导数中间值定理
3.3第三章:中值定理及导数的应用

上连续;
2.按左、右导数的定义不难求出
f
/ 1
f
/ 1 1, 从而
f x 在 0,2 内
可导,且
f
/ x
x,0 x 1,
1 x2 ,1 x
2.
因此, f x 在 0,2上满足拉氏定理的条件.
(二)由拉氏定理的结论: 0,2 ,使
f
/
f
2
2
f 0
0
1 2
.不难算得:
1 或 2
2 0,2.
x 2x
lim x
x 1 21
2 x x
.
对于不直接表现为 0 型或 型的不定型,要首先合理转化,使其成为 0
四.洛必达法则 我们在第一章曾注意到,考试时考察得最多的求极限问题要么是 0 型,要么是 0
。对付这种问题,我们根据具体情形曾给出了因式分解约零因子、根式有理 化约零因子、等价无穷小替换、凑重要极限等方法。现在有一个著名的法则—
—洛必达法则,可用一招统一解决大部分的 0 或 的极限问题。 0
例 6.设 f x x 1x 2x 3x 4 ,证明方程 f x 0 有三个实根,并
且它们分别位于区间 1, 2, 2,3, 3, 4. (见书第 105 页)
例 7.证明方程 x5 x 1 0 只有一个正根.(反证).
拉氏定理有两个重要的的推论,也要会记会用.
推论 1:若对任意 x I , f / x 0 ,则 f x C,x I.
x
x.
.
( .
1,1
x
)
例 3.证明:对 x 0,ex 1 x. .
例 4.证明:对 x 0, ln 1 x x. .
大家自己证明,这两个结论要记住. 三.利用中值定理证明等式成立(或方程有无根)
中值定理与导数的应用

第三章 中值定理与导数的应用§3. 1 中值定理 一、罗尔定理 费马引理设函数f (x )在点x 0的某邻域U (x 0)内有定义, 并且在x 0处可导, 如果对任意x ∈U (x 0), 有 f (x )≤f (x 0) (或f (x )≥f (x 0)), 那么f '(x 0)=0.罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即0)('=ξf .例:设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)1(=f ,证明:在(0,1)内存在ξ,使得ξξξ)()(f f -='.【分析】本题的难点是构造辅助函数,可如下分析:()0)(0)()(0)()()()(='→='+→='+→-='x xf x f x x f f f f f ξξξξξξ【证明】令)()(x xf x G =,则)(x G 在[0,1]上连续,在(0,1)上可导,且0)1(1G (1)0,0)(0)0(====f f G ,)()()(x f x x f x G '+=' 由罗尔中值定理知,存在)1,0(∈ξ,使得)()()(ξξξξf f G '+='.即ξξξ)()(f f -='例:设函数f (x ), g (x )在[a , b ]上连续,在(a , b )内具有二阶导数且存在相等的最大值,f (a )=g (a ), f (b )=g (b ), 证明:存在(,)a b ξ∈,使得()().f g ξξ''''=【分析】需要证明的结论与导数有关,自然联想到用微分中值定理,事实上,若令()()()F x f x g x =-,则问题转化为证明()0F ξ''=, 只需对()F x '用罗尔定理,关键是找到()F x '的端点函数值相等的区间(特别是两个一阶导数同时为零的点),而利用F (a )=F (b )=0, 若能再找一点(,)c a b ∈,使得()0F c =,则在区间[,],[,]a c c b 上两次利用罗尔定理有一阶导函数相等的两点,再对()F x '用罗尔定理即可。
中值定理及导数应用笔记

中值定理及导数应用笔记中值定理是微积分学中一个重要的定理,它的主要内容是,若在定义域上的某个闭区间上存在函数f(x),其满足f(a)=f(b)且f 第一次导数在区间内存在,则必有存在一个定点c,使得f(c)=f (a)=f(b)以及f(c)=0,这个定点c就是中值定点。
中值定理的应用非常广泛,在定理的基础上我们可以对函数的最大值、最小值、极值点,以及函数的单调性、函数的奇偶性等等特性进行讨论、分析。
首先,我们来讨论二次函数的性质。
知函数f(x)=ax2+bx+c(a ≠0),利用中值定理,可以知道f(x)=2ax+b=0,解得x=-b/2a,即为函数的极值点。
者,我们可以利用中值定理来判断函数是否在某个区间内单调,即在定义域上的某个闭区间上用f(x)>0或f(x)<0来判断函数是否在该区间是单调递增或单调递减。
此外,中值定理还可以用来判断函数是否是奇函数或偶函数。
知函数f(x),如果f(-x)=f(x),则定义为偶函数,此时f(x)在全定义域上的值都为0;如果f(-x)=-f(x),则为奇函数,此时f(x)在任意定义域上均有值,且f(0)=0。
另外,中值定理还可以用于分析多元函数的极值点的性质及其存在的条件,以及在不同情况下求解极值点的方法。
多元函数中,若某个极值点对所有变量都满足偏导数为0,则此极值点为极大值点;如果有变量的偏导数大于0,则此极值点为极小值点。
最后,中值定理作为微积分的重要定理,在微积分的诸多数学问题的求解过程中发挥着至关重要的作用,它也被广泛用于物理学和工程学中的各种应用领域,以帮助人们求解多变量函数的极值点问题。
本文就以中值定理为主题,介绍了它的定义特性,原理及其应用,以期为大家带来一些有用的指导,同时帮助大家在实际应用中更加得心应手,从而掌握微积分的精髓。
拉格朗日定理的应用

拉格朗日定理的应用
拉格朗日定理是微积分中的一个重要定理,是一种中间值定理。
它指出,如果函数在一定区间内连续,且在这个区间内它有导数,那么这个函数的某个导数值可以用这个函数在某个区间中的两个端点的函数值来表示。
拉格朗日定理经常用于解决函数近似值、最值、凸凹性等问题,下面我们来简单介绍一些其应用。
1. 求解最值
拉格朗日中值定理可以用来求解函数的最值。
假设函数在区间[a,b]上连续,且在(a,b)内有导数。
那么只需要找到函数在(a,b)内的驻点(即导数为零的点),再将这些驻点与区间端点比较,就能找到函数的最大值和最小值。
2. 证明函数单调性
如果函数在[a,b]上连续,且在(a,b)内有导数,那么拉格朗日定理可以用来证明函数在[a,b]上的单调性。
如果函数在[a,b]上的导数大于零,则函数单调递增,如果小于零,则函数单调递减。
3. 求解方程根
4. 求解不等式
拉格朗日定理可以用来求解不等式,比如可以通过拉格朗日中值定理证明柯西-施瓦茨不等式。
5. 刻画函数的凸凹性
综上所述,拉格朗日定理在微积分中有着广泛的应用,可以帮助我们解决许多重要的问题。
中值定理及导数的应用(一)

的极大值点
中值定理及应用
2、若对于该邻域内任意的x(x x0 )
总有f (x) f (x0). 则称 f (x0)为函数
f (x) 的极小值,并称点 x0是 f (x)
的极小值点 函数的极大值与极小值统称为函 数的极值,极大值点与极小值点统
称为函数的极值点。
D、若函数 f (x)在点 x0 连续,则 f (x0)
一定存在
中值定理及应用
四、函数的最大值与最小值
定义
设函数y f (x) 在闭区间[a,b]上有定
义,设 x0 [a,b], 若对于任意 x [a,b], 恒有f (x) f (x0)[或f (x) f (x0) ],则称 f (x0)
为函数f (x)在闭区间[a,b]上的最大(小) 值。称 x0为f (x) 在闭区间[a,b]上的最
x (x0, x0 )时,f (x) 0, 则函数
f (x)在点 x0处取得极大值 f (x0 );
2、若当 x (x0 , x0)时,f (x) 0, x (x0, x0 )时,f (x) 0, 则函数
f (x)在点 x0处取得极小值 f (x0 );
中值定理及应用
3、若当x (x0 , x0 ) 和 x (x0, x0 ) 时,f (x) 的符号相同,则函数 f (x)
故函数 y x 4 的单调区间是
x (2,0),(0,2)
应选D
中值定理及应用
用函数的单调性证明不等式是一种 常用的方法。
一般步骤为: 假设证明 f (x) g(x)(x D)成立。
1、设 F(x) f (x) g(x) 2、求导数F ( x)并根据已知条件
判断F ( x)的正负。 从而判断 F ( x)的增减性。
中值定理使用条件

中值定理使用条件
(原创版)
目录
1.中值定理的概念
2.中值定理的使用条件
3.中值定理的应用举例
正文
【1.中值定理的概念】
中值定理,是微积分学中的一个重要定理,主要用于证明函数在某一
区间内的平均变化率等于该函数在该区间内某一点(即中间值)的瞬时变
化率,即导数。
该定理在数学分析、物理学、经济学等各种学科中都有着
广泛的应用。
【2.中值定理的使用条件】
中值定理的使用条件主要有以下几点:
(1)函数的连续性:中值定理要求函数在其定义域内连续,这是使
用中值定理的最基本条件。
(2)函数的导数存在:即函数在某一区间内可导,这是使用中值定
理的核心条件。
(3)拉格朗日中值定理:若函数 f(x) 在区间 [a,b] 上可导,在开
区间 (a,b) 内存在连续函数 F(x),且 F"(c)=0,则存在ξ∈(a,b),使
得 f(b)-f(a)=f"(ξ)F(b)-f"(ξ)F(a)。
(4)罗尔定理:若函数 f(x) 在区间 [a,b] 上连续,在开区间 (a,b) 内可导,且 f(a)=f(b),则存在ξ∈(a,b),使得 f"(ξ)=0。
【3.中值定理的应用举例】
(1)证明函数的单调性:通过中值定理,可以判断函数在某一区间内的单调性,从而对函数的性质有更深入的理解。
(2)求函数的极值:利用中值定理,可以求出函数在某一区间内的极值,为函数的优化问题提供理论依据。
(3)证明不等式:中值定理也可以用于证明一些不等式,如拉格朗日中值定理可以用于证明柯西不等式。
大学微积分(上)第四章 中值定理

2
证 设 f ( x ) arcsin x arccos x , x [1,1]
f ( x ) ( 1 1 x
2
) 0.
f ( x) C ,
x [1,1]
又 f (0) arcsin 0 arccos 0 0 , 2 2 即C . 2 arcsin x arccos x . 2
o
a
x1 x2
x4
x5 b
x
一、函数的极值
定义: 在其中当 (1) 时,
则称
称
为
的极大点 ,
为函数的极大值 ;
(2)
则称 称
为
的极小点 , 为函数的极小值 .
y 2 1
o
极大点与极小点统称为极值点 . 为极大点 , 为极小点 , 是极大值 是极小值
1 2
x
注意: 1) 函数的极值是函数的局部性质. 2) 对可导函数, 极值可能出现在导数为 零的点
第四章 中值定理及导数的应用
在本章中, 要利用导数来研究函数的性质与形态.
如: 函数增量与自变增量之间的关系;
凹凸、最大,最小、图形等.
函数的单调、
中值定理是利用导数研究函数的理论基础.
第一节 中值定理
洛尔定理 拉格朗日中值定理 柯西中值定理
y
x 1 , x4 为极大点 x 2 , x5 为极小点
解:∵ f (x)在[0, ]上连续,在(0, )上可导, 且 f(0) = f() ∴由洛尔定理知: 在(0, )内至少有一点,使 f ()=0,
即: cos =0, 故=/2。
例2
验证洛尔定理对函数 f ( x ) x 3 4 x 2 7 x 10 在 [1,2]上的正确性。 解:∵ f (x)在[-1, 2]上连续,在(-1, 2)上可导, 且 f(-1) = f(2) ∴由洛尔定理知:
导数及拉格朗日中值定理

五、函数的最值
我们知道,如果函数 f (x) 在闭区间 [a, b] 上连续,则必在[a, b]上有最大值和最小值。函 数在闭区间上的最大值和最小值一般只能在区 间内的极值点和区间的端点处取得。
例4 求 yx48x21在[-3,3]上的最大值和最小值。 解: y 4 x 3 1 x 6 4 x ( x 2 )x ( 2 ) 令 f(x)0 得驻点 x1 2 , x2 0 ,x3 2 计算得f(-2)=f(2)=-15,f(0)=1,f(-3)=f(3)=10。 比较 得函数在[-3,3]上的最大值为f(-3)=f(3)=10, 最小值为f(-2)=f(2)=-15。
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理
(1)
(2)
如果函数 f(x)在闭区间[a, b]上连续,在开区间(a, b)内
(3)
可导,那么在(a, b)内至少有一点(a b),使等式
f (b) f (a) f ' ()(b a) 成立.
注意:最值与极值的关系
在开区间上如何求最值?有这样的结论,实 际问题中:可知有最小(大)值存在而函数只有 一个极小(大)值则这个极小(大)就是最小 (大)值。
如何求函数的极值?
如下图所示:
y y=f(x)
0
x1
x2
x3
x4
x
可见,极值与函数的单调性密切联系,极值就 是函数单调区间的分界点。因而可以通过求单调区 间来求极值。
我们知道,函数的驻点不一定是函数的极值点,那 么在求出函数驻点之后,怎样判断它们是不是函数的极 值点呢?如果是极值点又如何进一步判断是极大值点还 是极小值点呢?联系前面用导数符号判定函数单调性的 方法,这一问题是不难解决的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数中间值定理
导数中间值定理是微积分中一个非常重要的定理,它可以帮助我们证明函数的连续性、判断函数的单调性等。
该定理是由法国数学家拉格朗日在18世纪提出的。
具体来说,如果一个函数f(x)在区间[a,b]上连续,且在(a,b)内可导,那么必定存在一个点c∈(a,b),使得f(b)f(a)=f′(c)(ba)。
这个定理可以用来证明很多重要的结果,比如说罗尔定理,拉格朗日中值定理等。
同时,也可以根据它来推导一些函数的性质,比如说对数函数、指数函数等的增长趋势。
总之,导数中间值定理是微积分学习中非常重要的一部分,它是其他很多定理的基础,掌握了它,就能更好地理解和应用微积分知识。
- 1 -。