数学的转化思想方法

合集下载

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用小学数学教学中的转化思想是指教师通过对学生的知识、思维能力及兴趣爱好等进行分析,针对性地设计教学活动,从而帮助学生将抽象的概念、原理转化为实际应用的技能和解决问题的能力。

其中,运用转化思想的重点在于如何把抽象的数学知识转化为学生能够理解和应用的实际问题,从而激发学生的学习兴趣和能力。

一、生活化陈述法运用在小学数学教学中,教师可以运用生活化陈述法来帮助学生理解数学知识。

生活化陈述法是指教师将数学概念和原理引入到学生熟知的生活中去,从而达到简化抽象概念的目的。

例如,在讲解平均数时,老师可以先通过介绍同学们身高的平均数来引入概念,然后再进行大量的习题训练。

这样,概念就被生动地呈现给学生,他们也更积极地学习。

二、创设情景运用在小学数学教学中,教师可以通过创设情景来让学生感受到数学运用的实际意义。

例如,在讲解几何图形的面积或体积时,可以通过实地测量小区的草坪或花坛的面积或体积,让学生亲身体验通过数学公式计算所得的结果。

这样,学生不仅可以理解数学的实际应用,也会对数学产生浓厚的兴趣。

三、启发式教学运用启发式教学是通过对问题本身的观察、探究以及发散性思考,来引导学生主动探索、发现、分析、解决问题的方法。

在小学数学教学中,教师可以设计具有启发性的教学任务,通过让学生自主思考和自主解决问题,来理解数学知识和技能的运用。

例如,在讲解小学数学加减法时,可以出一道类似于“乘法比加减法难五倍”的问题让学生探究解决方法,通过这个问题,让学生发现乘法与加减法的内在联系,从而更好地掌握学科知识。

四、课堂互动运用在小学数学教学中,教师不仅是一个传授知识的角色,而且还是一个引导者、辅导员和评价者。

因此,教师可以通过课堂互动方式,以学生为中心,使学生主动探究,让教学变得更加生动、自然,达到最佳教学效果。

例如,在讲解数轴上的正负数概念时,可以参考学生在生活中对于加减法和温度变化的实际经历,让学生互相交流和讨论,达到探究的目的。

化归与转化的数学思想解题举例

化归与转化的数学思想解题举例

化归与转化的数学思想解题举例在数学问题中,化归与转化是一种常用的解题思路。

它们可以帮助我们将原问题转化为一个简化的形式,从而更容易得到解答。

本文将通过几个具体的例子来说明化归与转化在数学问题中的应用。

一、化归化归是将一个复杂的问题转化为一个更简单的等价问题的过程。

它通常是通过引入新变量或假设,将原问题转化为一个更易于处理的形式。

例子1:求解一元二次方程的解对于一元二次方程ax^2 + bx + c = 0,如果a不等于0,我们可以通过化归的方法求解其根。

首先,我们可以将方程中的未知数x改写为y = x + p,其中p是一个常数。

这样,我们将原来的方程转化为了ay^2 + dy + e = 0(其中d 和e是和p相关的常数)。

接下来,我们可以通过求解新方程来得到原方程的解。

由于新方程中的y是一个平移的变量,我们可以通过平方完成对y的消除。

最后,我们将得到一个新的一次方程: Cy + F = 0(C和F是和p 相关的常数)。

求解这个一次方程,我们就可以得到原方程的解。

通过化归,我们将原本复杂的问题转化为了一个简单的一次方程的求解问题,从而更容易得到解答。

二、转化转化是将一个问题转换为一个具有相同解的等价问题的思想。

它可以通过改变问题的表述方式或者引入新的概念来实现。

例子2:求解无穷几何级数的和对于一个无穷几何级数a + ar + ar^2 + ar^3 + ...(其中| r | < 1),我们可以使用转化的思想来求它的和。

首先,我们可以将级数的和S表示为S = a + ar + ar^2 + ar^3 + ...,这是一个无穷级数。

接下来,我们将级数的每一项都乘以公比r,得到rS = ar + ar^2 + ar^3 + ar^4 + ...,这是另一个等价的无穷级数。

然后,我们将这两个等式相减,得到(S - rS) = a,进一步化简得到S = a / (1 - r)。

通过这样的转化,我们得到了无穷几何级数的和的数学表达式,简化了求解过程。

转化的思想方法在小学数学课堂中的有效应用

转化的思想方法在小学数学课堂中的有效应用

转化的思想方法在小学数学课堂中的有效应用数学是一门抽象而又具体的学科,对于小学生来说,数学课可能是他们最头疼的一节课。

要想让小学生在数学学习中取得更好的成绩,教师需要不断探索有效的教学方法。

转化的思想方法,即通过转化问题的方式来帮助学生理解和解决数学问题,是一种值得在小学数学课堂中应用的方法。

一、转化的思想方法的基本概念转化的思想方法是指在解决问题时,通过转化问题的方式来帮助学生理解和解决数学问题。

转化的思想方法包括数学模型的构建、数学知识的运用以及问题的转化和解决等步骤。

通过这种方法,学生可以更加直观地理解数学知识,提高解决问题的能力。

二、转化的思想方法在小学数学课堂中的有效应用1. 引导学生构建数学模型在小学数学课堂中,教师可以通过引导学生构建数学模型的方式,来帮助他们理解和解决数学问题。

在解决实际问题时,教师可以通过引导学生将问题抽象成数学模型,然后再对模型进行分析和求解。

通过这种方式,学生可以更加直观地理解问题的本质,从而更好地解决问题。

三、转化的思想方法在小学数学课堂中的意义和价值1. 帮助学生理解数学知识通过转化的思想方法,学生可以更加直观地理解数学知识,从而更好地掌握和运用数学知识。

这有助于提高学生的数学学习兴趣,激发他们对数学的好奇心和探索欲望。

2. 培养学生解决问题的能力通过转化的思想方法,学生可以更加灵活地运用数学知识,从而更好地解决问题。

这有助于培养学生的解决问题的能力,提高他们的问题解决能力和创新意识。

四、小学数学课堂中转化的思想方法的应用策略1. 注重问题的实际意义在小学数学课堂中应用转化的思想方法时,教师应该注重问题的实际意义,引导学生将数学知识与实际问题相结合,从而更好地理解和应用数学知识。

2. 引导学生积极参与在小学数学课堂中应用转化的思想方法时,教师应该引导学生积极参与,鼓励他们根据自己的理解和体会来转化和解决问题,从而更好地培养他们的数学思维和解决问题的能力。

数学思想之转化与化归总结

数学思想之转化与化归总结

数学思想之转化与化归总结在数学中,转化与化归是一种常用的思想方法。

通过转化问题的表达形式或者化简问题的复杂度,我们可以更容易地理解和解决数学问题。

转化与化归涉及到问题的等价转化、代数化简、几何转化、枚举化归等多个方面。

下面将从这几个方面对转化与化归进行总结。

首先,等价转化是一种常见的数学思想之一。

它意味着将一个问题转化为与之等价的另一个问题,以求得更容易解决的问题。

等价转化包括将问题的形式转化为更简单或者更具有可操作性的形式,或者将问题与已知的问题进行对应。

一个经典的例子是将一个复杂的代数方程转化为一个简单的一次方程或者二次方程,从而解决原方程。

在某些情况下,等价转化也可以是不可逆的,这意味着我们只能从简单的问题得到复杂的问题,但是这种转化仍然能够帮助我们更好地理解问题的本质和特点。

其次,代数化简是转化与化归的另一个重要方面。

代数化简是指通过运用代数运算的性质和规则,将一个复杂的代数表达式或者方程化简为更简单的形式。

代数化简的方法包括合并同类项、因式分解、配方法、三角函数的恒等变换等。

代数化简不仅可以减少问题的复杂度,还可以揭示问题的规律和特点,从而更好地解决数学问题。

几何转化是将几何问题转化为代数问题或者相反,通过几何图形的变换和变形,我们可以使得问题的解决更加直观和简单。

几何转化常常涉及到使用待定系数法、相似三角形的性质、勾股定理等几何知识,从而求得问题的解。

几何转化不仅能够帮助我们更好地理解和解决几何问题,还能够提高我们的思维能力和几何直观。

最后,枚举化归是一种将一个复杂的问题化归为若干个简单的情况,通过对每个简单情况的分析和解决,来解决原问题的方法。

枚举化归可以通过列举具体的例子,或者考虑特殊情况来进行。

枚举化归的优点是能够将一个复杂的问题简化为多个简单的情况,从而更好地理解和解决问题。

然而,枚举化归的缺点是可能需要计算大量的情况,耗费时间和精力。

综上所述,转化与化归是数学中一种重要的思想方法。

数学中的转化思想及应用

数学中的转化思想及应用

数学中的转化思想及应用八一班 李有艺数学对于我们的生活尤为重要,也可以说,我们的生活中处处存在数学。

当然,在许多的数学范例中,都离不开转化思想的应用。

数学解题的本质就是转化,因此我们要熟练,掌握转化的思想。

一、整体转化思想1、在某些数学问题中,已知一个代数式的值,求另一个公式的是值。

但我们根本无法求出待求式中各个未知量的值。

此时,我们可以将代数是看做一个整体,并求上,这个整体的值,然后根据题意做出调整。

例1;若(m ²+n ²)²-2(m ²+n ²)-3=0求m ²+n ²解:设m ²+n ²=0则a ²-2a-3=0解得a 1=3a 2=-1∴m ²+n ²=3或-1∵m ²+n ²≥0∴m ²+n ²=32.在一种数学问题中,往往不只一种解题方法和思路,但我们大多数人想出来的却是比较复杂的发法,其实仔细去多想一想简单的方法随之而有业。

例2;在Rt △ABC 中,∠ABC=90°斜边ABC 的周长为△ABC 的面积。

求出三角形面积,需利用公式S=21底×高,所以我们可以求出底和高的值,但我们可以求出底和高的积,也可以求出面积 解Rt △ACBCD ∴CD=21∴AB=2∵设由题可得此时,大多数人会去解方程,而我们仔细看一看,在这个方程组中,有两个数的平方和,还有两个数的平方,由此,我们确定解法,利用完全平方公式。

①²-②得(x+y )²-(x ²+y ²)=2∴2xy=2∴xy=1∴S △BCA=21 xy=21题中所求xy 即为底和高的积,这样我们可以避免解二元二次方程的麻烦和其中可能出现的错误。

二,位置转化思想求证线段之间的关系,大多数人选择‘割补法”即在短线段上补,长线段上截,需要做出相应的辅助线。

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用转化思想在小学数学教学中是非常重要的,它帮助学生将抽象的数学概念转化为具体的事物或情境,使学习更加有趣和实际。

下面将介绍一些在小学数学教学中运用转化思想的方法和效果。

一、用具体的事物或情境帮助理解抽象的概念在教授数学中的抽象概念时,可以通过使用具体事物或情境来帮助学生理解。

在教授几何中的形状时,可以使用各种不同的实物来让学生观察和感受。

使用各种不同的图形卡片,让学生比较它们之间的差异和共同点,以及它们在日常生活中的应用。

这样可以让学生更好地理解抽象的概念,并将其转化为具体的形状。

二、利用视觉化工具辅助教学视觉化工具在小学数学教学中是非常有用的。

通过使用各种视觉化工具,如图片、图表、图形等,可以帮助学生更好地理解数学概念,以及将其转化为具体的情境。

在教授分数的概念时,可以使用图片或图表来表示分数的大小和比较。

这样可以让学生更加直观地理解分数,并将其转化为具体的情境。

三、通过游戏和活动激发学生的兴趣和积极性在小学数学教学中,使用游戏和活动是非常有效的一种方法,可以帮助学生更好地理解和应用数学概念。

通过游戏和活动,可以让学生参与体验数学的乐趣和实际用途。

在教授加减法时,可以设计一些趣味的游戏和活动,如数学接龙、数学竞赛等,让学生通过互动和竞争的方式来学习和应用数学概念。

这样可以激发学生的兴趣和积极性,提高他们的学习效果。

四、启发学生思维,培养他们的问题解决能力转化思想在小学数学教学中还可以帮助学生培养问题解决能力。

通过引导学生思考和提问,可以激发他们的思维,让他们主动思考并尝试解决问题。

在解决数学问题时,可以提出一些启发性的问题,引导学生主动思考和发现解决问题的方法。

这样可以提高学生的问题解决能力,并培养他们的创新思维和解决实际问题的能力。

转化思想在小学数学教学中的运用是非常重要的,它可以帮助学生更好地理解抽象的数学概念,并将其转化为具体的事物或情境。

通过使用具体的事物或情境、视觉化工具、游戏和活动以及启发性问题,可以提高学生的学习兴趣和积极性,并培养他们的问题解决能力。

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用

关于小学数学教学中转化思想的运用转化思想是指将抽象或难以理解的概念和知识转化成易于理解和运用的实际内容或图像形式。

在小学数学教学中,转化思想的应用可以帮助学生更好地掌握数学知识,提高数学解题能力。

一、利用具体的实物或图像进行转化例如,在学习数学中的“分数”这个概念时,可以通过切割馅饼、糖果等实物来形象化分数的概念,使学生更好地理解分数的含义和大小关系,进而提高计算分数的能力。

又如,在学习平面图形的认识和分类时,利用图形观察器、手工制作模型等方式,让学生亲身感受各种平面图形的特征和区别,并通过图形比较、分类等操作,进一步加深对平面图形概念的理解。

二、利用比喻和类比进行转化比如,在教学中的“旋转对称”的概念,可以引导学生通过比喻的方式来理解这个概念,例如:将一张纸切成若干形状相同的图形,然后取其中某一个图形旋转180度后,发现这个图形和原来的图形完全相同,这就是旋转对称。

类比的方式也可以帮助学生更好地掌握数学知识。

例如,在教学中的“等差数列”概念,可以启发学生类比一下排队的情形,排队的人数就像等差数列中的项数,排队的间隔就像等差数列中的公差,通过这样的类比,学生可以更加深入地领会等差数列的特点和规律。

三、利用实例让学生自主发掘在教学中,教师可以引导学生通过给出实际问题或生活中的场景,使学生自己去发掘和理解问题背后的数学概念和规律。

例如,在学习“百分数”的应用过程中,教师可以设置一些生活场景的实际问题,如:在超市购买商品时的打折优惠,参加活动时的抽奖几率等等,引导学生自己去计算、分析,发现其中的百分数规律和应用方法,最终达到自主理解和掌握的目的。

总之,转化思想的应用在小学数学教学中扮演着重要的角色,它可以帮助学生更好地理解和掌握数学知识,提高数学解题能力,同时也丰富了教学方法和教育手段,增强了学生的学习兴趣和参与度。

2023年新高考数学大一轮复习专题八思想方法第4讲转化与化归思想(含答案)

2023年新高考数学大一轮复习专题八思想方法第4讲转化与化归思想(含答案)

新高考数学大一轮复习专题:第4讲 转化与化归思想 思想概述 转化与化归思想方法适用于在研究、解决数学问题时,思维受阻或试图寻求简单方法或从一种情形转化到另一种情形,也就是转化到另一种情形使问题得到解决,这种转化是解决问题的有效策略,同时也是获取成功的思维方式.方法一 特殊与一般的转化一般问题特殊化,使问题处理变得直接、简单,也可以通过一般问题的特殊情形找到一般思路;特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果;对于某些选择题、填空题,可以把题中变化的量用特殊值代替,得到问题答案.例1 (1)(2020·青岛模拟)“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上两条互相垂直的切线的交点必在一个与椭圆同心的圆上,该圆称为原椭圆的蒙日圆,若椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12,则椭圆C 的蒙日圆的方程为( ) A .x 2+y 2=9B .x 2+y 2=7 C .x 2+y 2=5D .x 2+y 2=4 答案 B 解析 因为椭圆C :x 2a +1+y 2a =1(a >0)的离心率为12, 所以1a +1=12,解得a =3, 所以椭圆C 的方程为x 24+y 23=1, 所以椭圆的上顶点A (0,3),右顶点B (2,0),所以经过A ,B 两点的切线方程分别为y =3,x =2,所以两条切线的交点坐标为(2,3),又过A ,B 的切线互相垂直,由题意知交点必在一个与椭圆C 同心的圆上,可得圆的半径r =22+32=7,所以椭圆C 的蒙日圆方程为x 2+y 2=7.(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a ,b ,c 成等差数列,则cos A +cos C 1+cos A cos C等于( )A.45B.15C.35D.25 思路分析 求cos A +cos C 1+cos A cos C→考虑正三角形ABC 的情况 答案 A 解析 令a =b =c ,则△ABC 为等边三角形,且cos A =cos C =12,代入所求式子,得cos A +cos C 1+cos A cos C=12+121+12×12=45. 一般问题特殊化,使问题处理变得直接、简单,特殊问题一般化,可以使我们从宏观整体的高度把握问题的一般规律,从而达到成批处理问题的效果.方法二 命题的等价转化将题目已知条件或结论进行转化,使深奥的问题浅显化、繁杂的问题简单化,让题目得以解决.一般包括数与形的转化、正与反的转化、常量与变量的转化、图形形体及位置的转化.例2 (1)由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,得m 的取值范围是(-∞,a ),则实数a 的值是( )A .(-∞,1)B .(-∞,2)C .1D .2 思路分析 命题:存在x 0∈R ,使01ex --m ≤0是假命题→任意x ∈R ,e |x -1|-m >0是真命题→m <e |x -1|恒成立→求m 的范围→求a答案 C解析 由命题“存在x 0∈R ,使01ex --m ≤0”是假命题,可知它的否定形式“任意x ∈R ,e |x -1|-m >0”是真命题,可得m 的取值范围是(-∞,1),而(-∞,a )与(-∞,1)为同一区间,故a =1.(2)若对于任意t ∈[1,2],函数g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x 在区间(t,3)上总不为单调函数,则实数m 的取值范围是________.思路分析 g x 在t ,3上总不为单调函数→先看g x 在t ,3上单调的条件→补集法求m 的取值范围答案 ⎝ ⎛⎭⎪⎫-373,-5 解析 g ′(x )=3x 2+(m +4)x -2,若g (x )在区间(t,3)上为单调函数,则①g ′(x )≥0在(t,3)上恒成立,或②g ′(x )≤0在(t,3)上恒成立.由①得3x 2+(m +4)x -2≥0,即m +4≥2x -3x 在x ∈(t,3)上恒成立, 所以m +4≥2t-3t 恒成立,则m +4≥-1, 即m ≥-5;由②得m +4≤2x-3x 在x ∈(t,3)上恒成立, 则m +4≤23-9,即m ≤-373. 所以使函数g (x )在区间(t,3)上总不为单调函数的m 的取值范围为-373<m <-5. 根据命题的等价性对题目条件进行明晰化是解题常见思路;对复杂问题可采用正难则反策略,也称为“补集法”;含两个变量的问题可以变换主元.方法三 函数、方程、不等式之间的转化函数与方程、不等式紧密联系,通过研究函数y =f (x )的图象性质可以确定方程f (x )=0,不等式f (x )>0和f (x )<0的解集.例3 (2020·全国Ⅱ)若2x -2y <3-x -3-y ,则( )A .ln(y -x +1)>0B .ln(y -x +1)<0C .ln|x -y |>0D .ln|x -y |<0 答案 A解析 ∵2x -2y <3-x -3-y ,∴2x -3-x <2y -3-y. ∵y =2x -3-x =2x -⎝ ⎛⎭⎪⎫13x 在R 上单调递增, ∴x <y ,∴y -x +1>1,∴ln(y -x +1)>ln1=0.例4 已知函数f (x )=eln x ,g (x )=1ef (x )-(x +1).(e =2.718……) (1)求函数g (x )的极大值;(2)求证:1+12+13+ (1)>ln(n +1)(n ∈N *). 思路分析 g x 的极值→ln x <x -1→赋值叠加证明结论(1)解 ∵g (x )=1e f (x )-(x +1)=ln x -(x +1), ∴g ′(x )=1x-1(x >0). 令g ′(x )>0,解得0<x <1;令g ′(x )<0,解得x >1.∴函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,∴g (x )极大值=g (1)=-2.(2)证明 由(1)知x =1是函数g (x )的极大值点,也是最大值点,∴g (x )≤g (1)=-2,即ln x -(x +1)≤-2⇒ln x ≤x -1(当且仅当x =1时等号成立),令t =x -1,得t ≥ln(t +1)(t >-1).取t =1n(n ∈N *)时, 则1n >ln ⎝ ⎛⎭⎪⎫1+1n =ln ⎝ ⎛⎭⎪⎫n +1n , ∴1>ln2,12>ln 32,13>ln 43,…,1n >ln ⎝ ⎛⎭⎪⎫n +1n , ∴叠加得1+12+13+…+1n >ln ⎝ ⎛⎭⎪⎫2×32×43×…×n +1n =ln(n +1).即1+12+13+ (1)>ln(n +1)(n ∈N *). 借助函数、方程、不等式进行转化与化归可以将问题化繁为简,一般可将不等关系转化为最值值域问题,从而求出参变量的范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学的转化思想方法数学的转化思想方法导语:数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。

以下是店铺为大家整理分享的数学的转化思想方法,欢迎阅读参考。

数学的转化思想方法特殊与一般的数学思想:对于在一般情况下难以求解的问题,可运用特殊化思想,通过取特殊值、特殊图形等,找到解题的规律和方法,进而推广到一般,从而使问题顺利求解。

常见情形为:用字母表示数;特殊值的应用;特殊图形的应用;用特殊化方法探求结论;用一般规律解题等。

整体的数学思想:所谓整体思想,就是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。

用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏锐地洞察问题的本质,有时也不要放弃直觉的作用,把注意力和着眼点放在问题的整体上。

常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。

分类讨论的数学思想:也称分情况讨论,当一个数学问题在一定的题设下,其结论并不唯一时,我们就需要对这一问题进行必要的分类。

将一个数学问题根据题设分为有限的若干种情况,在每一种情况中分别求解,最后再将各种情况下得到的答案进行归纳综合。

分类讨论是根据问题的不同情况分类求解,它体现了化整为零和积零为整的思想与归类整理的方法。

运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。

分类讨论的原则是:(1)完全性原则,就是说分类后各子类别涵盖的范围之和,应当是原被分对象所涵盖的范围,即分类不能遗漏;(2)互斥性原则,就是说分类后各子类别涵盖的范围之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,就是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。

分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,获取阶段性结果,归纳小结,综合得出结论。

常见的情形为:由字母系数引起的讨论;由绝对值引起的讨论;由点、线的运动变化引起的讨论;由图形引起的讨论;由边、点的不确定引起的讨论;存在特殊情形而引起的讨论;应用问题中的分类讨论等。

转化的数学思想:将未知解法或难以解决的问题,通过观察、分析、联想、类比等思维过程,选择恰当的方法进行变换,化归为在已知知识范围内已经解决或容易解决的问题。

解题的过程实际就是转化的过程。

常见的情形为:高次转化为低次、多元转化为一元、式子转化为方程、次元转化为主元、正面转化为反面、分散转化为集中、未知转化为已知、动转化为静、部分转化为整体、还有一般与特殊、数与形、相等与不等之间的相互转化。

数形结合的数学思想:数与形是数学教学研究对象的两个侧面,把数量关系和空间形式结合起来去分析问题、解决问题,就是数形结合思想。

数、式能反映图形的`准确性,图形能增强数、式的直观性,“数形结合”可以调动和促进学生形象思维和抽象思维的协调发展,沟通数学知识之间的联系,从复杂的数量关系中凸显最本质的特征。

数形结合是研究数学问题的有效途径和重要策略,它体现了数学的和谐美、统一美。

华罗庚先生曾用“数缺形时少直觉,形少数时难入微”作高度的概括。

常见的情形为:利用数轴、函数的图象和性质、几何模型、方程与不等式以及数式特征可以将代数问题转化为集合问题;利用代数计算、几何图形特征可以将几何问题转化为代数问题;利用三角知识解决几何问题;利用统计图表让统计数据更形象更直观等。

函数与方程的思想:函数的思想就是利用运动与变化的观点、集合与对应的思想,去分析和研究数学中的等量关系,建立和构造函数关系,再运用函数的图象和性质去分析问题,达到转化问题的目的,从而使问题获得解决。

方程的思想就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。

函数与方程的思想实际是就是一种模型化的思想。

常见的情形为:数字问题、面积问题、几何问题方程化;应用函数思想解方程问题、不等问题、几何问题、实际问题;利用方程作判断;构建方程模型探求实际问题;应用函数设计方案和探求面积等。

常用数学方法如:配方法、消元法、换元法、待定系数法、构造法、主元法、面积法、类比法、参数法、降次法、图表法、估算法、分析法、综合法、拼凑法、割补法、反证法、倒数法、同一法等。

数学的转化思想方法初中数学中蕴含的数学思想很多,其中最主要的数学思想方法包括转化思想、数形结合思想、分类讨论思想、函数与方程思想等.(1)转化思想.转化思想就是人们将需要解决的问题,通过演绎、归纳等转化手段,归结为另一种相对容易解决或已经有解决方法的问题,从而使原来的问题得到解决.转化思想体现在数学解题过程中就是将未知的、陌生的、复杂的问题通过演绎和归纳转化为已知的、熟悉的、简单的问题.初中数学中诸如化繁为简、化难为易、化未知为已知等均是转化思想的具体体现.具体而言,代数式中加法与减法的转化,乘法与除法的转化,用换元法解方程,在几何中添加辅助线,将四边形的问题转化为三角形的问题,将一些角转化为圆周角并利用圆的知识解决问题等等都体现了转化思想.在初中数学中,转化思想运用的最为广泛.(2)数形结合思想.数学是研究现实世界空间形式和数量关系的科学,因而,在某种程度上可以说数学研究是围绕着数与形展开的.初中数学中的“数”就是代数式、方程、函数、不等式等符号表达式,初中数学中的“形”就是图形、图象、曲线等形象表达式.数形结合思想的实质是将抽象的数学语言(“数”)与直观的图象(“形“)结合起来,数形结合思想的关键就是抓住“数”与“形”之间本质上的联系,以“形”直观地表达“数”,以“数”精确地研究“形”,实现代数与几何之间的相互转化.数形结合思想包括“以形助数”和“以数辅形”两个方面,它可以使代数问题几何化,几何问题代数化.“数无形时不直观,形无数时难入微.”数形结合是研究数学、解决数学问题的重要思想,在初中数学中有着广泛应用.譬如,在初中数学中,通过数轴将数与点对应,通过直角坐标系将函数与图象对应均体现了数形结合思想的应用.再比如,用数形结合的思想相反数、绝对值等概念,学习有理数大小比较的法则,研究函数的性质等,从形象思维过渡到抽象思维,从而显著降低了学习难度.(3)分类讨论思想.分类讨论思想就是根据数学对象本质属性的共同点和差异点,将数学对象区分为不同的种类.分类是以比较为基础的,它有助于揭示数学对象之间的内在联系与规律,有助于学生总结归纳数学知识、解决数学问题.譬如,初中数学从整体上看分为代数、几何、概率统计等几大版块,并分别采用不同方法进行研究,就是分类思想的体现.具体而言,实数的分类,方程的分类、三角形的分类、函数的分类、统计量的分类等等,都是分类思想的具体体现.分类思想在初中数学中有大量运用,从初中数学内容的组织与展开到数学概念的界定与划分再到数学问题的分析与解决都大量运用着分类思想.(4)函数与方程思想.函数与方程思想就是用函数的观点和方法分析问题、解决问题.函数思想是客观世界中事物运动变化、相互联系、相互制约的普遍规律在数学中的具体反映.函数与方程思想的本质是变量之间的对应,即用变化的观点和函数的形式将所研究的数量关系表示出来,然后用函数的性质进行研究,从而使问题获得解决.如果函数的形式用解析式的方式表示,那么就可以将函数解析式看作方程,并通过解方程和对方程的研究使问题得到解决,这就是方程思想.譬如初中数学中大量涉及一次函数、反比例函数、二次函数等内容的数学问题都要用到函数与方程思想来解决.由于函数思想与方程思想的内容和形式相一致,因而往往将其并称为函数与方程思想,并将二者结合学习与运用。

除上述几种主要的数学思想之外,初中数学中还有集合思想、对应思想、符号化思想、公理化思想等.初中数学主要包括如下基本的数学方法:(1)几种重要的科学思维方法:比较与分类、观察与尝试、分析与综合、概括与抽象、特殊与一般、归纳与类比等;(2)几种重要的推理方法:完全归纳法、综合法、分析法、反证法、演绎法等;(3)几种常用的求解方法:待定系数法、数学建模法、配方法、消元法、换元法、构造法、坐标法、参数法等.1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2—4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的。

【数学的转化思想方法】。

相关文档
最新文档