幂函数习题(带答案)-人教版数学高一上必修1第二章
高一数学人教新课标A版必修123幂函数同步练习

高一数学人教新课标A 版必修1第二章2.3幂函数同步练习(答题时间:30分钟)微课程:幂函数的定义同步练习1. 已知幂函数y =f (x )通过点(2,22),则幂函数的解析式为( )A. y =212xB. y =12xC. y =32x D. y =521x 22. 下列命题中正确的是( )A. 当0=α时函数αx y =的图象是一条直线 B. 幂函数的图象都经过点(0,0)和(1,1)C. 若幂函数αx y =是奇函数,则αx y =是定义域上的增函数D. 幂函数的图象不可能出现在第四象限3. 已知(0.71.3)m <(1.30.7)m ,则实数m 的取值范围是( ) A.(0,+∞) B.(1,+∞) C.(0,1) D.(-∞,0)4. 已知幂函数f (x )=x m )x 1 12 f (x )122A. {x|0<x≤2}B. {x|0≤x≤4}C. {x|-2≤x≤2}D. {x|-4≤x≤4} 5. 设x ∈(0,1),幂函数y =x a 的图象在直线y =x 的上方,则实数a 的取值范围是______。
6. 已知函数223()m m f x x -++=(m ∈Z )为偶函数,且f (3)<f (5),求m 的值,并确定f (x )的解析式。
微课程:幂函数的图象和性质同步练习1. 下列函数在区间(0,3)上是增函数的是( )A. 1y x=B. 12y x =C. 1()3xy =D. 2215y x x =--2. 函数35x y =的图象大致是( )3. 当x ∈(1,+∞)时,下列函数的图象全在直线y =x 下方的偶函数是( )A. 21x y = B. y =x -2 C. y =x 2 D. y =x -14. 函数y =1x-x 2的图象关于( )A. y 轴对称B. 直线y =-x 对称C. 坐标原点对称D. 直线y =x 对称5. 已知幂函数qp x y =,(p ,q ∈N *)的图象如图所示,则( )A. p ,q 均为奇数,且p q >0B. q 为偶数,p 为奇数,且p q<0C. q 为奇数,p 为偶数,且p q >0D. q 为奇数,p 为偶数,且pq<06. 函数y =x m ,y =x n ,y =x p 的图象如图所示,则m ,n ,p 的大小关系是________。
人教A版精编数学必修1练习:第二章 2.3 幂函数 Word版含解析

[课时作业][A组基础巩固]1.下列所给出的函数中,是幂函数的是( )A.y=-x3B.y=x-3C.y=2x3D.y=x3-1解析:由幂函数的定义可知y=x-3是幂函数.答案:B2.下列函数中,既是偶函数,又在区间(0,+∞)上单调递减的函数是( ) A.y=x-2 B.y=x-1C.y=x2D.y=x 1 3解析:∵y=x-1和y=x 13都是奇函数,故B、D错误.又y=x2虽为偶函数,但在(0,+∞)上为增函数,故C错误.y=x-2=1x2在(0,+∞)上为减函数,且为偶函数,故A满足题意.答案:A3.如图,函数y=x 23的图象是( )解析:y=x 23=3x2≥0,故只有D中的图象适合.答案:D4.已知幂函数273225()(1)()t tf x t t x t N+-=-+⋅∈是偶函数,则实数t的值为( )A.0 B.-1或1 C.1 D.0或1解析:∵273225()(1)()t tf x t t x t N+-=-+⋅∈是幂函数,∴t2-t+1=1,即t2-t=0,∴t=0或t=1.当t=0时,f(x)=x 75是奇函数,不满足题设;当t =1时,f (x )=x 85是偶函数,满足题设.答案:C5.a ,b 满足0<a <b <1,下列不等式中正确的是( )A .a a <a bB. b a <b b C .a a <b a D .b b <a b 解析:因为0<a <b <1,而函数y =x a 单调递增,所以a a <b a .答案:C6.若函数则f {f [f (0)]}=________.解析:∵f (0)=-2,∴f (-2)=(-2+3)12=1,∴f (1)=1,∴f {f [f (0)]}=f [f (-2)]=f (1)=1.答案:17.下列命题中,①幂函数的图象不可能在第四象限; ②当α=0时,函数y =x α的图象是一条直线;③当α>0时,幂函数y =x α是增函数;④当α<0时,幂函数y =x α在第一象限内函数值随x 值的增大而减小.其中正确的序号为________.解析:当α=0时,是直线y =1但去掉(0,1)这一点,故②错误.当α>0时,幂函数y =x α仅在第一象限是递增的,如y =x 2,故③错误.答案:①④8.已知n ∈{-2,-1,0,1,2,3},若⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,则n =________. 解析:∵-12<-13,且⎝ ⎛⎭⎪⎫-12n >⎝ ⎛⎭⎪⎫-13n ,∴y =x n 在(-∞,0)上为减函数. 又n ∈{-2,-1,0,1,2,3},∴n =-1或n =2.答案:-1或29.点(2,2)与点⎝ ⎛⎭⎪⎫-2,-12分别在幂函数f (x )、g (x )的图象上,问当x 为何值时,有①f (x )>g (x );②f (x )=g (x );③f (x )<g (x ).解析:设f (x )=x α,g (x )=x β,则(2)α=2,(-2)β=-12,∴α=2,β=-1.∴f (x )=x 2,g (x )=x -1.分别作出它们的图象如图所示,由图象可知,当x ∈(-∞,0)∪(1,+∞)时,f (x )>g (x );当x =1时,f (x )=g (x );当x ∈(0,1)时,f (x )<g (x ).10.已知幂函数y =x 223m m -- (m ∈N +)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足(a +1)3m <(3a -2)3的a 的取值范围.解析: ∵函数在(0,+∞)上单调递减,∴m 2-2m -3<0,解得-1<m <3.∵m ∈N +,∴m =1,2.又∵函数图象关于y 轴对称,∴m 2-2m -3是偶数.又∵22-2×2-3=-3为奇数,12-2×1-3=-4为偶数,∴m =1.∴原不等式等价于(a +1)3<(3a -2)3.又∵y =x 3在(-∞,+∞)上是增函数,∴a +1<3a -2,∴2a >3,a >32,故a 的取值范围是a >32.[B 组 能力提升]1.设幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设0<a <1,则f (a )与f (a -1)的大小关系是( )A .f (a -1)<f (a )B.f (a -1)=f (a ) C .f (a -1)>f (a ) D .不能确定解析:因为幂函数f (x )的图象经过点⎝ ⎛⎭⎪⎫13,3,设f (x )=x α,因为图象经过点⎝ ⎛⎭⎪⎫13,3,所以⎝ ⎛⎭⎪⎫13α=3,解得α=-12,所以f (x )=x 12-在第一象限单调递减. 因为0<a <1,所以a -1>a ,所以f (a -1)<f (a ). 答案:A2.若(a +1)12-<(3-2a )12-,则a 的取值范围是( ) A.⎝ ⎛⎭⎪⎫12,23 B.⎝ ⎛⎭⎪⎫23,32 C.⎝ ⎛⎭⎪⎫23,2 D .⎝ ⎛⎭⎪⎫32,+∞ 解析:令f (x )=x 12-=1x,∴f (x )的定义域是(0,+∞),且在(0,+∞)上是减函数,故原不等式等价于⎩⎨⎧ a +1>0,3-2a >0,a +1>3-2a ,解得23<a <32.答案:B 3.已知(0.71.3)m <(1.30.7)m ,则实数m 的取值范围是________.解析:∵0<0.71.3<0. 70=1,1.30.7>1.30=1,∴0.71.3<1.30.7.而(0.71.3)m <(1.30.7)m ,∴幂函数y =x m 在 (0,+∞)上单调递增,故m >0.答案:(0,+∞)4.把⎝ ⎛⎭⎪⎫2313-,⎝ ⎛⎭⎪⎫3512,⎝ ⎛⎭⎪⎫2512,⎝ ⎛⎭⎪⎫760按从小到大的顺序排列________. 解析:⎝ ⎛⎭⎪⎫760=1,⎝ ⎛⎭⎪⎫2313->⎝ ⎛⎭⎪⎫230=1,⎝ ⎛⎭⎪⎫3512<1,⎝ ⎛⎭⎪⎫2512<1. ∵y =x 12为增函数,∴⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313-.答案:⎝ ⎛⎭⎪⎫2512<⎝ ⎛⎭⎪⎫3512<⎝ ⎛⎭⎪⎫760<⎝ ⎛⎭⎪⎫2313- 5.已知幂函数f (x )=x 21()m m -+ (m ∈N +).(1)试确定该函数的定义域,并指明该函数在其定义域上的单调性;(2)若该函数f (x )经过点(2,2),试确定m 的值,并求满足条件f (2-a )>f (a -1)的实数a 的取值范围.解析:(1)∵m 2+m =m (m +1)(m ∈N +),而m 与m +1中必有一个为偶数,∴m 2+m 为偶数,∴函数f (x )=x 21()m m -+ (m ∈N +)的定义域为[0,+∞),并且该函数在[0,+∞)上为增函数.(2)∵函数f (x )经过点(2,2), ∴2=2(m 2+m )-1,即212=2(m 2+m )-1,∴m 2+m =2,解得m =1或m =-2,又∵m ∈N +,∴m =1,f (x )=x 12.又∵f (2-a )>f (a -1), ∴⎩⎨⎧ 2-a ≥0,a -1≥0,2-a >a -1,解得1≤a <32, 故函数f (x )经过点(2,2)时,m =1.满足条件f (2-a )>f (a -1)的实数a 的取值范围为1≤a <32. 6.已知函数f (x )=(m 2+2m )·x 21m m +-,求m 为何值时,f (x )是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数.解析:(1)若f (x )为正比例函数,则⎩⎨⎧m 2+m -1=1,m 2+2m ≠0,解得m =1. (2)若f (x )为反比例函数,则⎩⎨⎧m 2+m -1=-1,m 2+2m ≠0,解得m =-1.(3)若f (x )为二次函数,则⎩⎨⎧m 2+m -1=2,m 2+2m ≠0,解得m =-1±132. (4)若f (x )为幂函数,则m 2+2m =1, 解得m =-1±2.。
必修一幂函数(含答案)

必修⼀幂函数(含答案)2.7幂函数⼀、幂函数定义的应⽤〖例1〗已知函数f(x)=(m 2-m-1)x -5m-3,m 为何值时,f(x): (1)是幂函数;(2)是幂函数,且是(0,+∞)上的增函数; (3)是正⽐例函数; (4)是反⽐例函数.〖例2〗已知y=(m 2+2m-2)·211m x -+(2n-3)是幂函数,求m 、n 的值.⼆、幂函数的图象与性质〖例1〗已知点在幂函数()f x 的图象上,点124?-,,在幂函数()g x 的图象上.定义()()()()()()()≤??=?>??f x f xg x h x g x f x g x ,,,.试求函数h(x)的最⼤值以及单调区间.〖例2〗已知函数2245()44x x f x x x ++=++(1)求()f x 的单调区间;(2)⽐较()f π-与(2f -的⼤⼩(⼆)幂函数的性质与应⽤【例1】(1)试⽐较0.40.2,0.20.2,20.2,21.6的⼤⼩.(2)已知幂函数y=x 3m-9(m ∈N *)的图象关于y 轴对称,且在(0,+∞)上函数值随x 的增⼤⽽减⼩,求满⾜() ()--+<-m m 33a 132a 的a 的取值范围.三、幂函数中的三类讨论题〖例1〗已知函数223()()m m f x xm -++=∈Z 为偶函数,且(3)(5)f f <,求m 的值,并确定()f x 的解析式.例2已知函数2()f x x =,设函数()[()](21)()1g x qf f x q f x =-+-+,问是否存在实数(0)q q <,使得()g x 在区间(]4--,∞是减函数,且在区间(40)-,上是增函数?若存在,请求出来;若不存在,请说明理由.例3讨论函数2221()kk y k k x--=+在0x >时随着x 的增⼤其函数值的变化情况.【⾼考零距离】(2010陕西⽂数)7.下列四类函数中,个有性质“对任意的x >0,y >0,函数f (x )满⾜f (x +y )=f (x )f (y )”的是[]()幂函数()对数函数()指数函数()余弦函数【考点提升训练】⼀、选择题(每⼩题6分,共36分)1.(2012·西安模拟)已知幂函数y=f(x)通过点,则幂函数的解析式为( ) ()y=212x()y=12x ()y= 32x()y=521x 22.函数y=1x-x 2的图象关于( ) ()y 轴对称 ()直线y=-x 对称 ()坐标原点对称()直线y=x 对称3.已知(0.71.3)m<(1.30.7)m,则实数m 的取值范围是( ) ()(0,+∞)()(1,+∞) ()(0,1) ()(-∞,0)4.已知幂函数f(x)=x m的部分对应值如表,则不等式f(|x|)≤2的解集为( )(){x|0){x|0≤x ≤4} (){x|x ){x|-4≤x ≤4}5.设函数f(x)=x1()7,x 02,x 0?-?≥<若f(a)<1,则实数a 的取值范围是( )()(-∞,-3) ()(1,+∞) ()(-3,1) ()(-∞,-3)∪(1,+∞) 6.(2012·漳州模拟)设函数f(x)=x 3,若0≤θ≤2π时,f(mcos θ)+f(1-m)>0恒成⽴,则实数m 的取值范围为( )()(-∞,1) ()(-∞, 12) ()(-∞,0) ()(0,1)⼆、填空题(每⼩题6分,共18分)7.(2012·武汉模拟)设x∈(0,1),幂函数y=x a的图象在直线y=x的上⽅,则实数a的取值范围是__________.8.已知幂函数f(x)=12x-,若f(a+1)<f(10-2a),则a的取值范围是_______.9.当0三、解答题(每⼩题15分,共30分)10.(2012·宁德模拟)已知函数f(x)=x m-2x且f(4)=72.(1)求m的值;(2)判定f(x)的奇偶性;(3)判断f(x)在(0,+∞)上的单调性,并给予证明.11.(易错题)已知点(2,4)在幂函数f(x)的图象上,点(12,4)在幂函数g(x)的图象上.(1)求f(x),g(x)的解析式;(2)问当x取何值时有:①f(x)>g(x);②f(x)=g(x);③f(x)<g(x).【探究创新】(16分)已知幂函数y=f(x)=2p3p22x-++(p∈Z)在(0,+∞)上是增函数,且是偶函数.(1)求p的值并写出相应的函数f(x);(2)对于(1)中求得的函数f(x),设函数g(x)=-qf(f(x))+(2q-1)f(x)+1.试问:是否存在实数q(q<0),使得g(x)在区间(-∞,-4]上是减函数,且在(-4,0)上是增函数;若存在,请求出来,若不存在,说明理由.答案解析1.【解析】选.设y=x α,则由已知得,α,即322=2α,∴α=32,∴f(x)= 32x .2.【解析】选.因为函数的定义域为{x|x ≠0},令y=f(x)=1x-x 2, 则f(-x)=1x -(-x)2=1x-x 2=f(x), ∴f(x)为偶函数,故选.3.【解析】选.因为0<0.71.3<0.70=1, 1.30.7>1.30=1,∴0<0.71.3<1.30.7.⼜(0.71.3)m <(1.30.7)m,∴函数y=x m在(0,+∞)上为增函数,故m >0.4.【解题指南】由表中数值,可先求出m 的值,然后由函数的奇偶性及单调性,得出不等式,求解即可.【解析】选.由(12)m m=12,∴f(x)= 12x ,∴f(|x|)=12x ,⼜∵f(|x|)≤2,∴12x ≤2,即|x|≤4,∴-4≤x ≤4.5.【解题指南】分a <0,a ≥0两种情况分类求解. 【解析】选.当a <0时,(12)a-7<1, 即2-a<23,∴a >-3,∴-3<a <0.当a ≥01,∴0≤a <1,综上可得:-3<a <1.6.【解题指南】求解本题先由幂函数性质知f(x)=x 3为奇函数,且在R 上为单调增函数,将已知不等式转化为关于m 与cos θ的不等式恒成⽴求解.【解析】选.因为f(x)=x 3为奇函数且在R 上为单调增函数,∴f(mcos θ)+f(1-m)>0? f(mcos θ)>f(m-1)? mcos θ>m-1?mcos θ-m+1>0恒成⽴,令g(cos θ)=mcos θ-m+1, ⼜0≤θ≤2π,∴0≤cos θ≤1, 则有:()()g 00g 10>,>即m 10m m 10-+??-+?>,>解得:m <1. 7.【解析】由幂函数的图象知a ∈(-∞,1).答案:(-∞,1) 8.【解析】由于f(x)= 12x-在(0,+∞)上为减函数且定义域为(0,+∞),则由f(a+1)<f(10-2a)得a 10102a 0,a 1102a +??-??+-?>>>解得:3<a <5. 答案:(3,5)9.【解题指南】在同⼀坐标系内画出三个函数的图象,数形结合求解. 【解析】画出三个函数的图象易判断f(x)答案:f(x)72,所以4m -24=72.所以m=1. (2)因为f(x)的定义域为{x|x ≠0},关于原点对称, ⼜f(-x)=-x-2x - =-(x-2x)=-f(x),所以f(x)是奇函数. (3)⽅法⼀:设x 1>x 2>0,则f(x 1)-f(x 2)= x 1-12x -(x 2-22x )=(x 1-x 2)(1+122x x ),[来源:/doc/7210e201581b6bd97e19ea07.html ]因为x 1>x 2>0,所以x 1-x 2>0,1+122x x >0. 所以f(x 1)>f(x 2).所以f(x)在(0,+∞)上为单调递增函数. ⽅法⼆:∵f(x)=x-2x,∴f ′(x)=1+22x >0在(0,+∞)上恒成⽴,∴f(x)在(0,+∞)上为单调递增函数.11.【解析】(1)设f(x)=x α, ∵点(2,4)在f(x)的图象上,∴4=2α,∴α=2,即f(x)=x 2. 设g(x)=x β,∵点(12,4)在g(x)的图象上,∴4=(12)β,∴β=-2,即g(x)=x -2. (2)∵f(x)-g(x)=x 2-x -2=x 2-21x=()()222x 1x 1x-+(*)∴当-1<x <1且x ≠0时,(*)式⼩于零,即f(x)<g(x);当x=±1时,(*)式等于零,即f(x)=g(x);当x >1或x <-1时,(*)式⼤于零,即f(x)>g(x). 因此,①当x >1或x <-1时,f(x)>g(x);②当x=±1时,f(x)=g(x);③当-1<x <1且x ≠0时,f(x)<g(x).【误区警⽰】本题(2)在求解中易忽视函数的定义域{x|x ≠0}⽽失误.失误原因:将分式转化为关于x 的不等式时,忽视了等价性⽽致误.【探究创新】【解析】(1)∵幂函数y=x α在(0,+∞)上是增函数时,α>0,∴-12p 2+p+32>0,即p 2-2p-3<0,解得-1<p <3,⼜p ∈Z,∴p=0,1,2. 当p=0时,y=32x 不是偶函数;当p=1时,f(x)=x 2是偶函数;当p=2时,f(x)=32x 不是偶函数,∴p=1,此时f(x)=x 2.(2)由(1)得g(x)=-qx 4+(2q-1)x 2+1,设x 1<x 2,则g(x 1)-g(x 2)=q(4421x x -)+(2q-1)·(2212x x -)=(2221x x -)[q(2212x x +)-(2q-1)].若x 1<x 2≤-4,则2221x x -<0且2212x x +>32,要使g(x)在(-∞,-4]上是减函数,必须且只需q(2212x x +)-(2q-1)<0恒成⽴. 即2q-1>q(2212x x +)恒成⽴. 由2212x x +>32且q <0,得q(2212x x +)<32q ,只需2q-1≥32q 成⽴,则2q-1>q(2212x x +)恒成⽴.∴当q ≤-130时,g(x)在(-∞,-4]上是减函数,同理可证, 当q ≥-130时,g(x)在(-4,0)上是增函数, ∴当q=-130时,g(x)在(-∞,-4]上是减函数,在(-4,0)上是增函数.[来源:学科⽹ZXXK]。
新人教A版高中数学必修第一册3.3 幂函数 练习(2)(解析版)

新人教A版必修第一册3.3 幂函数【本节明细表】基础巩固1.已知幂函数的图象通过点,则该函数的解析式为()A. B. C. D.【答案】C【解析】设幂函数的解析式为.∵幂函数的图象过点,∴,∴,∴该函数的解析式为.2.在下列幂函数中,是偶函数且在(0,+∞)上是增函数的是( )A.y=x-2B.C.D.【答案】D【解析】对于A,有f(-x)=f(x),是偶函数,但在(0,+∞)上递减,则A 不满足;对于B,定义域为[0,+∞),不关于原点对称,不具有奇偶性,则B 不满足;对于C,有f(-x)=-f(x),为奇函数,则C不满足;对于D,定义域R关于原点对称,f(-x)=f(x),则为偶函数,且在(0,+∞)上递增,则D满足. 故选:D.3.已知幂函数过点,则()A.B.C.D.【答案】B【解析】设幂函数,∵过点,∴,∴,故选B.4.幂函数的图象如图所示,则的值为( )A.-1B.0C.1D.2【答案】C【解析】由图象上看,图象不过原点,且在第一象限下降,故,即且;又从图象看,函数是偶函数,故为负偶数,将分别代入,可知当时,,满足要求.故选C.5.设∈,则使函数y=的定义域为R且为奇函数的所有的值为()A.,1,3 B.,1 C.,3 D.1,3【答案】D【解析】当=﹣1时,函数的定义域为{x|x≠0},不满足定义域为R;当=1时,函数y=的定义域为R且为奇函数,满足要求;当函数的定义域为{x|x≥0},不满足定义域为R;当=3时,函数y=的定义域为R且为奇函数,满足要求;故选:D.6.幂函数的图象关于轴对称,则实数_______.【答案】2【解析】函数是幂函数,解得:或,当时,函数的图象不关于轴对称,舍去,当时,函数的图象关于轴对称,∴实数.7.已知幂函数的图象过,那么在上的最大值为_____________。
【答案】【解析】设,因为的图象过,,解得,在上是单调递增的在上的最大值为,故答案为。
8.比较下列各题中两个幂的值的大小:(1)2.3,2.4;(2) ,;(3)(-0.31) ,0.35.【答案】(1)2.3<2.4.(2) >;(3)(-0.31) <0.35.【解析】(1)∵y=为R上的增函数,又2.3<2.4,∴2.3<2.4.(2)∵y=为(0,+∞)上的减函数,又<,∴()>().(3)∵y=为R上的偶函数,∴=.又函数y=为[0,+∞)上的增函数,且0.31<0.35,∴0.31<0.35,即(-0.31) <0.35.能力提升9.已知函数的图象如图所示,则的大小关系为()A.B.C.D.【答案】A【解析】由图像可知,,得,故选:A..10.对幂函数有以下结论(1)的定义域是;(2)的值域是;(3)的图象只在第一象限;(4)在上递减;(5)是奇函数.则所有正确结论的序号是______.【答案】(2)(3)(4)【解析】解:对幂函数,以下结论(1)的定义域是,因此不正确;(2)的值域是,正确;(3)的图象只在第一象限,正确;(4)在上递减,正确;(5)是非奇非偶函数,因此不正确.则所有正确结论的序号是(2)(3)(4).故答案为:(2)(3)(4).11.已知幂函数的图象经过点.(1)求实数的值;(2)求证:在区间(0,+∞)上是减函数.【答案】(1);(2)见解析.【解析】(1)∵的图象经过点,∴,即,解得.(2)证明:由(1)可知,,任取,且,则,∴,即.∴在区间(0,+∞)上是减函数.素养达成12.讨论函数的定义域、奇偶性,并作出它的简图,根据图象说明它的单调性.【答案】定义域R;偶函数;图象略;在区间(-∞,0]上是减函数,[0,+∞)上是增函数.【解析】函数定义域为R,因为,所以函数为偶函数,作出函数图象可知,在单减,在[0,+∞)上单增.。
浙江省诸暨市牌头中学人教版高一数学必修一2.3幂函数(练习) 答案和解析

浙江省诸暨市牌头中学人教版高一数学必修一2.3幂函数(练习)学校:___________姓名:___________班级:___________考号:___________一、单选题1.以下四个函数:y=x 0;y=2x -;y=()21x +;132y x =⋅中是幂函数的有 ( ) A .1个B .2个C .3个D .4个2.下列命题中:①幂函数的图象都经过点(1,1)和点(0,0); ②幂函数的图象不可能在第四象限;③当n=0时,幂函数y=x n 的图象是一条直线; ④当n >0时,幂函数y=x n 是增函数;⑤当n <0时,幂函数在第一象限内的函数值随x 的值增大而减小. 其中正确的是 ( ) A .①和④B .④和⑤C .②和③D .②和⑤3.如下图所示曲线是幂函数y =x α在第一象限内的图象,已知α取±2,±12四个值,则对应于曲线C 1,C 2,C 3,C 4的指数α依次为( )A .-2,-12,12,2 B .2,12,-12,-2 C .-12,-2,2,12D ..2,12,-2,-124.设p∈1112,1,,,,1,2,3232⎧⎫---⎨⎬⎩⎭,则使p y x =的图象关于原点对称且通过原点的p 值个数是 ( ) A .1B .2C .3D .45.下列函数中是R 上增函数的是( ) A .1y x -= B .2yxC .35y x =D .2yx6.已知53()8af x x bx x=++-,且f (-2)=10,则f (2)= ( ) A .-26 B .-18C .-10D .10二、填空题7.121.2a =,120.9b -=,121.1c =的大小关系为________.8.当01x <<时,幂函数p y x =的图象在直线y=x 的上方,则p 的取值范围是________。
9.函数()()331f x x =-+的图象的对称中心是________。
高一数学上册 第二章初等函数之幂函数知识点及练习题(含答案)

〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(2)幂函数的图象(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q pα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则qpy x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.2.3幂函数的图象及性质1.下列函数中,其定义域和值域不同的函数是( )A .y =x 13 B .y =x -12 C .y =x 53D .y =x 232.如图,图中曲线是幂函数y =x α在第一象限的大致图象.已知α取-2,-12,12,2四个值,则相应于曲线C1,C 2,C 3,C 4的α的值依次为( )A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-123.以下关于函数y =x α当α=0时的图象的说法正确的是( )A .一条直线B .一条射线C .除点(0,1)以外的一条直线D .以上皆错 4.函数f(x)=(1-x)0+(1-x)12的定义域为________. 5.已知幂函数f(x)的图象经过点(2,22),则f(4)的值为( ) A .16 B.116 C.12D .26.下列幂函数中,定义域为{x|x >0}的是( ) A .y =x 23 B .y =x 32 C .y =x -13D .y =x -347.已知幂函数的图象y =x m2-2m -3(m ∈Z ,x≠0)与x ,y 轴都无交点,且关于y 轴对称,则m 为( )A .-1或1B .-1,1或3C .1或3D .3 8.下列结论中,正确的是( )①幂函数的图象不可能在第四象限②α=0时,幂函数y =x α的图象过点(1,1)和(0,0) ③幂函数y =x α,当α≥0时是增函数④幂函数y =x α,当α<0时,在第一象限内,随x 的增大而减小 A .①② B .③④ C .②③ D .①④9.在函数y =2x 3,y =x 2,y =x 2+x ,y =x 0中,幂函数有( )A .1个B .2个C .3个D .4个10.幂函数f(x)的图象过点(3,3),则f(x)的解析式是________ .11.函数f(x)=(m 2-m -5)x m -1是幂函数,且当x ∈(0,+∞)时,f(x)是增函数,试确定m 的值.12.已知函数f(x)=(m 2+2m)·x m2+m -1,m 为何值时,f(x)是:(1)正比例函数;(2)反比例函数;(3)二次函数;(4)幂函数?13.已知幂函数y =x m2-2m -3(m ∈Z)的图象与x 、y 轴都无公共点,且关于y 轴对称,求m 的值,并画出它的图象.答案1. 解析:选D.y =x 23=3x 2,其定义域为R ,值域为[0,+∞),故定义域与值域不同. 2.解析:选B.当x =2时,22>212>2-12>2-2,即C 1:y =x 2,C 2:y =x 12,C 3:y =x -12,C 4:y =x -2.3.解析:选C.∵y =x 0,可知x≠0,∴y =x 0的图象是直线y =1挖去(0,1)点.4.解析:⎩⎪⎨⎪⎧1-x≠01-x≥0,∴x<1.答案:(-∞,1)5 解析:选C.设f(x)=x n ,则有2n =22,解得n =-12,即f(x)=x -12,所以f(4)=4-12=12.6 解析:选D.A.y =x 23=3x 2,x ∈R ;B.y =x 32=x 3,x≥0;C.y =x -13=13x,x≠0;D.y =x-34=14x 3,x >0.7 解析:选B.因为图象与x 轴、y 轴均无交点,所以m 2-2m -3≤0,即-1≤m≤3.又图象关于y 轴对称,且m ∈Z ,所以m 2-2m -3是偶数,∴m =-1,1,3.故选B.8 解析:选D.y =x α,当α=0时,x≠0;③中“增函数”相对某个区间,如y =x 2在(-∞,0)上为减函数,①④正确.9 解析:选B.y =x 2与y =x 0是幂函数.10 解析:设f(x)=x α,则有3α=3=312⇒α=12.答案:f(x)=x 1211 解:根据幂函数的定义得:m 2-m -5=1,解得m =3或m =-2,当m =3时,f(x)=x 2在(0,+∞)上是增函数;当m =-2时,f(x)=x -3在(0,+∞)上是减函数,不符合要求.故m =3.12 解:(1)若f(x)为正比例函数,则⎩⎪⎨⎪⎧m 2+m -1=1m 2+2m≠0⇒m =1. (2)若f(x)为反比例函数,则⎩⎪⎨⎪⎧m 2+m -1=-1m 2+2m≠0⇒m =-1. (3)若f(x)为二次函数,则⎩⎪⎨⎪⎧m 2+m -1=2m 2+2m≠0⇒m =-1±132.(4)若f(x)为幂函数,则m 2+2m =1,∴m =-1±213 解:由已知,得m 2-2m -3≤0,∴-1≤m≤3. 又∵m ∈Z ,∴m =-1,0,1,2,3.当m =0或m =2时,y =x -3为奇函数,其图象不关于y 轴对称,不适合题意. ∴m =±1或m =3.当m =-1或m =3时,有y =x 0,其图象如图(1).当m =1时,y =x -4,其图象如图(2)..。
最新人教版高中数学必修1第二章《幂函数》典型例题
拓展延伸应用点一 幂函数的定义【例1】函数y =(a 2+1)·211a x-是幂函数,求a 的值.思路分析:形如y =x α的函数叫做幂函数,其中x 是自变量,α是常数,符合此定义即可.解:根据幂函数的定义知:若y =(a 2+1)·11ax -是幂函数,则⎩⎪⎨⎪⎧a 2+1=1,1-a 2≠0. 解得a =0即为所求.应用点二 幂函数的定义域、值域 【例2】求下列函数的定义域和值域. (1)23=y x-;(2)34=y x-.思路分析:本例是两个幂函数,且幂指数分别为-23,-34,可将分数指数幂化为根式求解.解:(1)解析式化为23=y x-=13x 2,其定义域为{x |x ∈R 且x ≠0}; 值域为(0,+∞). (2)解析式化为34=y x-=14x 3,其定义域为(0,+∞);值域为(0,+∞). 应用点三 幂函数的图象【例3】如图2.37所示,图中的曲线是幂函数y =x n 在第一象限的图象,已知n 取±2,±12四个值,则相应于c 1,c 2,c 3,c 4的n 依次为( ).图2.3-7A .-2,-12,12,2B .2,12,-12,-2C .-12,-2,2,12D .2,12,-2,-12思路分析:考虑幂函数在第一象限内的增减性.注意当n >0时,对于y =x n ,n 越大,y =x n 增幅越快,n <0时看|n |的大小.根据幂函数y =x n 的性质,在第一象限内的图象当n >0时,n 越大,y =x n 递增速度越快,故c 1的n =2,c 2的n =12,当n <0时,|n |越大,曲线越陡峭,所以曲线c 3的n =-12,曲线c 4的n =-2,故选B.答案:B应用点四 比较大小【例4】比较下列各题中两个值的大小. (1)30.8,30.7;(2)0.213,0.233;(3)212,1.813.思路分析:比较两个幂的大小关键要看是底数相同还是指数相同. 解:(1)函数y =3x 是增函数,所以30.8>30.7; (2)函数y =x 3是增函数,所以0.213<0.233; (3)212>1.812>1.813,所以212>1.813.下列函数为幂函数的是( ).A .y =2x 3-1B .y =2xC .y =1x2 D .y =2x 2求下列幂函数的定义域.y =x 3,13y x =,12y x =,y =x -2,12y x-=,y =x 0.下列幂函数的值域错误的是( ).A .43y x =的值域为[0,+∞) B .13y x =的值域为RC .y =x-2的值域为(0,+∞) D .12y x-=的值域为[0,+∞)函数y =x a ,y =x b ,y =x c 的图象如图所示,则实数a 、b 、c 的大小关系为( ).A .c <b <aB .a <b <cC .b <c <aD .c <a <b比较下列各组数的大小.(1)(23)0.5,(35)0.5;(2)788--,781()9-;(3)254.1,233.8-,351.9 -. 应用点五 解含幂的不等式【例5】(1)已知(0.71.3)m <(1.30.7)m ,求m 的取值范围; (2)已知2335x x >,求x 的取值范围.思路分析:根据幂函数的图象以及单调性比较大小,求出范围. 解:(1)根据幂函数y =x 1.3的图象, 当0<x <1时,0<y <1,∴0<0.71.3<1.又根据幂函数y =x 0.7的图象,当x >1时,y >1,∴1.30.7>1.于是0.71.3<1.30.7.考查幂函数y =x m ,由(0.71.3)m <(1.30.7)m 知当x >0时,y =x m 为增函数,∴m >0.(2)函数23y x =与35y x =的定义域都是R ,23y x =的图象分布在第一、二象限;35y x =的图象分布在第一、三象限,∴当x ∈(-∞,0)时,2335>x x ;当x =0时,显然不合题意;当x ∈(0,+∞)时,23>x 0,35>x 0,2335x x=115>1x ,∴x >1,即x >1时,2335>x x .综上所述,满足条件的x 的取值范围为{x |x <0或x >1}.迁移1.C 解析:幂函数的表达式y =x α(α∈R )的要求比较严格,系数是1,底数是x ,α∈R 为常数,选项A 、B 、D 都是幂函数类型的函数,选项C 中y =x-2是幂函数.迁移2.解:y =x 3的定义域是R ;13y x =的定义域是R ;12y x =的定义域是[0,+∞);y =x -2=1x2的定义域是(-∞,0)∪(0,+∞);12121y x x-==的定义域是(0,+∞);y =x 0的定义域是(-∞,0)∪(0,+∞). 迁移3.D 解析:12121y x x-=,∵x >0,∴y >0.∴值域为(0,+∞).迁移4.A 解析:按幂函数的图象特征判断,也可作一条直线x =m (m >1)与各图象相交,按交点的高低判断.迁移5.解:(1)∵幂函数y =x 0.5在(0,+∞)上是单调递增函数, 又∵23>35,∴(23)0.5>(35)0.5.(2)∵778818()8--=-,又∵幂函数y =78x 在(0,+∞)上是单调递增函数,又18>19,∴778811()>()89.∴778811()<()89--,即77881<()9--8-.(3)∵22554.1>1=1,0<22333.8<1--=1, 351.9<0--,∴2235354.1>3.8> 1.9---.。
【人教A版】高中数学必修1同步教学案必修1第二章《幂函数》练习题(含答案)
第二章 基本初等函数(Ⅰ)2.3 幂函数A 级 基础巩固一、选择题1.下列函数是幂函数的是( ) A .y =7x B .y =x 7 C .y =5xD .y =(x +2)32.下列函数中既是偶函数又在(-∞,0)上是增函数的是( ) A .y =x 43 B .y =x 32 C .y =x -2D .y =x -143.已知幂函数f (x )=x α的图象经过点(3,33),则f (4)的值为( )A.12B.14C.13 D .2 4.函数y =x 23图象的大致形状是( )A .1或3B .1C .3D .2 二、填空题6.(2016·全国Ⅲ卷改编)已知a =243,b =323,c =2513,则a ,b ,c 的大小关系是________.7.幂函数f (x )=x 3m -5(m ∈N)在(0,+∞)上是减函数,且f (-x )=f (x ),则m 等于________.8.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.三、解答题9.函数f (x )=(m 2-3m +3)x m +2是幂函数,且函数f (x )为偶函数,求m 的值.10.已知幂函数f (x )的图象过点(25,5). (1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域.B 级 能力提升1.已知a =1.212,b =0.9-12,c = 1.1,则( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b2.给出下面三个不等式,其中正确的是________(填序号). ①-8-13<-⎝ ⎛⎭⎪⎫1913;②4.125>3.8-25>(-1.9)-35;③0.20.5>0.40.3(1)求k 的值与f (x )的解析式.(2)对于(1)中的函数f (x ),试判断是否存在m ,使得函数g (x )=f (x )-2x +m 在[0,2]上的值域为[2,3],若存在,请求出m 的值;若不存在,请说明理由.参考答案第二章 基本初等函数(Ⅰ)2.3 幂函数A 级 基础巩固一、选择题1.下列函数是幂函数的是( ) A .y =7x B .y =x 7 C .y =5xD .y =(x +2)3解析:函数y =x 7是幂函数,其他函数都不是幂函数. 答案:B2.下列函数中既是偶函数又在(-∞,0)上是增函数的是( ) A .y =x 43 B .y =x 32 C .y =x -2D .y =x -14解析:对于幂函数y =x α,如果它是偶函数,当α<0时,它在第一象限为减函数,在第二象限为增函数,则C 选项正确,故选C.答案:C3.已知幂函数f (x )=x α的图象经过点(3,33),则f (4)的值为( )A.12B.14C.13 D .2 解析:依题意有33=3α,所以α=-12, 所以f (x )=x -12,所以f (4)=4-12=12.答案:A4.函数y =x 23图象的大致形状是( )解析:因为y =x 23是偶函数,且在第一象限图象沿x 轴递增,所以选项D 正确.答案:DA .1或3B .1C .3D .2解析:因为f (x )为幂函数,所以m 2-4m +4=1, 解得m =3或m =1,所以f (x )=x -1或f (x )=x 3, 因为f (x )为(0,+∞)上的减函数,所以m =3. 答案:C 二、填空题6.(2016·全国Ⅲ卷改编)已知a =243,b =323,c =2513,则a ,b ,c 的大小关系是________.解析:a =243=423,b =323,c =2513=523. 因为y =x 23在第一象限内为增函数,又5>4>3, 所以c >a >b .答案:c >a >b7.幂函数f (x )=x 3m -5(m ∈N)在(0,+∞)上是减函数,且f (-x )=f (x ),则m 等于________.解析:因为幂函数f (x )=x 3m -5(m ∈N)在(0,+∞)上是减函数, 所以3m -5<0,即m <53,又m ∈N ,所以m =0,1,因为f (-x )=f (x ),所以函数f (x )是偶函数, 当m =0时,f (x )=x -5,是奇函数; 当m =1时,f (x )=x -2,是偶函数. 所以m =1. 答案:18.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=________.解析:因为函数是幂函数,所以k =1,又因为其图象过点⎝ ⎛⎭⎪⎫12,22,所以22=⎝ ⎛⎭⎪⎫12α,解得α=12,故k +α=32.答案:32三、解答题9.函数f (x )=(m 2-3m +3)x m +2是幂函数,且函数f (x )为偶函数,求m 的值.解:因为f (x )=(m 2-3m +3)x m +2是幂函数,所以m 2-3m +3=1,即m 2-3m +2=0. 所以m =1,或m =2.当m =1时,f (x )=x 3为奇函数,不符合题意. 当m =2时,f (x )=x 4为偶函数,满足题目要求. 所以m =2.10.已知幂函数f (x )的图象过点(25,5). (1)求f (x )的解析式;(2)若函数g (x )=f (2-lg x ),求g (x )的定义域、值域. 解:(1)设f (x )=x α,则由题意可知25α=5, 所以α=12,所以f (x )=x 12.(2)因为g (x )=f (2-lg x )=2-lg x , 所以要使g (x )有意义,只需2-lg x ≥0, 即lg x ≤2,解得0<x ≤100. 所以g (x )的定义域为(0,100],又2-lg x ≥0,所以g (x )的值域为[0,+∞).B 级 能力提升1.已知a =1.212,b =0.9-12,c = 1.1,则( )A .c <b <aB .c <a <bC .b <a <cD .a <c <b解析:a =1.212,b =0.9-12=⎝ ⎛⎭⎪⎫910-12=⎝ ⎛⎭⎪⎫10912,c = 1.1=1.112,因为函数y =x 12在(0,+∞)上是增函数且1.2>109>1.1,故1.212>⎝ ⎛⎭⎪⎫10912>1.112,即a >b >c .答案:A2.给出下面三个不等式,其中正确的是________(填序号). ①-8-13<-⎝ ⎛⎭⎪⎫1913;②4.125>3.8-25>(-1.9)-35;③0.20.5>0.40.3 解析:①-⎝ ⎛⎭⎪⎫1913=-9-13,由于幂函数y =x -13在(0,+∞)上是减函数,所以8-13>9-13,因此-8-13<-913,故①正确;②由于4.125>1,0<3.8-25<1,(-1.9)-35<0,故②正确;③由于y =0.2x 在R 上是减函数,所以0.20.5<0.20.3,又y =x 0.3在(0,+∞)上是增函数,所以0.20.3<0.40.3,所以0.20.5<0.40.3,故③错误.答案:①②(1)求k 的值与f (x )的解析式.(2)对于(1)中的函数f (x ),试判断是否存在m ,使得函数g (x )=f (x )-2x +m 在[0,2]上的值域为[2,3],若存在,请求出m 的值;若不存在,请说明理由.解:(1)由f(2)<f(3),得-k2+k+2>0,解得-1<k<2,又k∈N,则k=0,1.所以当k=0,1时,f(x)=x2.(2)由已知得g(x)=x2-2x+m=(x-1)2+m-1,当x∈[0,2]时,易求得g(x)∈[m-1,m],由已知值域为[2,3],得m=3.故存在满足条件的m,且m=3.。
人教新课标版数学高一-必修一练习2.3幂函数
1.下列函数中,是幂函数的为( )A .y =-x 12B .y =3x 2C .y =1xD .y =2x解析:幂函数的形式为y =x α,A是y =-1×x 12;B 是y =3×x 2;D 是指数函数,故A 、B 、D 都不是幂函数.只有C :y =1x=x -1符合幂函数的定义. 答案:C2.给出四个说法:①当α=0时,y =x α的图象是一个点;②幂函数的图象都经过点(0,0),(1,1);③幂函数的图象不可能出现在第四象限;④幂函数y =x α在第一象限为减函数,则α<0.其中正确的说法个数是( )A .1B .2C .3D .4 解析:显然①错误;②中y =x -1的图象不过(0,0);根据幂函数图象可知,③④正确. 答案:B3.设α∈{-2,-1,-12,13,12,1,2,3},则使f (x )=x α为奇函数且在(0,+∞)上单调递减的α的值的个数是( )A .1B .2C .3D .4解析:∵f (x )=x α为奇函数,∴α=-1,13,1,3. 又∵f (x )在(0,+∞)上为减函数,∴α=-1.答案:A4.函数f (x )=(m 2-m +1)x m 2+2m -3是幂函数,且在x ∈(0,+∞)时是减函数,则实数m =( )A .0B .1C .2D .0或1解析:由m 2-m +1=1,得m =0或m =1,再把m =0和m =1分别代入m 2+2m -3<0检验,得m =0.答案:A5.已知幂函数y =f (x )的图象过点⎝⎛⎭⎫2,22,则f (9)=________. 解析:设幂函数f (x )=x α.∵过点⎝⎛⎭⎫2,22,∴2α=22, ∴α=-12,∴f (x )=x 12-, ∴f (9)=912-=13. 答案:13 6.已知幂函数f (x )=x12-,若f (a +1)<f (10-2a ),则a 的取值范围是________. 解析:∵f (x )=x 12-=1x(x >0),故易知f (x )在(0,+∞)上为减函数.又f (a +1)<f (10-2a ), ∴⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎨⎧a >-1,a <5,a >3.∴3<a <5.答案:(3,5)7.比较下列各组数中两个数的大小:(1)(25)0.5与(13)0.5; (2)(-23)-1与(-35)-1; (3)(23)34与(34)23.解:(1)∵幂函数y =x 0.5在(0,+∞)上是单调递增的, 又25>13,∴(25)0.5>(13)0.5. (2)∵幂函数y =x -1在(-∞,0)上是单调递减的,又-23<-35, ∴(-23)-1>(-35)-1. (3)∵函数y 1=(23)x 为减函数, 又34>23,∴(23)23>(23)34. 又∵幂函数y 2=x 23在(0,+∞)上是增函数,且34>23, ∴(34)23>(23)23. ∴(34)23>(23)34. 8.已知函数y =(m 2-3m +3)x 213m -为幂函数,求其解析式,并讨论函数的单调性和奇偶性. 解:由题意得m 2-3m +3=1,即m 2-3m +2=0. ∴m =1或m =2.当m =2时,y =x 13,定义域为R , y =x 13在(-∞,+∞)上是增函数且是奇函数. 当m =1时,y =x23-,定义域为(-∞,0)∪(0,+∞). 因为y =x 23-=1x 23=13x 2,∴函数y =x 23-为偶函数.又-23<0,∴y =x 23-在(0,+∞)上是减函数,在(-∞,0)上是增函数.。
高一数学幂函数试题答案及解析
高一数学幂函数试题答案及解析1.如图所示,函数的图像大致为().A B C D【答案】C【解析】的定义域为,,图像关于轴对称,可排除选项A,B;又因为当时,,所以选C.【考点】函数的图像与性质.2.幂函数的图象经过点,则()A.B.C.D.【答案】C【解析】因为函数的图象经过点,则有,解得,所以.【考点】幂函数的解析式与图象.3.已知幂函数的图像过点,则【答案】【解析】因为幂函数的图像过点,所以得,因此故.【考点】幂函数的解析式.4. .(填“”或“”).【答案】【解析】幂函数在上单调递增,,所以【考点】幂函数的性质5.对于幂函数,若,则,大小关系是()A.B.C.D.无法确定【答案】A【解析】根据幂函数在(0,+∞)上是增函数,图象是上凸的,则当0<x1<x2时,应有成立,故答案选A.【考点】幂函数的单调性点评:本题主要考查幂函数的单调性,幂函数的图象特征,属于中档题.6.三个数,,之间的大小关系为()A.a<c<b B.a<b<c C.b<a<c D.b<c<a【答案】C【解析】因为对于比较大小,先分析各自的大致范围,然后确定大小关系。
由于根据指数函数和幂函数和对数函数的性质可知,,,,那么可知选择C.【考点】本试题主要是考查了幂函数、对数函数与指数函数的单调性,以及值域的应用。
属于基础题。
点评:解决该试题的核心是对于幂值、对数值和指数值范围的判定,先分类,再在各个类里面比较大小,注意常用中间变量0,1来比较大小。
7.设f(x)=,用二分法求方程=0在内近似值的过程中得f(1) < 0,f(1.5) > 0,f (1.25) < 0,则方程的根落在区间()A.(1,1.25)B.(1.25,1.5)C.(1.5,2)D.不能确定【答案】B【解析】因为f(1) < 0,f(1.5) > 0,f (1.25) < 0,所以由函数零点存在定理知,方程的根落在区间(1.25,1.5),选B.【考点】本题主要考查函数零点存在定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 基本初等函数(1)
2.3 幂函数
测试题
知识点:幂函数的概念
1、下列函数中是幂函数的是( ) A.y= B.y=2x -2 C.y=x+1 D.y=1
2、下列函数中,是幂函数的是 ( )
A.y=2x
B.y=2x 3
C.y=1x
D.y=2x 2
3、已知幂函数的图象过点(8,2),则其解析式是( )
A.y=x+2
B.y=
C.y=
D.y=x 3
4、下列幂函数中过点(0,0),(1,1)的偶函数是( )
A.y=
B.y=x 4
C.y=x -2
D.y= 5、下列函数:①y=x 2+1;②y=x
12;③y=3x 2-2x+1;④y=x -3;⑤y=x -13+1.其中是幂函数的是 ( ) A.①⑤
B.①②③
C.②④
D.②③⑤
6、(2014·石家庄高一检测)已知幂函数y=f(x)的图象过点,则f(25)= .
7、若函数f(x)是幂函数,且满足
f (4)f(2)=3,则f (1
2)的值等于 . 8、比较下列各组数的大小:
(1)1.10.1,1.20.1;(2)0.24-0.2,0.25-0.2;
(3)0.20.3,0.30.3,0.30.2.
9、(2015·长治高一检测)若幂函数y=(m 2-3m+3)x m-2的图象不过原点,则m 的取值范围为 ( )
A.1≤m ≤2
B.m=1或m=2
C.m=2
D.m=1
10、函数y=x -2在区间[12,2]上的最大值是 ( ) A.174 B.14 C.4 D.-4 11、在下列函数中,定义域为R 的是 ( )
A.y=x 32
B.y=x -13
C.y=2x
D.y=x -1
12、幂函数f(x)=x α过点(2,12),则f(x)的定义域是 . 13、(2015·铁岭高一检测)若y=a x
a 2-12是幂函数,则该函数的值域是 .
知识点:常见幂函数的图像和性质 14、(2015·沈阳高一检测)下列幂函数在(-∞,0)上为减函数的是 ( )
A.y=x 13
B.y=x 2
C.y=x 3
D.y=x
12 15、函数y=x -2在区间[12,2]上的最大值是 ( )
A.174
B.14
C.4
D.-4
16、幂函数y=x -2的图象大致是( )
17、(2014·宿州高一检测)已知函数f(x)=(m 2+2m)
,m 为何值时,f(x)是(1)正比例函数.(2)反比例函数.(3)二次函数.(4)幂函数.
18、(2014·济宁高一检测)当x ∈(0,+∞)时,幂函数y=(m 2-m-1)x m 为减函数,则实数m 的值为 . 19、若函数f(x)是幂函数,且满足
f (4)f(2)=3,则f (1
2)的值等于 .
【参考答案】 1 【解析】选A.y==符合幂函数的定义,而B,C,D 均不是幂函数. 2
【解析】选C.由幂函数所具有的特征可知,选项A,B,D 中x 的系数不是1;故只有选项C 中y==x -1符合幂函数的特征.
3
【解析】选B.设幂函数解析式为y=x α,因为图象过点(8,2),所以8α=2,所以α=,所以y=.
4 【解析】选B.因为y=
是非奇非偶函数,y=
是奇函数,y=x -2图象不过点(0,0),所以A,C,D 均不正确. 5 【解析】选C.由幂函数所具有的特征可知②④符合,而①③⑤中有常数项1,均不符合
幂函数的特征.
6 【解析】设f(x)=xα,代入得9α=. 即32α=3-1,所以2α=-1,所以α=-.
所以f(x)=,所以f(25)=2=.
答案:
7 【解析】依题意设f(x)=xα,则有=3,得α=log
2
3,
则f(x)=,于是f====. 答案:
8 【解析】(1)由于函数y=x0.1在第一象限内单调递增,
又因为1.1<1.2,所以1.10.1<1.20.1.
(2)由于函数y=x-0.2在第一象限内单调递减,又因为0.24<0.25,所以0.24-0.2>0.25-0.2.
(3)首先比较指数相同的两个数的大小,由于函数y=x0.3在第一象限内单调递增,而0.2<0.3,所以0.20.3<0.30.3.
再比较同底数的两个数的大小,由于函数y=0.3x在定义域内单调递减,而0.2<0.3,所以0.30.3<0.30.2.
所以0.20.3<0.30.3<0.30.2.
9 【解析】选D.由题意得解得m=1.
10
【解析】选C.y=x-2在区间上单调递减,
所以x=时,取得最大值为4.
11
【解析】选C.选项A中函数的定义域为[0,+∞),选项B,D中函数的定义域均为(-∞,0)∪(0,+∞).
12 【解析】因为幂函数f(x)过点(2,1
2
),所以=2α, 所以α=-1,所以f(x)=x-1=,
所以函数f(x)的定义域是(-∞,0)∪(0,+∞). 答案:(-∞,0)∪(0,+∞)
13 【解析】由已知y=a是幂函数,得a=1,所以y=,所以y≥0,故该函数的值域为[0,+∞).
答案:[0,+∞)
14
【解析】选B.函数y=,y=x3,y=在各自定义域上均是增函数,y=x2在(-∞,0)上是减函数.
15
【解析】选C.y=x-2在区间上单调递减,
所以x=时,取得最大值为4.
16
【解析】选B.因为y=x-2=,所以y=x-2是定义域为{x|x≠0}的偶函数,故选B.
17 【解析】(1)当m2+m-1=1,且m2+2m≠0时,即m=1,f(x)是正比例函数.
(2)当m2+m-1=-1,且m2+2m≠0时,即m=-1,f(x)是反比例函数.
(3)当m2+m-1=2,且m2+2m≠0时,即m=,f(x)是二次函数.
(4)当m2+2m=1时,即m=-1±,f(x)是幂函数.
18 【解析】由于函数y=(m2-m-1)x m为幂函数,
所以m2-m-1=1,解得m=-1或m=2.
当m=2时函数在(0,+∞)上递增,所以要舍去. 当m=-1时函数在(0,+∞)上递减,
所以m=-1符合题意,故填-1.
答案:-1
19 【解析】依题意设f(x)=xα,则有=3,得α=log23,
则f(x)=,于是f====. 答案:。