会有理数运算包含两步思考:先确定积的符号,再计算积的绝对值. 乘积为1的两个数互为倒数.如:-3的倒数是-13,0.5的倒数是2,-212的倒数是-25.看书第50、51页的内容,体会几个不等于零的有理数相乘,积的符号的确定方法:几个不为0的数相乘,积的符号由负因数的个数决定.当负因数的个数是偶数时,积为正;负因数的个数是奇数时,积为负.几个数相乘,如果其中有一个因数是0,积等于0. (二)自学反馈1.计算:(-114)×(-45)=1,(+3)×(-2)=-6,0×(-4)=0,123×(-115)=-2,(-15)×(-13)=5,-│-3│×(-2)=6.2.计算:(-2)×(-3)×(-5)=-30, (-723)×3×(-123)=1,(-9.89)×(-6.2)×(-26)×(-30.7)×0=0.(1)运用乘法法则,先确定积的符号,再把绝对值相乘;(2)0没有倒数.活动1 小组讨论例1 计算:(+5)×(+3)=15, (+5)×(-3)=-15, (-5)×(+3)=-15, (-5)×(-3)=15, (+6)×0=0, 6×(-4)=-24,(-6)×4=-24, (-6)×(-4)=24. 例2 计算:(1)(-112)×815×(-23)×(-214)=-115;(2)14×(-16)×(-45)×(-114)×8×(-0.25)=8. 活动2 跟踪训练 1.计算:(1)(-5)×0.2=-1; (2)(-8)×(-0.25)=2; (3)(-312)×(-27)=1;(4)0.1×(-0.01)=-0.001;(5)(-59)×0.01×0=0;(6)(-2)×(-5)×(+56)×(-30)=-250;(7)312×(-47)+(-25)×(-334)=-12.2.a ×(-56)=1则a =-65.一个有理数的倒数的绝对值是7,则这个有理数是±17.3.判断对错:(1)两数相乘,若积为正数,则这两个因数都是正数.(×) (2)两数相乘,若积为负数,则这两个数异号.(√) (3)两个数的积为0,则两个数都是0.(×) (4)互为相反的数之积一定是负数.(×)(5)正数的倒数是正数,负数的倒数是负数.(√) 活动3 课堂小结1.有理数的乘法法则:两个有理数相乘,同号得正,异号得负,并把绝对值相乘. 任何数同0相乘,都得0.2.倒数:乘积是1的两个数互为倒数.(负倒数:乘积为-1)3.几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数.第2课时 有理数的乘法运算律1.进一步应用乘法法则进行有理数的乘法运算.2.能自主探究理解乘法交换律、结合律、分配律在有理数运算中的应用.(重难点)阅读教材P52~53,完成预习内容.(一)知识探究 乘法的交换律文字表达:两个数相乘,交换因数的位置,积相等.乘法的交换律字母表达:ab =ba . 乘法的结合律文字表达:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等.乘法的结合律字母表达:(ab)c =a(bc). 乘法的分配律文字表达:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加. 乘法的分配律字母表达:a(b +c)=ab +ac .(二)自学反馈1.计算:(-3)×56×(-95)×(-14)×(-8)×(-1). 解:-9.2.计算:(1)-34×(8-43-1415);(2)191819×(-15). 解:(1)-4310.(2)-299419.运用运算律进行简便运算.活动1 小组讨论例 计算:(1)(-0.5)×(-316)×(-8)×113; 解:-1.(2)-10556×12; 解:-1 270.(3)(-34+156-78)×(-24); 解:-5.(4)317×(317-713)×722×2122; 解:-4.(5)(23-49+527)×27-1117×8+117×8. 解:3.活动2 跟踪训练1.运用分配律计算(-3)×(-4+2-3),下面有四种不同的结果,其中正确的是(D)A .(-3)×4-3×2-3×3B .(-3)×(-4)-3×2-3×3C .(-3)×(-4)+3×2-3×3D .(-3)×(-4)-3×2+3×32.在运用分配律计算3.96×(-99)时,下列变形较合理的是(C)A .(3+0.96)×(-99)B .(4-0.04)×(-99)C .3.96×(-100+1)D .3.96×(-90-9)3.对于算式2 007×(-8)+(-2 007)×(-18),逆用分配律写成积的形式是(C)A .2 007×(-8-18)B .-2 007×(-8-18)C .2 007×(-8+18)D .-2 007×(-8+18)4.计算1357×316最简便的方法是(D) A .(13+57)×316B .(14-27)×316C .(10+357)×316D .(16-227)×316 5.计算:(1)(-4)×8×(-2.5)×0.1×(-0.125)×10;(2)(134-78-112)×117; (3)(-5.25)×(-4.73)-4.73×(-19.75)-25×(-5.27).解:(1)-10.(2)1921.(3)250. 活动3 课堂小结1.有理数乘法交换律.2.有理数乘法结合律.3.有理数乘法分配律.2.8 有理数的除法1.理解除法的意义,掌握有理数的除法法则.2.能熟练进行有理数的除法运算.(重点)3.感受转化、归纳的数学思想.阅读教材P55~56,完成预习内容.(一)知识探究1.有理数除法法则除以一个不等于0的数,等于乘这个数的倒数.2.两数相除,同号得正,异号得负,并把绝对值相除.0除以任何不等于0的数仍得0.(二)自学反馈(1)(-18)÷6=-3; (2)5÷(-15)=-25; (3)(-27)÷(-9)=3;(4)0÷(-2)=0.0不能作除数.活动1 小组讨论例1 计算:(1)(-15)÷(-3); (2)12÷(-14); (3)(-0.75)÷0.25;(4)(-12)÷(-112)÷(-100). 解:(1)5.(2)-48.(3)-3.(4)-1.44.例2 计算:(1)(-18)÷(-23); (2)16÷(-43)÷(-98). 解:(1)27.(2)323.乘除混合运算要先将除法化成乘法,然后确定积的符号,最后求出结果.活动2 跟踪训练1.两个不为零的有理数的和等于0,那么它们的商是(B)A .正数B .-1C .0D .±12.两个不为0的数相除,如果交换它们的位置,商不变,那么(D)A .两数相等B .两数互为相反数C .两数互为倒数D .两数相等或互为相反数3.计算:(1)-0.125÷(-38); (2)(-215)÷1110; (3)(-112)÷34÷1.4. 解:(1)13.(2)-2;(3)-107. 活动3 课堂小结1.法则1:a ÷b =a ·1b. 2.法则2:两数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不为0的数仍得0.3.化简分数.2.9 有理数的乘方1.理解有理数乘方的意义,理解乘方运算、幂、底数等概念的意义.2.正确进行有理数乘方运算.(重点)阅读教材P58~59,完成预习内容.(一)知识探究1.求n 个相同因数a 的积的运算叫乘方,乘方的结果叫幂,a 叫底数,n 叫指数.乘方a n 有双重含义:(1)表示一种运算,这时读作“a 的n 次方”;(2)表示乘方运算的结果,这时读作“a 的n 次幂”.2.正数的任何次幂都是正数,0的任何正整数次幂都是0;负数的奇次幂是负数,偶次幂是正数.(二)自学反馈1.在(-2)6中,底数是-2,指数是6,运算结果是64;在-26中,底数是2,指数是6,运算结果是-64.(特别注意)2.底数是-23,指数是3的幂是-827. 3.(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.在书写乘方时,若底数为负数、分数时一定要加括号.3.(-12)4表示的意义是4个-12相乘,23×23×23×23可写成(23)4. 4.计算:(-25)3=-8125;3×23=24;(3×2)3=216;(-3)3×(-42)=432;(-324)2-324=4516.活动1 小组讨论例 计算:(1)(-2)2×(-2)3; (2)5×(-3)2;(3)(-2)4-(-4)2; (4)(-3×2)2-3×22.解:(1)-32.(2)45.(3)0.(4)24.活动2 跟踪训练1.如果一个数的平方与这个数的差等于零,那么这个数只能是(D)A .0B .-1C .1D .0或12.下列说法正确的是(D)A .一个数的偶次幂一定是正数B .一个正数的平方比原数大C .一个负数的立方比原数小D .互为相反数的两个数的立方仍互为相反数3.任何一个有理数的二次幂是(B)A .正数B .非负数C .负数D .无法确定4.当n 为整数时,(-1)2n -1+(-1)2n 的值为(B)A .-2B .0C .1D .25.某种细胞每过30分钟便由1个分裂成2个,经过5小时后,这种细胞1个能分裂成多少个?(1)细胞每30分钟分裂一次,则5个小时共分裂10次;(2)5个小时后,细胞的个数一共有=1__024个,为了简便可以记作210.6.①边长为a 的正方形的面积为a 2; ②棱长为a 的正方体的体积为a 3;③把一张纸对折一次可裁成两张,对折2次可裁成4张,问对折3次可裁成几张?用算式如何表示?23.如果对折10次、100次,用算式如何表示?210,2100.7.计算(-2)3,(-3)3,(-12)3,(-13)3,并找出其中最大的数和最小的数. 解:(-2)3=-8,(-3)3=-27,(-12)3=-18,(-13)3=-127. 其中最大的数为-127,最小的数为-27.活动3 课堂小结1.乘方2.乘方的计算:3.乘方的性质.2.10 科学记数法掌握科学记数法的表示方法,能用科学记数法来表示比较大的数据.(重点)阅读教材P63~64,完成预习内容.(一)知识探究把一个大于10的数用科学记数法可以表示为a×10n的形式(其中a是大于或等于1且小于10的数,即1≤a<10;n 等于原整数的位数减去1).(二)自学反馈用科学记数法表示下列各数:1.1 000 000=1×106;2.57 000 000=5.7×107;3.123 000 000 000=1.23×1011;4.10 000=1×104;5.800 000=8×105;6.7 400 000=7.4×106.在上面的计算中,等号左边整数的位数与右边10的指数有什么关系?用科学记数法表示一个n位整数,其中10的指数是n-1.活动1 小组讨论例用科学记数法表示下列各数:(1)中国森林面积有128 630 000公顷;(2)2016年某市总人口达1 022.7万人;(3)地球到太阳的距离大约是150 000 000千米;(4)光年是天文学中的距离单位,1光年大约是950 000 000 000千米;(5)2008年北京奥运会门票预算收入为140 000 000美元;(6)一只苍蝇腹内的细菌多达2 800万个.(在使用科学记数法时要注意单位的转换,如1万=104,1亿=108) 解:(1)1.286 3×108.(2)1.022 7×103万.(3)1.5×108.(4)9.5×1011.(5)1.4×108.(6)2.8×103万.活动2 跟踪训练1.某校在校师生共有2 000人,如果每人借阅10册书,那么中国国家图书馆共2亿册书,可以供多少所这样的学校借阅(B)A.100 000所B.10 000所C.1 000所D.2 000所2.将0.36×45×105的计算结果用科学记数法来表示,正确的是(B)A.16.2×105B.1.62×106C.16.2×106D.16.2×100 0003.1纳米相当于1根头发丝直径的六万分之一,用科学记数法表示头发丝的半径是(D)A.6×103纳米B.6×104纳米C.3×103纳米D.3×104纳米4.填空:(-1)2 017=-1,02 017=0,(-0.1)4=0.000__1.5.若-59 600 000用科学记数法表示为a×10n,则a=-5.96,n=7.6.用科学记数法表示下列各数:(1)700 900;(2)-50 090 000;(3)人体中约有25 000 000 000 000个细胞;。
第二章有理数及其运算第三讲有理数的运算法则(教案)
-有理数混合运算:掌握混合运算的顺序和法则,解决实际问题。
举例解释:
-加法重点:强调两个正数或两个负数相加时,结果的符号不变,绝对值为两个数绝对值之和。如:3 + 4 = 7,-3 + (-4) = -7。
-减法重点:强调减法实际上是加上相反数,如:5 - 3 = 5 + (-3)。
第二章有理数及其运算第三讲有理数的运算法则(教案)
一、教学内容
本节课选自教材第二章“有理数及其运算”的第三讲,主题为“有理数的运算法则”。教学内容主要包括以下几点:
1.有理数的加法法则:掌握同号相加、异号相加的规律,理解“正负相抵”的概念。
-同号相加:两个正数或两个负数相加,结果为同号的较大绝对值。
五、教学反思
在今天的教学中,我重点关注了有理数的运算法则这一章节。我尝试通过日常生活中的例子引入新课,希望这样能让学生感受到数学与生活的紧密联系。在理论讲解部分,我尽力将有理数的概念和运算法则阐述清楚,同时用具体的案例帮助学生理解这些抽象的规则。
课堂上,我发现学生在异号相加和乘法符号规律这两个部分有些吃力。我通过反复举例和对比分析,尽量让学生明白这些难点。在实践活动和小组讨论中,我鼓励学生积极思考,提出问题,并尝试解决问题。看到他们认真讨论、动手操作的样子,我觉得他们已经开始体会到数学学习的乐趣。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“有理数的运算法则”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算相反意义的量,比如温度上升和下降?”这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数运算法则的奥秘。
有理数及其运算北师大版数学初一上册教案2篇
有理数及其运算北师大版数学初一上册教案有理数及其运算北师大版数学初一上册教案精选2篇(一)教案名称:理解有理数及其运算教学内容:1. 理解有理数的概念及其特点;2. 掌握有理数的加法和减法运算规则;3. 运用有理数的加法和减法解决实际问题。
教学目标:1. 能够准确理解有理数的概念;2. 能够熟练掌握有理数的加法和减法运算规则;3. 能够灵活运用有理数的加法和减法解决实际问题。
教学重难点:1. 掌握有理数的加法和减法运算规则;2. 运用有理数的加法和减法解决实际问题。
教学准备:1. 教材《北师大版数学初一上册》;2. 教学PPT。
教学过程:Step 1:导入新知介绍有理数的简单定义和特点,引导学生思考什么是有理数。
Step 2:有理数的表示讲解有理数的表示方法:数轴表示、有理数的相反数。
Step 3:有理数的加法1. 介绍有理数的加法规则:同号相加、异号相减,绝对值大的数决定结果的正负性。
2. 运用例题进行演示,引导学生理解有理数的加法规则。
Step 4:有理数的减法1. 介绍有理数的减法规则:a-(-b) = a+b。
2. 运用例题进行演示,引导学生理解有理数的减法规则。
Step 5:实际问题解决给学生提供一些实际问题,让他们应用有理数的加法和减法解决问题。
Step 6:归纳总结总结有理数的概念及其运算规则,巩固学生的学习成果。
Step 7:拓展延伸给学生一些拓展题,提高他们的思维能力。
Step 8:作业布置布置相关练习题,巩固所学知识。
教学资源:1. 《北师大版数学初一上册》教材;2. 教学PPT。
教学评估:教师观察学生在课堂上的表现,提问学生解答问题的能力,布置的练习题检查学生的掌握程度。
有理数及其运算北师大版数学初一上册教案精选2篇(二)《数学初一上册》是苏教版的一本初中数学教材,以下是《数学初一上册》中有关有理数与无理数的教案:教案一:有理数的概念及表示教学目标:1. 理解有理数的概念和特点;2. 掌握有理数的表示方法。
2024秋七年级数学上册第2章有理数及其运算2.7有理数的乘法1有理数的乘法教案(新版)北师大版
设计实践活动或计算练习,让学生在实践中体验有理数乘法的应用,提高运算能力。
在有理数乘法新课呈现结束后,对乘法运算的规则进行梳理和总结。
强调乘法运算的重点和难点,帮助学生形成完整的知识体系。
(四)巩固练习(预计用时:5分钟)
随堂练习:
随堂练习题,让学生在课堂上完成,检查学生对有理数乘法知识的掌握情况。
5.培养学生的沟通能力和团队合作能力,能够在小组讨论和合作交流中解决问题。
6.培养学生的创新意识和探索精神,能够关注学科前沿动态。
7.培养学生的社会责任感,能够思考数学与生活的联系。
8.学生能够积极分享学习有理数乘法的体会和心得,增进师生之间的情感交流。
课堂
1.课堂评价:
2.作业评价:
对学生的作业进行认真批改和点评,及时反馈学生的学习效果,鼓励学生继续努力。在布置的课后作业中,教师应关注学生的计算准确性、解题思路和创新能力。在批改作业时,教师应及时纠正学生的错误,并提供详细的解题指导和鼓励性的评语。同时,教师还可以根据学生的作业表现,了解学生对有理数乘法的掌握情况,为课堂教学提供依据。
(5)5 × (2 + 3) - 2 × (5 - 2)
答案:
(1)4 - 2 × 3 = 4 - 6 = -2
(2)3 × (5 - 2) = 3 × 3 = 9
(3)2 × 2 × 2 = 8
(4)-3 × 4 + 2 × 3 = -12 + 6 = -6
(5)5 × (2 + 3) - 2 × (5 - 2) = 5 × 5 - 2 × 3 = 25 - 6 = 19
(3)-6 ÷ 3 × 2
(4)12 ÷ 3 × (-2)
(5)-8 ÷ 4 × 3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师: 学生: 时间: 年 月 日 段 第二章 有理数及其运算
授课内容
【知识梳理】
1、正数、负数的概念
像5,1.2,
2
1,500,……这样的数叫做 正数,它们比0大. 在正数前面加上“-”号的数叫做负数,如-10, -21,-0.3145,它们比0小. 0既不是正数,也不是负数.
2、有理数的概念: 整数和分数统称为有理数.
3、有理数的分类可有两种方式:
(1)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 注意:非负数、非正数、非负有理数、非正有理数,非正整数、非负整数的区分
4、数轴的定义::规定了原点、正方向和单位长度的直线叫数轴.
三要素: 原点、正方向、单位长度
数轴的画法:
5、数轴上的点与有理数的关系
所有的有理数都可以用数轴上的点表示,反过来,不能说数轴上所有的点都表示有理数。
6、相反数
一般地,如果两个数只有符号不同,那么我们就说其中一个是另一个的相反数,也说这两个数互为相反数.我们也特别规定,0的相反数是0.互为相反数的两个数在数轴上的位置是在原点的两侧,且到原点的距离相等。
7、绝对值: 在数轴上,一个数所对应的点与原点的距离
8、绝对值的代数意义
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
用式子可表示为: (1) 如果a >0,那么|a|=a ;
(2) 如果a <0,那么|a|=-a ; (3) 如果a =0,那么|a|=0。
注意:
9、绝对值性质的拓展
(1)对任意有理数a ,都有|a|≧0; (2)若|a|=0,则a=0;
(3)若|a|=b (b ﹥0), 则a=±b ; (4)若|a|=-a ,则a ≦0;
(5)若|a|=a ,则a ≧0; (6)若|a|+|b|=0,则a=0且b=0
楚天文华教育个性化辅导授课
gggggggggggganggang
【经典讲解】
例1 把下列各数分别填在相应的表示集合的圈里.
例2 已知有理数a ,b ,c 如图数轴所示,试比较a ,-a ,b ,-b ,c ,-c ,0的大小,并用符号“<”连接起来。
例3 化简下列各数的符号;
(1)-(-2) (2)+(-534
)
(3)[])7(--- (4)-[{]})
4(+-
例4 比较87-和7
6-的大小. 点拨:比较两个负数的大小,应先比较它们绝对值的大小,再根据“两个负数,绝对值大的反而小”来判断它们的大小.
解:
例5已知a 、b 为有理数,且2-a +5+b =0,求a 、b 的值。
点拨:如果b a +=0,那么a=0,b=0一定成立。
解:
【基础训练】
一、选择题
1、下列各组数中,不是互为相反意义的量的是( )
A . 向东走5米和向西走2米
B . 收入100元和支出20元
C . 上升7米和下降5米
D . 长大1岁和减少2公斤
2、向东行进-30m 表示的意义是( )
A .向东行进30m
B .向南行进30m
C .向西行进-30m
D .向西行进30m
3、下列说法中正确的是( )
A .正整数、负整数统称为整数
B .正分数和负分数统称为分数
C .零既可以是正整数,也可以是负整数
D .一个有理数不是正数就是负数
4、在数轴上表示数-3,0,5,2,5
2的点中,在原点右边的有( ) A .0个 B .1个 C .2个 D .3个
5、在数轴上原点以及原点左边的点表示的数是( )
A .正数
B .负数
C .零和正数
D .零和负数
6、下列各对数中,互为相反数的是( )
A. +(—8)与—8
B. —(—8)与+8
C. —(—8)与+(+8 )
D. +8与+(—8)
7、下列各组数中,互为相反数的是( )
A . 3232--与 B. 2332--与 C. 3232与- D. 2
332与- 8、若a=-3则-a =( )
A.-3
B.3
C.-3或3
D.以上都不对
9、 |
21a |=-2
1a ,则a 一定是( ) A.负数 B.正数 C.非正数 D.非负数
二、填空题
1、数轴上表示-3的点在原点____侧,距原点的距离是______;+7.3在原点的_____侧,距原点的距离是_____。
2、若一点P 在数轴上且到原点的距离为2,则点P 表示的数是_____。
3、-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+3
1)=_______, 4、_______的倒数是它本身,_______的绝对值是它本身. 5、 (1)- 3-=_______; -37.0+=_______; (2) 8-+2-=_______;36-÷-=_______;
6、- 213的绝对值是______;绝对值等于2
13的数是_______,他们互为_______. 7、绝对值最小的数是_______,绝对值最小的整数是_______.
8、绝对值小于4的整数有_______.
三、解答题
1、把下列各数填到适应的大括号中:
716;28; -641; 3.14; -17; 0.02;-722; 58; 0; -2.3; 73
2,5℅,-67℅ (1)非负数集合:{ ……} 负分数集合:{ ……}
2、某中学对初三男生进行了引体向上的测试,以能做10个为标准,超过的次数用正数表示,不足的次数用负数表示,其中8名男生的成绩如下:
+3,-2, 0, +4, -1, +2, -5, 他们共做了多少个引体向上?
3、画一条数轴,然后在数轴上画出表示下列各数的点;并比较大小。
-1
21,2,3,-2.7,13
1,-3,0
4、若3-x +2-y =0,求x ,y 的值。
5、学校进了一批铅球,要求质量是10千克,现从中抽取5各进行比较,以便找出比赛铅球。
抽查时规定:比要求质量多的记为正、少的记为负,结果如下:+0.13、-0.04,+0.003、
-0.03、+0.01,指出哪一个铅球更符合要求?
四、学生对于本次课的评价:
○特别满意○满意○一般○差
学生签字:
五、教师评定:
1、学生上次作业评价:○好○较好○一般○差
2、学生本次上课情况评价:○好○较好○一般○差
教务处签字
家长签字:___________。