数学建模课程论文

合集下载

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字(汇总5篇)

大学数学建模论文范文3000字第1篇一、小学数学建模_数学建模_已经越来越被广大教师所接受和采用,所谓的_数学建模_思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为_数学建模_,其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。

叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。

二、小学数学建模的定位1.定位于儿童的生活经验儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。

_数学建模_要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。

同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的.挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。

2.定位于儿童的思维方式小学生的特点是年龄小,思维简单。

因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。

实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。

我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使_数量关系_与数学原型_一乘两除_结合起来,并且使学生利用抽象与类比的思维方法完成了_数量关系_的_意义建模_,从而创建了完善的认知体系。

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文(通用8篇)

优秀的数学建模论文范文第1篇摘要:将数学建模思想融入高等数学的教学中来,是目前大学数学教育的重要教学方式。

建模思想的有效应用,不仅显著提高了学生应用数学模式解决实际问题的能力,还在培养大学生发散思维能力和综合素质方面起到重要作用。

本文试从当前高等数学教学现状着手,分析在高等数学中融入建模思想的重要性,并从教学实践中给出相应的教学方法,以期能给同行教师们一些帮助。

关键词:数学建模;高等数学;教学研究一、引言建模思想使高等数学教育的基础与本质。

从目前情况来看,将数学建模思想融入高等教学中的趋势越来越明显。

但是在实际的教学过程中,大部分高校的数学教育仍处在传统的理论知识简单传授阶段。

其教学成果与社会实践还是有脱节的现象存在,难以让学生学以致用,感受到应用数学在现实生活中的魅力,这种教学方式需要亟待改善。

二、高等数学教学现状高等数学是现在大学数学教育中的基础课程,也是一门必修的课程。

他能为其他理工科专业的学生提供很多种解题方式与解题思路,是很多专业,如自动化工程、机械工程、计算机、电气化等必不可少的基础课程。

同时,现实生活中也有很多方面都涉及高数的运算,如,银行理财基金的使用问题、彩票的概率计算问题等,从这些方面都可以看出人们不能仅仅把高数看成是一门学科而已,它还与日常生活各个方面有重要的联系。

但现在很多学校仍以应试教育为主,采取填鸭式教学方式,加上高数的教材并没有与时俱进,将其与生活的关系融入教材内,使学生无法意识到高数的重要性以及高数在日常生活中的魅力,因此产生排斥甚至对抗的心理,只是在临考前突击而已。

因此,对高数进行教学改革是十分有必要的,而且怎么改,怎么让学生发现高数的魅力,并积极主动学习高数也是作为教师所面临的一个重大问题。

三、将数学建模思想融入高等数学的重要性第一,能够激发学生学习高数的兴趣。

建模思想实际上是使用数学语言来对生活中的实际现象进行描述的过程。

把建模思想应用到高等数学的学习中,能够让学生们在日常生活中理解数学的实际应用状况与解决日常生活问题的方便性,让学生们了解到高数并不只是一门课程,而是整个日常生活的基础。

数学模型方面的论文

数学模型方面的论文

数学模型方面的论文数学模型方面的论文数学模型方面的论文一摘要:有一句话说得好“生活处处有数学”,其实数学并不只是书本中的公式计算,也是联系实际生活的重要桥梁。

而如何用数学的数据来表达现实生活中的实际问题,“数学建模”解决了这个问题。

如今,“数学建模”被社会上各个领域所使用,体现了它的重要价值。

关键词:实际问题;数学建模;教学模式;探索这几年来,社会经济飞速发展,高新技术产业在社会上占领主导地位,而数学也成为了推动高新技术发展强有力的推手。

而数学建模是数学解决实际问题的关键,所以,在社会各个领域,都对数学建模加以高度重视。

数学人才的培养依赖于高校的教育,于是乎高校便开始开展数学建模教学,为国家培养应用型数学人才。

1数学建模概述通过运用数学的数据,公式,思维等方法,将现实生活中的实际问题笼统话,简单化,将问题转化成数学语言,建立数学模型,来解决实际问题,这就是数学建模的构建。

虽然在国外数学建模炙手可热,但是在中国依旧是个新型学科。

在20世纪八十年代,中国才渐渐开始开展数学建模课堂。

现在由于高等教育的普遍化,数学建模教学渐渐出现在人们视野中,开始大热。

2高校对于数学建模教学的探索因为数学建模课程是一个非常抽象的课程[1],对于非专业的学生来说难度很大,不是那么容易被理解的。

同样,对于老师的标准也严苛了许多。

因为要用语言去描述抽象的理论课程,对老师的语言表达能力是个挑战。

而且在课堂上老师不能像传统教学那样一味教理论,应该将数学和实际生活有机结合起来,所以增大了老师授课难度。

在对数学建模教学的探索上,学校同样下了不少的功夫。

一方面加大对数学建模教学的宣传力度,鼓励学生们利用自己的数学思维和建模思想来进行实际问题的解决,例如,学校举办讲座可以让学生更好的了解建模的重要性,举办一些数学建模大赛,通过激烈的赛制和诱惑性的奖品,最大程度地激发学生的无限潜能。

又或者带领学生到高新技术产业基地进行参观,让学生更加切身的体会到数学建模的对社会,对于高新技术的重要性。

数学建模优秀论文(精选范文10篇) 2021

数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。

数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。

关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。

广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。

一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。

如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。

一、二年级是学生初步感知数学得重要时期。

低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。

数学建模经典论文五篇

数学建模经典论文五篇

1、 血样的分组检验在一个很大的人群中通过血样检验普查某种疾病,假定血样为阳性的先验概率为p(通常p 很小).为减少检验次数,将人群分组,一组人的血样混合在一起化验.当某组的混合血样呈阴性时,即可不经检验就判定该组每个人的血样都为阴性;而当某组的混合血样呈阳性时,则可判定该组至少有一人血样为阳性,于是需要对这组的每个人再作检验.(1)、当p 固定时(如0.01%,…,0.1%,…,1%)如何分组,即多少人一组,可使平均总检验次数最少,与不分组的情况比较. (2)、当p 多大时不应分组检验.(3)、当p 固定时如何进行二次分组(即把混合血样呈阳性的组再分成小组检验,重复一次分组时的程序).模型假设与符号约定1 血样检查到为阳性的则患有某种疾病,血样呈阴性时的情况为正常2 血样检验时仅会出现阴性、阳性两种情况,除此之外无其它情况出现,检验血样的药剂灵敏度很高,不会因为血样组数的增大而受影响. 3 阳性血样与阳性血样混合也为阳性 4 阳性血样与阴性血样混合也为阳性 5 阴性血样与阴性血样混合为阴性 n 人群总数 p 先验概率血样阴性的概率q=1-p血样检验为阳性(患有某种疾病)的人数为:z=np 发生概率:x i P i ,,2,1, = 检查次数:x i R i ,,2,1, = 平均总检验次数:∑==xi i i R P N 1解1设分x 组,每组k 人(n 很大,x 能整除n,k=n/x ),混合血样检验x 次.阳性组的概率为k q p -=11,分组时是随机的,而且每个组的血样为阳性的机率是均等的,阳性组数的平均值为1xp ,这些组的成员需逐一检验,平均次数为1kxp ,所以平均检验次数1kxp x N +=,一个人的平均检验次数为N/n,记作:k k p kq k k E )1(1111)(--+=-+=(1) 问题是给定p 求k 使E(k)最小. p 很小时利用kp p k -≈-1)1(可得kp kk E +=1)( (2) 显然2/1-=p k 时E(k)最小.因为K 需为整数,所以应取][2/1-=p k 和1][2/1+=-p k ,2当E (k )>1时,不应分组,即:1)1(11>--+k p k,用数学软件求解得k k p /11-->检查k=2,3,可知当p>0.307不应分组.3将第1次检验的每个阳性组再分y 小组,每小组m 人(y 整除k,m=k/y ).因为第1次阳性组的平均值为1xp ,所以第2次需分小组平均检验1yxp 次,而阳性小组的概率为m q p -=12(为计算2p 简单起见,将第1次所有阳性组合在一起分小组),阳性小组总数的平均值为21yp xp ,这些小组需每人检验,平均检验次数为21yp mxp ,所以平均总检验次数211yp mxp yxp x N ++=,一个人的平均检验次数为N/n,记作(注意:n=kx=myx)p q q q mk p p m p k m k E m k -=-+-+=++=1),1()1(111),(211 (3) 问题是给定p 求k,m 使E (k,m )最小.P 很小时(3)式可简化为21),(kmp mkpk m k E ++≈ (4)对(4)分别对k,m 求导并令其等于零,得方程组:⎪⎪⎩⎪⎪⎨⎧=+-=++-0012222kp m kp mp mp k 舍去负数解可得:2/14/3,21--==p m p k (5)且要求k,m,k/m 均为整数.经在(5)的结果附近计算,比较E(k,m),得到k,m 的最与表1比较可知,二次分组的效果E(k,m)比一次分组的效果E(k)更好.2、铅球掷远问题铅球掷远比赛要求运动员在直径2.135m 的圆内将重7.257kg 的铅球投掷在 45的扇形区域内,建立模型讨论以下问题1.以出手速度、出手角度、出手高度 为参数,建立铅球掷远的数学模型;2.考虑运动员推铅球时用力展臂的动 作,改进以上模型.3.在此基础上,给定出手高度,对于 不同的出手速度,确定最佳出手角度 问题1模型的假设与符号约定1 忽略空气阻力对铅球运动的影响.2 出手速度与出手角度是相互独立的.3 不考虑铅球脱手前的整个阶段的运动状态. v 铅球的出手速度 θ 铅球的出手角度 h 铅球的出手高度 t 铅球的运动时间 L 铅球投掷的距离g 地球的重力加速度(2/8.9s m g=)铅球出手后,由于是在一个竖直平面上运动.我们,以铅球出手点的铅垂方向为y 轴,以y 轴与地面的交点到铅球落地点方向为x 轴构造平面直角坐标系.这样,铅球脱手后的运动路径可用平面直角坐标系表示,如图.因为,铅球出手后,只受重力作用(假设中忽略空气阻力的影响),所以,在x 轴上的加速度0=,在y 轴上的加速度g a y -=.如此,从解析几何角度上,以时间 t 为参数,易求得铅球的运动方程:⎪⎩⎪⎨⎧+-==h gt t v y t v x 221sin cos θθ 对方程组消去参数t ,得h x x v gy ++-=)(tan cos 2222θθ……………………………………………(1) 当铅球落地时,即是0=y ,代入方程(1)解出x 的值v ggh gh v g v x θθθθθ2222sin 22cos sin cos sin 2-++=对以上式子化简后得到铅球的掷远模型θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+=………………………………(2) 问题2我们观察以上两个阶段,铅球从A 点运动到B 点,其运动状态是匀加速直线运动的,加速距离是2L 段.且出手高度与手臂长及出手角度是有一定的联系,进而合理地细化各个因素对掷远成绩的约束,改进模型Ⅰ.在投掷角度为上进行受力分析,如图(3)由牛顿第二定 律可得,ma mg F =-θsin 再由上式可得,θsin g mFa -=………………………………………(3) 又,22022aL v v =-,即22022aL v v += (4)将(3)代入(4)可得,θsin 2222202g L m FL v v -⎪⎭⎫⎝⎛+= ………………………(5) (5)式进一步说明了,出手速度v 与出手角度θ有关,随着θ的增加而减小.模型Ⅰ假设出手速度与出手角度相互独立是不合理的. 又根据图(2),有θsin 1'L h h += (6)由模型Ⅰ,同理可以得到铅球脱手后运动的距离θθθ22222cos 22sin 222sin g v h g v g v L +⎪⎪⎭⎫ ⎝⎛+= 将 (4)、(5)、(6)式代入上式整理,得到铅球运动的距离()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎪⎭⎫⎝⎛++++-⎪⎭⎫ ⎝⎛+=θθθθθ22220'2220sin sin 22sin 2112sin 2sin 22g L m FL v h g g g L m FL v L 对上式进行化简:将m=7.257kg,2/8.9s m g = 代入上式,再令m h 60.1'= (我国铅球运动员的平均肩高),代入上式进一步化简得,()⎪⎪⎭⎫ ⎝⎛-++-++⨯θθθθθ2222232222sin sin 6.192756.06.19sin 6.19sin 2756.0sin 1L FL v L FL v ………………(7) 所以,运动员投掷的总成绩θcos 1L L S +=问题3给定出手高度,对于不同的出手速度,要确定最佳的出手角度.显然,是求极值的问题,根据微积分的知识,我们要先求出驻点,首先,模型一中L 对θ求导得,g hv g v g hv v g v d dL θθθθθθθθ22224242cos 82sin sin cos 42cos 2sin 2cos +-+=令0=θd dL,化简后为, 0sin cos 42cos 2sin cos 82sin 2cos 2422242=-++θθθθθθθhgv v hgv v v根据倍角与半角的三角关系,将以上方程转化成关于θ2cos 的方程,然后得,hv g g vgh gh222cos +=+=θ (3)()θθ2sin sin 6.192756.051.0222L FL v L -+=从(3)式可以看出,给定铅球的出手高度h ,出手速度v 变大,相应的最佳出手角度θ也随之变大.对(3)式进行分析,由于0,0>>θh ,所以02cos >θ,则40πθ≤<.所以,最佳出手角度为)arccos(212vgh gh +=θ θ是以π2为周期变化的,当且仅当N k k ∈⎪⎭⎫⎝⎛∈±,4,02ππθ时,πθk 2±为最佳出手角度.特别地,当h=0时(即出手点与落地点在同一高度),最佳出手角度︒=45α3、零件的参数设计粒子分离器某参数(记作y )由7个零件的参数(记作x x 12,,…x 7)决定,经验公式为:y x x x x x x x x x x x =⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪⨯--⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥⎛⎝ ⎫⎭⎪-17442126210361532108542056324211667......y 的目标值(记作y 0)为1.50。

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模论文(专业推荐范文10篇)

大学生数学建模是一项基础性得学科竞赛,可以交流更多得经验,学习更多得知识,所以大学生数学建模很受学者们得欢迎,本篇文章就向大家介绍一些大学生数学建模论文,供给大家作为一个参考。

大学生数学建模论文专业推荐范文10篇之第一篇:数学建模对大学生综合素质影响得调查研究---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。

---------------------------------------------------------------------------------------------------------------------摘要:文章通过问卷网以调查问卷得形式和线下访谈得方法 ,对笔者所在学校参加过数学建模竞赛得同学和未参加过数学建模竞赛得同学对数学建模对自身综合素质得影响进行了调查研究。

调查表明,大部分学生都能认识到数学建模学习和竞赛对其自身综合素质得提升是有帮助得,但是大多数学生对数学建模得意义认识还不到位。

文章对调查结果进行分析,结合笔者得切身体会对地方高校数学建模课程教学及学生参加竞赛提出某些建议。

关键词:数学建模; 大学生; 综合素质; 研究;一、前言随着社会得不断进步和发展,大学生想要在激烈得人才竞争中脱颖而出,就必须要不断提高自己得综合素质,而良好得综合素质不仅应具有坚实得理论基础,扎实得专业知识,还应该具有较强得创新能力、与他人合作得能力、较强得语言表达能力、以及稳定得心理状态。

许多科学家断言未来科学技术得竞争是数学技术得竞争,这无疑对数学能力提出了更高得要求,不可否认数学建模课程教学及建模竞赛是提升大学生数学能力得有效途径。

数学建模论文(精选4篇)

数学建模论文(精选4篇)

数学建模论文(精选4篇)数学建模论文模板篇一1数学建模竞赛培训过程中存在的问题1.1学生数学、计算机基础薄弱,参赛学生人数少以我校理学院为例,数学专业是本校开设最早的专业,面向全国28个省、市、自治区招生,包括内地较发达地区的学生、贫困地区(包括民族地区)的学生,招收的学生数学基础水平参差不齐.内地较发达地区的学生由于所处地区的经济文化条件较好,教育水平较高,高考数学成绩普遍高于民族地区的学生.民族地区由于所处地区经济文化较落后,中小学师资力量严重不足,使得少数民族学生数学基础薄弱,对数学学习普遍抱有畏难情绪,从每年理学院新生入学申请转系的同学较多可以窥见一斑.虽然学校每年都组织学生参加全国大学生数学建模竞赛,但人数都不算多.从专业来看,参赛学生主要以数学系和计算机系的学生为主,间有化学、生科、医学等理工科学生,文科学生则相对更少.理工科类的学生基本功比较扎实,他们在参赛过程中起到了重要作用.文科学生数学和计算机功底大多薄弱,更多的只是一种参与.从年级来看,参赛学生以大二的学生居多;大一的学生已学的数学和计算机课程有限,基本功还有些欠缺;大三、大四的学生忙着考研和找工作,对数学建模竞赛兴趣不大.从参赛的目的来看,有20%左右的学生是非常希望通过数学建模提高自己的综合能力,他们一般能坚持到最后;还有50%的学生抱着试试看的态度参加培训,想锻炼但又怕学不懂,觉得可以坚持就坚持,不能则中途放弃;剩下的30%的学生则抱着好奇好玩的态度,他们大多早早就出局了.学生的参赛积极性不高,是制约数学建模教学及竞赛有效开展的不利因素.1.2无专职数学建模培训教师,培训教师水平有限,培训方法落后数学建模的培训教师主要由理学院选派数学老师临时组成,没有专职从事数学建模的教师.由于学校扩招,学生人数多,教师人数少,数学教师所承担的专业课和公共课课程多,授课任务重;备课、授课、批改作业占用了教师的大部分工作时间,并且还要完成相应的科研任务.而参加数学建模教学及竞赛培训等工作需要花费很多时间和精力,很多老师都没有时间和精力去认真从事数学建模的教学工作.培训教师队伍整体素质不够强、能力欠缺,指导起学生来也不是那么得心应手,且从事数学建模教学的老师每年都在调整,不利于经验的积累.另外,学校对参与数学建模教学及竞赛培训的教师的鼓励措施还不是十分到位和吸引人,培训教师对数学建模相关的工作热情不够,缺乏奉献精神.在2011年以前,数学建模培训主要采用教师授课的方式进行,但各位老师授课的内容互不联系.比如说上概率论的老师就讲概率论的内容,上常微分方程的老师就讲常微分的内容.学生学习了这些知识,不知道有什么用,怎么用,不能将这些知识联系起来转化为数学建模的能力.这中间缺少了很重要的一个环节,就是没有进行真题实训.结果就是学生既没有运用这些知识构建数学模型的能力,也谈不上数学建模论文写作的技巧.虽然学校年年都组织学生参加全国大学生数学建模竞赛,但结果却不尽如人意,获奖等次不高,获奖数量不多.1.3学校重视程度不够,相关配套措施还有待完善任何一项工作离开了学校的支持,都是不可能开展得好的,数学建模也不例外.在前些年,数学建模并没有引起足够的重视,学校盼望出成绩但是结果并不理想,对老师和学生的信心不足.由于经费紧张,并未专门对数学建模安排实验室,图书资料很少,学生用电脑和查资料不方便,没有学习氛围.每年数学建模竞赛主要由分管教学的副院长兼任组长,没有相应专职的负责人,培训教师去参加数学建模相关交流会议和学习的机会很少.学校和二级学院对参加数学建模教学、培训的老师奖励很少,学生则几乎没有.在课程的开设上也未引起重视,虽然理学院早在1997年就将数学实验和数学建模课列为专业必修课,但非数学专业只是近几年才开始列为公选课开设,且选修率低.2针对存在问题所采取的相应措施2.1扩大宣传,重视数学和计算机公选课开设,举办数学建模学习讨论班最近两年,学院组建了数学建模协会,负责数学建模的宣传和参赛队员的海选,通过各种方式扩大了对数学建模的宣传和影响,安排数学任课教师鼓励数学基础不错的学生参赛.同时邀请重点大学具有丰富培训经验的老师来做数学建模专题讲座,交流经验.学院重视数学专业的基础课程、核心课程的教学,选派经验丰富的老教师、青年骨干教师担任主讲,随时抽查教学质量,教学效果.严抓考风学风,对考试作弊学生绝不姑息;学生上课迟到、早退、旷课一律严肃处理.通过这些举措,学生学习态度明显好转,数学能力慢慢得到提高.学校有意识在大一新生中开设数学实验、数学建模和相关计算机公选课,让对数学有兴趣的学生能多接触这方面的知识,减少距离感.选用的教材内容浅显而有趣味,主要目的是让同学们感受到数学建模并非高不可攀,数学是有用的,增加学生学习数学的热情和参加数学建模竞赛的可能性.为了解决学生学习数学建模过程中的遇到的困难,学院组织老师、学生参加数学建模周末讨论班,老师就学生学习过程中遇到的普遍问题进行讲解,学生分小组相互讨论,尽量不让问题堆积,影响后续学习积极性.通过这些措施,参赛学生的人数比以往有了大的改观,参赛过程中退赛的学生越来越少,参赛过程中的主动性也越来越明显.2.2成立数学建模指导教师组,分批培养培训教师,改进培训方法近年来,学院开始重视对数学建模培训教师的梯队建设,成立了数学建模指导教师组.把培训教师分批送出去进修,参加交流会议,学习其它高校的经验,并安排老教师带新教师,培训教师队伍越来越稳定、壮大.从去年开始,理学院组织学生进行了为期一个月的暑期数学建模真题实训,从8月初到8月底,培训共分为7轮.学生首先进行三天封闭式真题训练———其次答辩———最后交流讨论.效果明显,学生的数学建模能力普遍得到了提高,学习积极性普遍高涨.9月份顺利参加了全国大学生数学建模竞赛.从竞赛结果来看,比以前有了比较大的进步,不管是获奖的等次还是获奖的人数上都取得了历史性突破.有了这些可喜的变化,教师和学生的积极性都得到了提高,对以后的数学建模教学和培训工作将起着极大的促进作用.除了这种集训,今后,数学建模还需要加强平时的教学和培训工作.2.3学校逐渐重视,加大了相关投入,完善了激励措施最近几年,学校加大了对数学建模教学和培训工作的相关投入和鼓励措施.安排了专门的数学建模实验室,配备了学院最先进的电脑、打印机等设备,购买了数学建模相关的书籍.划拨了数学建模教学和培训专项经费.虽然数学建模教学还没有计入教学工作量,但已经考虑计入职称评定的相关工作量中,对参加数学建模教学和培训的老师减少了基本的教学工作量,使他们有更多的时间和精力投入到数学建模的相关工作中去.对参加全国大学生数学建模竞赛获奖的老师和学生的奖励额度也比以前有了很大的提高,老师和学生的积极性得到了极大的提高.3结束语对我们这类院校而言,最重要的数学建模赛事就是一年一度的全国大学生数学建模竞赛了.竞赛结果大体可以衡量老师和学生的付出与收获,但不是绝对的,教育部组织这项赛事的初衷主要是为了促进各个院校数学建模教学的有效开展.如果过分的看重获奖等次和数量,对学校的数学建模教学和组织工作都是一种伤害.参赛的过程对学生而言,肯定是有益的,绝大多数参加过数学建模竞赛的学生都认为这个过程很重要.这个过程可能是四年的大学学习过程中体会最深的,它用枯燥的理论知识解决了活生生的现实中存在的问题,虽然这种解决还有部分的理想化.由于我校地处偏远山区,教育经费相对紧张,投入不可能跟重点院校的水平比,只能按照自身实际来.只要学校、老师、学生三方都重视并积极参与这一赛事,数学建模活动就能开展的更好.数学建模论文模板篇二培养应用型人才是我国高等教育从精英教育向大众教育发展的必然产物,也是知识经济飞速发展和市场对人才多元化需求的必然要求。

大学生数学建模论文(通用多篇)

大学生数学建模论文(通用多篇)

大学生数学建模论文(通用多篇)浅谈数学建模与大学生能力培养摘要:数学建模作为现代应用数学的一个重要组成部分被越来越多的人所重视。

本文描述数学建模课程及数学建模竞赛在培养大学生各种能力中的作用。

关键词:数学建模;竞赛;大学生;能力一、引言数学建模是运用数学的语言和方法,去描述或模拟实际问题中的数量关系,并解决实际问题的一种强有力的手段。

数学建模是应用数学的语言和方法解决实际问题的过程,也是一个培养大学生各种能力的综合过程。

大学生数学建模竞赛最早是1985年在美国出现的。

1989年在几位从事数学建模的教师的组织和推动下,我国几所大学的大学生开始参加美国的竞赛。

自1994年起,教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届,这项活动被教育部列为全国大学生四大竞赛之一、随着全国大学生数学建模竞赛的广泛影响,越来越多的高校组织队员参加该项竞赛,这项竞赛的规模以平均年增长25%以上的速度发展。

2023年全国有31个省/市/自治区(包括香港)1,023所院校、12,846个队、38,000多名来自各个专业的大学生参加竞赛,比2023年新增院校15所。

2023年全国有33个省/市/自治区(包括香港和澳门特区)1,137所院校、15,046个队、45,000多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中西藏和澳门是首次参赛)。

20世纪八十年代以来,我国各高等院校相继开设数学建模课程。

数学建模课程是在高等数学、线性代数、概率与数理统计之后,为实现理论和实践一体化、进一步提高运用数学知识和计算机技术解决实际问题,培养创新能力所开设的一门广泛的公共基础课。

教育必须反映社会的实际需要,数学建模课程进入大学课堂,既顺应时代发展的潮流,也符合教育的要求。

素质教育是新世纪高校高等数学教育的一个重要方向。

在大学校园中,数学建模课程的开设及数学建模活动的开展,能有效地激发大学生学习的兴趣和积极性,使大学生掌握准确快捷的计算方法和严密的逻辑推理,培养大学生用数学工具分析解决实际问题的能力,是实施素质教育的一种有效途径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模课程论文随着科学技术特别是信息技术的高速发展,数学的应用价值越来越得到众人的重视。

下面是店铺为大家整理的数学建模课程论文,供大家参考。

数学建模课程论文范文一:信号驱动的空气管理系统控制逻辑建模方法【摘要】为了提高空气管理系统控制功能的设计与确认效率,研究了信号驱动的空气管理系统控制逻辑建模方法。

结合空气管理系统控制特点,采用自底向上建模的思想,先构建底层系统信号库,再由信号逐层搭建控制逻辑,最后由控制逻辑驱动功能并在功能层进行逻辑确认。

本文方法在空气管理系统CAS与简图页逻辑设计与确认过程中进行了应用验证。

【论文关键词】空气管理系统;信号驱动;控制逻辑建模0 引言空气管理系统是民用飞机上非常重要的机载系统之一,负责控制飞机引气、座舱压力调节、机翼防冰、温度控制等功能[1-5]。

空气管理系统控制是以两个综合空气管理系统控制器(IASC)为控制中枢,以各种传感器发来的监控信号、外部系统发来的通讯信号为输入,经IASC内部逻辑运算后,驱动各种受控设备,如风扇、活门、加热器等,来实现飞机空气温度、压力、流量等控制功能,并将系统状态信息发送给外部系统实现显示、告警及记录功能。

空气管理系统控制功能需求是以系统需求为依据,结合所采用的控制架构细化而来。

各控制功能由若干个控制逻辑组成。

在空气管理系统研制过程中需要进行控制功能的确认与验证。

仿真的方式能有效提高效率,降低成本,而建立各种控制逻辑模型则是进行仿真确认与验证的基础。

本文研究了一种信号驱动的空气管理系统控制逻辑建模方法。

1 信号驱动的控制逻辑建模方法信号驱动是指由各种信号作为基本单元来进行控制逻辑建模。

各个信号表示着不同的状态变量,空气管理系统控制器根据不同的输入状态变量的值来决定发出的指令信号。

通过基本信号来表述逻辑能从最底层关系开始,逐步向上搭建整套控制逻辑。

具体的建模过程包括构建信号库、搭建逻辑树以及驱动功能验证逻辑3个步骤。

1.1 构建信号库构建信号库是为了方便在构建逻辑时随时调用而将一些基本的输入信号信息收集并按照一定的编码方式存储起来。

空气管理系统逻辑运算中需要用到的信号属性包括信号名称、信号功能范围、信号有效性、信号设备源。

所以可将每条信号按照[ID|NAME,RANGE(MIN,MAX),VALID,SOURCE]的方式进行整理,例如由控制器IASC1的A通道发出的座舱高度告警信号可表示为[00001|CAB_ALT_W,(0,1),true,IASC1A]。

集合所有控制器接收的信号,从而形成空气管理系统信号库。

1.2 搭建逻辑树逻辑树的根节点一般是各个基本信号组成的关系式,例如CAB_ ALT_W=1,表示座舱告警为真。

这些关系式通过基本的与/或逻辑算子连接,从而形成基本的逻辑树,这些逻辑树的输出结果为TURE或者FALSE。

在搭建逻辑树的过程中,当一条逻辑链比较长时,可将一棵逻辑树的输出作为另外一棵逻辑树的输入而形成逻辑嵌套,建模论文这种方式能简化逻辑树的搭建过程。

逻辑树的表达可用逻辑方程来记录。

例如座舱高度告警逻辑可按以下两种方式表达。

将所有的逻辑按照逻辑树的方式搭建起来,可形成一个逻辑库,在后续定义功能时即可直接调用来构建功能。

1.3 驱动功能验证逻辑若干条逻辑合在一起,可以驱动复杂的功能。

通过功能的仿真即可验证各种逻辑的正确性。

从功能层面进行验证因为意义更明确更方便实施,且一条功能的验证即可验证多条逻辑,功能验证的方式是选择功能相关的所有信号,设定各信号的状态值,作为组成功能的所有逻辑的输入,计算得到功能输出值,观察是否与预期一致。

2 空气管理系统CAS与简图页逻辑建模与验证CAS与简图页是供飞行员了解各系统状态的重要页面,由系统负责提供信号,指示系统按照指定的CAS与简图页逻辑进行显示。

基于本文的思想,进行空气管理系统CAS与简图页逻辑建模与功能验证,开发了相应的软件平台。

2.1 空气管理系统CAS逻辑建模定义CAS主要需要定义CAS等级、CAS显示内容以及CAS显示逻辑。

CAS等级按照严重程度可分为WARING,CAUTION,ADVISORY,STATUS四种,分别用红色、黄色、青色、白色来表示。

本文定义的CAS逻辑是由系统发出CAS相关信号后,由这些信号运算后显示在CAS页面的逻辑,空气管理系统CAS消息主要显示系统工作状态以及在一些危险状态如座舱高度过高、机翼防冰失效等情况下告警。

CAS定义模块主要提供CAS名称、内容、等级的编辑页面,CAS 逻辑的指定可直接调用逻辑库中的逻辑。

2.2 空气管理系统简图页逻辑建模空气管理系统简图页功能是通过简要示意图显示系统主要设备与管路内空气的状态,管路的空气状态信息需要根据上下游的设备状态来判断,这些判断关系组成了简图页的逻辑。

空气管理系统简图页的主要图形元素是活门与管路流线,其逻辑定义可分为活门与流线显示逻辑定义。

简图页定义模块设计了自定义活门与管路绘制工具,通过活门与流线显示逻辑定义指定显示颜色的驱动逻辑,构成整体的简图页显示逻辑。

2.3 空气管理系统CAS与简图页功能验证前面构建了空气管理系统CAS与简图页的逻辑,通过指定各功能相关输入信号的值,在逻辑运算后再直观地显示在页面上,从而可以确认功能是否正确实现。

在验证时只需根据场景需要,设定各信号的模拟值,由系统后台运算得到功能输出信号值,并驱动页面上的显示元素显示相应的状态。

通过上述几个步骤,能对空气管理系统CAS与简图页功能进行整体的验证,有效提高了CAS与简图页功能的设计与确认效率,也能为后续系统排故提供支持。

3 结论本文结合空气管理系统控制架构特点,提出了信号驱动的逻辑建模方法。

本文方法具有如下特点:1)构建了空气管理系统基础信号库,能支持在逻辑层、功能层随时调用相关的信号信息;2)构建了空气管理系统逻辑库,支持上层功能的搭建与验证;3)开发了控制逻辑建模工具,能模拟各种场景下的功能验证,提高了设计效率。

【参考文献】[1]程立嘉,程晓忠,左彦声.大型客机空气管理系统现状与发展趋势[J].航空科学技术,2008.3:7-8.[2]徐红专,崔文君,张惠娟.电子电动式座舱压力调节系统研究[J].江苏航空,2010,3:8-13.[3]李明江.飞机自动增压系统仿真实验的设计与实现[J].实验室科学,2010,13(4):73-75.数学建模课程论文范文二:谈谈数学建模对社会的推动作用本文介绍数学建模的定义,在当今社会的地位以及在各领域的广泛应用,再进一步说明数学建模对培养人才的重要作用.进而说明它对社会的推动作用.论文关键词:数学建模,人才培养,社会推动作用1 数学建模的简介随着数学建模在各个领域的应用越来越广泛以及社会对数学建模教育的普及,越来越多的人已认识到数学建模的重要性.但并不是所有的人都了解到底什么是数学建模,而它又是怎么产生的.今天我们就简单的介绍一下数学建模.1.1 数学建模的概念数学建模(Mathematical Modelling)把现实世界中的实际问题加以提炼,抽象为数学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题,我们把数学知识的这一应用过程称为数学建模.]实际上就是用数学语言描述实际现象的过程.这里的实际现象既包含具体的自然现象比如自由落体现象,也包涵抽象的现象比如顾客对某种商品所取的价值倾向.这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容.可以说它是一种数学的思考方法,是“对现实的现象通过心智活动构造出能抓其重要且有用的特征的表示,常常形象化的或符号的表示.”数学建模专家也曾下了一个更让人容易理的定义:“通过对实际问题的抽象、简化,确定变量和参数,并应用某些‘规律’建立起变量、参数间的确定的数学问题(也可称为一个数学模型),求解该数学问题,解释验证所得到的解,从而确定能否用于解决问题多次循环、不断深化的过程.”简而言之,就是建立数学模型来解决各种实际问题的过程.1.2 数学建模产生的背景随着社会的发展,数学在社会各领域中的应用越来越广泛,作用越来越大,不但运用于自然科学各个领域,各学科,而且渗透到经济,军事,管理以至于社会科学和社会活动的各个领域.但是,社会对数学的需求并不只是需要在各部门中从事实际工作的人善于运用数学知识及数学大思维放法来解决他们每天面临的大量的实际问题,取得经济效益和社会效益.他们不是为了应用数学知识而寻找实际问题(就象在学校里做数学应用题),而是为了解决实际问题而需要用到数学.而且不止是要用到数学,很可能还要用到别的学科,领域的知识,要用到工作经验和常识.特别是在现代社会,要真正解决一个实际问题几乎都离不开计算机.可以这样说,在实际工作中遇到的问题,完全纯粹的只用现成的数学知识就能解决的问题几乎是没有的,你所能遇到的都是数学和其他东西混杂在一起的问题.其中的数学奥妙不是明摆在那里等着你去解决,而是暗藏在深处等着你去发现.也就是说,你要对复杂的问题进行分析,发现其中的可用数学语言来描述的关系或规律,把这个实际问题转化成一个数学问题,这就称为数学模型,建立数学模型的这个过程就称为数学建模.[2]2 数学建模在社会中的实际应用也许你会说数学都是很抽象的东西,数学建模更是看不到,摸不着,离我们的生活很遥远,但其实数学和数学建模就在你身边.数学建模作为一门研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和人们生活的实际需要密切相关的.2.1 与实际生活密切相关当你准备分期贷款购买一所新居时,面对五花八门的还款方式(期限、利率不同,按月或按年偿还,哪一种最有利.用一点不太深的数学就能准确地回答你的问题.你注意过录象机计数器数字的跳动吗.这里有什么规律吗.你找到规律,就可以根据计数器的读数算出录象带已经走过了多长时间,也就知道未转过的那段带子能否录下一定时间的一个节目.你的照片不是反映你容貌的模型吗,地图不是用特定的符号表示山川、道路的模型吗.数学模型当然更抽象些,它是由数字、字母和数学符号组成的、描述研究对象数量规律的公式、图表或者程序.解决分期贷款和计数器读数那两个问题,就要建立数学模型.一般地说,当人们设计产品参数、规划交通网络、制定生产计划、控制工艺过程、预报经济增长、确定投资方案时,都需要将研究对象的内在规律用数学的语言和方法表述出来,并将求解得到的数量结果返回到实际对象的问题中去,这种解决问题的全过程就称为建立数学模型,简称数学建模.在决策科学化、定量化呼声日渐高涨的今天,数学建模几乎是无处不在的.[3]2.2 能解决很多实际问题数学建模的重要性在于它是解决实际问题的桥梁,通过这种手段解决实际问题可以获得更高的经济效益和社会效益,为人类的进步和繁荣做出巨大贡献.下面我们列举一些应用数学建模解决实际问题的实例:(1)如何救森林失火才能最大限度地减小损失(2)如何使发电厂的水污染最小(3)汽车减震器的建模(4)自由竟争的市场供求模型(5)国民收入的稳定问题(6)军备竞赛模型(7)机械零件的可靠性设计(8)企业生产管理问题的动态规划模型(9)风险决策问题(10)人口的预测和控制模型(11)不破坏资源的持续捕鱼方案(12)受到液力加压的储油层中石油流动的改进.[4]2.3 在各领域应用广泛进入20世纪以来,随着数学以空前的广度和深度向一切领域渗透,以及电子计算机的出现与飞速发展,数学建模越来越受到人们的重视,可以从以下几方面来看数学建模在现实世界中的重要意义.2.3.1在一般工程技术领域,数学建模仍然大有用武之地.在以声、光、热、力、电这些物理学科为基础的诸如机械、电机、土木、水利等工程技术领域中,数学建模的普遍性和重要性不言而喻,虽然这里的基本模型是已有的,但是由于新技术、新工艺的不断涌现,提出了许多需要用数学方法解决的新问题;高速、大型计算机的飞速发展,使得过去即便有了数学模型也无法求解的课题(如大型水坝的应力计算,中长期天气预报等)迎刃而解;建立在数学模型和计算机模拟基础上的CAD技术,以其快速、经济、方便等优势,大量地替代了传统工程设计中的现场实验、物理模拟等手段.2.3.2在高新技术领域,数学建模几乎是必不可少的工具.无论是发展通讯、航天、微电子、自动化等高新技术本身,还是将高新技术用于传统工业去创造新工艺、开发新产品,计算机技术支持下的建模和模拟都是经常使用的有效手段.数学建模、数值计算和计算机图形学等相结合形成的计算机软件,已经被固化于产品中,在许多高新技术领域起着核心作用,被认为是高新技术的特征之一.在这个意义上,数学不再仅仅作为一门科学,它是许多技术的基础,而且直接走向了技术的前台.国际上一位学者提出了“高技术本质上是一种数学技术”的观点.2.3.3数学迅速进入一些新领域,为数学建模开拓了许多新的处女地.随着数学向诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生.一般地说,不存在作为支配关系的物理定律,当用数学方法研究这些领域中的定量关系时,数学建模就成为首要的、关键的步骤和这些学科发展与应用的基础.在这些领域里建立不同类型、不同方法、不同深浅程度模型的余地相当大,为数学建模提供了广阔的新天地.马克思说过,一门科学只有成功地运用数学时,才算达到了完善的地步.展望21世纪,数学必将大踏步地进入所有学科,数学建模将迎来蓬勃发展的新时期.[5]3 开设数学建模课程的意义正是由于数学建模在与实际生活的密切联系及利用数学建模可以解决现实生活中许多问题,并且在社会各领域中的应用越来越广泛,作用越来越大, 因而培养数学建模人才也成为当今社会不可忽视的一个问题.3.1 社会的要求进入知识经济时代,人们发现数学的重要性比以前任何时候都更加突出了.当高新技术成为社会财富迅速增长的主要因素时,人们注意到每一项高新技术实质上都包含着数学技术,而掌握高新技术的人必须具备较高的数学素质.不仅如此,数学在各个领域应用的空前广泛性使数学已经成为一种文化.当“降水概率”出现在每天的天气预报中时,当物价的增幅牵动着千家万户的切身利益时,当每天的股市行情诱使着股民买近或卖出时,当住房改革、医疗改革、养老保险改革等各项方案陆续出台时,人们终于意识到当今社会里,“数学盲”应该和“文盲”相提并论了.于是乎,数学建模教学在大学掀起,继而,各中学也掀起了一股数学建模热,数学建模教学进入了中学课堂.[6]3.2 新课改的要求新近颁布实施的《数学教学大纲》以及《国家高中数学课程标准》都明确地将数学建模纳入其教学体系之中.在最近几届的国际数学教育大会上都专门设立了“问题解决、模型化和应用”的专题.随着数学建模教育的扩展,数学建模能够增强学生的创新意识和实践能力已形成大家的共识.1993年国家教委决定在全国大学生中开展数学建模竞赛,作为大学生课外科技活动的重要内容之一.国内各高校普遍重视这项活动,把它作的有利契机.大学数学建模的蓬勃发展已深刻地影响到中学数学教育改革,在中学如何强调问题解决和数学建模已是当前数学教育改革的方向和素质教育的有效突破口.4 数学建模对培养社会人才的意义国家之所以要通过数学建模来培养人才,因为数学建模是一种培养综合素质的有效手段,在实践中树立建模的思想对综合素质发展有很大的帮助.通过对数学建模过程进行分析应用数学求解实际问题.,进而来培养我们的各方面能力,具体如下:4.1提高综合应用能力应用已学到的数学方法和思想进行综合应用和分析,并能学习一些新的数学知识,并能理解合理的抽象和简化,要在数学建模过程中灵活应用、发展使用这个工具的能力.打个比喻,可以这样说,过去学过的数学知识就好比是手中已有的武器,但并不意味着你就自动地会使用它,更谈不上能灵活、创造性地使用它.所以要求我们必须多练、多琢磨,这样才能充分灵活的应用我们所学的知识.[7]4.2.提高洞察力通俗地讲就是一眼就能抓住要点的能力.为什么要发展这种能力?因为真正的实际问题的数学建模过程的参与者,特别是在一开始,往往不是很懂数学的人,他们提出的问题更不是数学化的,这就需要建模工作者善于从实际工作提供的原形中提炼出其数学本质.搞实际工作的人一般很愿意与洞察力较强的数学工作者打交道.[8]4.3提高对当代科技最新成果的使用能力.目前主要是计算机及相应的各种软件包的使用,这将帮助你节省大量的时间,还能得到直观形象的结果,有利于与用户深入讨论.这对养成自觉应用最新科技成果的良好习惯是大有裨益的.4.4 培养双重翻译能力不但能把经过一定抽象和简化的实际问题用数学语言表达出来,形成数学模型,而且能将经过数学方法推演或计算得到的结果还原成通俗易懂的现实世界的语言.5数学建模对社会进步的推动作用由上可知,数学建模在各个领域都有着不能取代的地位,对社会各个方面的也都有着深刻的影响.社会是以人为本,而人重视的就是教育,我们暂且不谈数学建模在其他方面对社会有什么推动作用单从学生,教育这方面来谈谈数学建模的作用.[9]5.1 推动了教育改革学习和掌握数学建模的思想和方法已经成为培养21世纪富有竞争力的人才的不可或缺的组成部分进入知识经济时代,人们发现数学的重要性比以前任何时候都更加突出了.当高新技术成为社会财富迅速增长的主要因素时,人们注意到每一项高新技术实质上都包含着数学技术,而掌握高新技术的人必须具备较高的数学素质.而培养人才要从教育抓起所以近年来,数学建模教学进入课堂是各学校校教育改革的大势所趋.在数学建模教学活动和竞赛的推动下,许多学校相继开设了数学建模课程以及与此密切相关的数学实验课程,将数学建模的思想和方法融入数学主干课程的研究和试验,促进了数学课程体系和教学内容的改革,为数学建模奠定了坚实的基础.数学建模教学的开展培养了学生的数学素质、提高了学生的综合素质,增强了学生的创新意识、协作意识和奉献意识.数学建模走进课堂是数学教学体系和内容改革的一个成功的尝试.[10]5.2 提高学生综合素质在数学建模活动中,使学生明确了数学是怎样应用于解决这些实际问题上去的,并能利用有关方法进行数学建模,从而解决这些实际问题的,体现数学的实际应用价值和数学的社会功能.在次过程中激发了学生学习数学的积极性,学会了团结协作,建立良好人际关系、相互合作的工作能力.同时培养了学生的动手能力和创新精神.通过建模过程中的思维方向的多向性,丰富了学生的思维,激发学生的创新精神.学生正是在这种不断修改不断完善的过程中,来反省自己,充实自己,形成独立思考的习惯和良好的自我评价能力.从而为学生将来成为具有21世纪特点的人才奠定了基础.[11]数学建模是各学科与实际应用联系的桥梁,与人们的实际生活和各科学领域密切相关的,已成为社会科学中不可或缺的一部分.要求我们有效的掌握数学建模的相关知识,合理的应用它,让我们用数学建模知识来推动社会各个领域的发展与进步.参考文献:[1] 皮连生编:学与教的心理学[M] 上海:华东师范大学出版社,1998年9月.[2] 张思明:中学数学建模教学的实践与探索[M]北京:北京教育出版社,1998年9[3] 张启凡、甘小林、冯永明.中学数学应用教育的课题开发与研究.《中学数学研究》,2000.4[4] 谭国华.《数学模型》[M](第三版)广东教育出版社,2000[5] 袁竞成.中学数学应用题与数学建模的差异研究[J]《中学数学教学参考》,2001.7[6] 黄敬频浅谈数学建模思想在中学课堂的渗透[J] 广西大学学报(自然科学版)2003年z2期[7] 贾敬桂占吉等数学建模与数学实验[M] 北京:高等教育出版社 1998年7月第一版:193[8] 白其峥数学建模案例分析[M] 北京:海洋出版社 2002年4月第一版:98[9] 朱道元等编著 2000数学建模案例精选{M] 北京:科学出版社2000年3月第一版:51-53[10]曾权伟. 对高中数学教学中学生主体作用的认识[J]. 成都教育学院学报.2002,16(3)。

相关文档
最新文档