5-2平面简谐波的波动方程详解

合集下载

右行波的波动方程。

右行波的波动方程。

波速与介质的关系 通过波在介质中传播的动 力分析,再与波动方程相 比较,可得波的传播速度 的大小只取决于介质的弹 力与质元惯性。
2 y 2 x A 2 cos t 2 x u u 由上两式有:
e.g.流体中的纵波(如声波) K u , K是体积模量
是无声波时的流体 2 y 1 2 m y 2 RT pV 2 2 理想气体中的纵波(声波)速 x u t Mm
10
x
u t
x 五、波动微分方程
y x A sin t t u y x A sin t x u u 2 y x 2 A cos t 2 t u
x 由 y A cos t u

1
3.
§5-2 平面简谐波的波动方程(波函数) y0 A cos(t 0 ) 横波
纵波
y
二. 简谐波(harmonic waves) 波源作简谐振动
平面简谐波: (plane harmonic waves) 三.平面简谐波的波动方程 波动方程的一般表示:
O
u
p
X
x
y yt , x ----波函数

p点的相位超前于O点相位: x 2x u 则: p点的运动方程,
也就是左行波的波方程. x y( x , t ) A cos[ ( t + ) 0 ] u
7
四、波动方程的物理意义 1. x = x 0 (常数)
y( t ) A cos(t
表示在 t 1 时刻的波形
波的动力学微分方程 波速与介质的关系 通过波在介质中传播的动 力分析,再与波动方程相 比较,可得波的传播速度 的大小只取决于介质的弹 力与质元惯性。

第5章 习题解答

第5章 习题解答

第5章 习题与答案5-1 机械波的表达式为y = 0.03cos6π(t + 0.01x ) (SI) ,则[ ] (A) 其振幅为3 m(B) 其周期为s 31(C) 其波速为10 m/s (D)波沿x 轴正向传播 [答案:B]5-2 一平面简谐波,波速u =5m · s -1. t = 3 s 时波形曲线如题5-2图所示. 则x =0处的振动方程为[ ](A)y =2×10-2cos(πt /2-π/2) ( S I ) . (B) y =2×10-2cos(πt +π ) ( S I ) . (C) y =2×10-2cos(πt /2+π/2) ( S I ) .(D) y =2×10- 2cos(πt -3π/2) ( S I ) .[答案:A]5-3 如题5-3图所示,两相干波源s 1和s 2相距λ/4(λ为波长), s 1的位相比s 2的位相超前π/2 ,在s 1、s 2的连线上, s 1外侧各点(例如P 点)两波引起的两谐振动的位相差是[ ](A) 0 . (B) π . (C) π /2 . (D) 3π/2 . [答案:B]5-4 一平面简谐波沿ox 正方向传播,波动表达式为]2)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形如题5-5图中的哪一个? [ ][答案:B]5-5 横波以波速u 沿x 轴负方向传播.t 时刻波形曲线如题5-5图所示.则该时刻 [ ](A) A 点振动速度大于零 (B) B 点静止不动ux (m)y (10-2m)· · · · · · · 0 51015 20 25 -2题5-2图题5-4图题5-5图-(C) C 点向下运动 (D) D 点振动速度小于零 [答案:D]5-6 一平面简谐波沿x 轴正方向传播,t = 0 时刻的波形如题5-6图所示,则P 处质点的振动在t = 0时刻的旋转矢量图是[ ][答案:A]5-7 一简谐波沿x 轴正方向传播,t = T /4时的波形曲线如题5-7图所示.若振动以余弦函数表示,且此题各点振动的初相取-π 到π 之间的值,则 [ ] (A) O 点的初相为00=φ(B) 1点的初相为π-=211φ(C) 2点的初相为π=2φ (D) 3点的初相为π-=213φ [答案:D]5-8 在驻波中,两个相邻波节间各质点的振动[ ](A) 振幅相同,相位相同 (B) 振幅不同,相位相同 (C) 振幅相同,相位不同 (D) 振幅不同,相位不同 [答案:B]5-9 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中:[ ](A) 它的动能转化为势能. (B) 它的势能转化为动能.(C) 它从相邻的一段质元获得能量其能量逐渐增大. (D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小. [答案:D]ωS A O ′ωSA O ′ωωSAO ′(A)(B)(C)(D)S题5-6图5-10 一横波的波动方程是))(4.0100(2sin 02.0SI x t y -=π,则振幅是__________,波长是__________,频率是__________,波的传播速度是__________。

平面简谐波的波动方程.ppt

平面简谐波的波动方程.ppt

0 ]
任意一质点为坐标原点的波动方程
一平面波在介质中以速度u=20m/s沿直线传播,
已知A的振动方程为
yA 3cos(4,写t)出分别以
A、B点为坐标原点的波动方程。
8m 5m 9m
u
C BA
D
x
解:已知u=20m/s,ω=4π,
T 2 0.5s
A点

yA 3cos(4 t)
(1)O点振动方程
yO

0.1cos(200
t

3 2

以O点为原点的波动方程 y 0.1cos[200
) (
t

x) 400

3 2

]
(2)写出距原点为2m处的质点P的振动方程及以此点为
原点的波动方程;
解:(2)由波动方程可得P (x=2m )处的振动方程:
yP

0.1cos[200 (t
对同一质点,相邻两个时刻位相差为:

(t2
t1)

2
T
t
时间周期性
时间周期性
y
t T
对同一质点,相邻两个时刻位相差为:
(t2
位移差与位相差
t1)

2
T
t
Δt T 2T 3T 4T 5T … Δφ 2π 4π 6π 8π 10π …
6.2 平面简谐波的波动方程
2、波动方程物理意义_3
2、波动方程物理意义_行波
例题
x ut
由图可知:x 处 t 时刻振动状态经Δt ,传播到x+Δx 处;即 t 时刻x 处 振动状态与t +Δt 时刻x+Δx 处振动状态完全相同。

第二节 平面简谐波的波动方程

第二节 平面简谐波的波动方程
上页 下页 返回 退出
解: 由题意 波长 周期
u 0.40 m
T 1 8105 s

(1)原点处质点的振动表达式
y0 A cost 0.1103 cos(25103 t) m
(2)波函数
y Acos(t x)
u

0.1103
cos


y

Acos t

2 x1

上式代表x1处质点在其平衡位置附近以角频率
作简谐运动。
y
A
O
t
上页 下页 返回 退出
t 一定:令t=t1,则质点位移y 仅是x 的函数。

y

A
cos

t1

2 x

以y为纵坐标、x 为横坐标,得到一条余弦曲线,
它是t1时刻波线上各个质点偏离各自平衡位置的位移 所构成的波形曲线(波形图)。

y
u
A
x

上页 下页 返回 退出
沿波线方向,任意两点x1、x2的简谐运动相位差为:

2
1

2
x2 x1


2
x

x、t 都变化:
实线:t1 时刻波形;虚线:t2 时刻波形
y
u
o
x
x1 x
上页 下页 返回 退出

y
u
当t=t1时,y

A
cos


t1

0.5
M1
M2
0.4
0.2
a
0
b
0.2 10 20 30 40 50 60 70

大学物理学课件-平面简谐波规律

大学物理学课件-平面简谐波规律
(2) 当 t = t0固定时,给出 t0 时刻空间各点位移分布 对应函数曲线—— t0时刻波形图.
y 波形曲线
0
t = t0
x
大学物理学
章目录 节目录 上一页 下一页
5.2 平面简谐波规律
3、如x、t 均变化,波函数表示波形沿传播方向
的运动情况
t 时刻,x处质点的相位
(t x )
u
t 时t 刻, x 处 质Δx点的相位
dWk
1 2
A2 2
sin
2
(t
x u
)dV
2) 介质元的弹性势能:
dW p
1 2
k(dy
)2
dW p1 2来自A2 2sin2(t
x u
) dV
dWk
3) 介质元的总能量:
dW
dWk
dWp
A2 2
sin2
(t
x u
)
dV
大学物理学
章目录 节目录 上一页 下一页
5.2 平面简谐波规律
dW
dWk
dWp
(t
1)] 8
在下列情况下试求波函数(设波速为u):
(1) 以 A 为原点; (2) 以 B 为原点;
x1
x
BA
(3) 若u沿x 轴负向,以上两种情况又如何?
解: (1)在x轴上任取一点P ,
该点振动方程为:
yp
Acos[4π
(t
x u
1)] 8
x1
u
x
BA P
波函数为: y(x,t) Acos[4π (t x 1)] u8
y Acos[t kx ]
k 2
大学物理学
章目录 节目录 上一页 下一页

第二节 平面简谐波波动方程

第二节 平面简谐波波动方程

§ 9.2 平面简谐波的波动方程一、平面简谐波波动方程简谐波:如果波源和介质中的各质点都持续地作简谐振动,这种波称为简谐波。

平面简谐波:波面为平面的简谐波。

平面简谐波也称为一维简谐波,其表达式也称波函数(wave function)沿+x 方向传播的一维简谐波 (波速u ,振动角频率为ω),假设媒质无吸收(质元振幅均为A )介质中任一质点(坐标为 x )相对其平衡位置的位移(坐标为 y )随时间的变化关系,即 称为波动方程。

设O 点处质点的振动方程为波线上坐标为x 的任意点P 处质点的振动方程振动从O 点传到P 点所需的时间为t 时刻点 P 的振动与 t-x/u 时刻点O 的振动状态相同,只是落后了Δt 点P 振动方程 式中称上式为沿x 轴正向传播的平面简谐波的波动方程(,)y x t cos O y A tω=(,)P y f x t ==?x t u∆=cos ()P xy A t uω=-2πων=u λν=xo任一点p参考点a波速u波方程的其它表示式讨论:(1)如果原点的初相位不为零设:点O振动方程则:波动方程为(2)如果平面简谐波沿x轴负方向传播则P点处质点相位比O点处质点的相位超前波动方程为二、波动方程的物理意义由从几方面讨论1 当x 一定时(设x =x0,即考察波线上某一点x0) 给出x =x0处质点的振动方程即x0处质元的振动表达式,表示x处的质点在各个不同的时刻位移随时间的变化情况,由它画出的曲线是x0处质元的振动曲线。

2 当t一定时(设t = t0,即在某一时刻t0),给出t= t0时刻各质点的位移y分布情况反映t0时刻各不同x处质元的位移状况,即同一时刻x轴上各个质点离开它们平c o s2π()xy A tνλ=-[]c o sOy A tωϕ=+c o s[2π()]xy A tνϕλ=-+c o s[2π()]xy A tνϕλ=++c o s[2π()]xy A tνϕλ=-+()y y t=()y y x=c o s[2π()]xy A tνϕλ=-+2c o s()y A t xπωλ=-c o s()xy A tuωϕ⎡⎤=-+⎢⎥⎣⎦c o s()xy A tuωϕ⎡⎤=++⎢⎥⎣⎦c o s()xy A tuωϕ⎡⎤=-+⎢⎥⎣⎦衡位置的位移分布,由它画出的曲线即t 0时刻的波形曲线。

平面简谐波的运动方程

平面简谐波的运动方程
y( x,t ) 310-2 cos(4 π t - kx) k 2 5
(310-2 ) cos(4πt - x )
5
u
8m 5m 9m
C
B oA
Dx
20
5-2 平面简谐波的波函数
(2) 以 B 为坐标原点,写出波动方程
yA y(5,t ) (310-2 ) cos(4 π t )
t0 x0
y 0, v y 0 - π
t
2
y cos[2π( t - x ) - π ] (m) 2.0 2.0 2
cos(t - x - )
2
O
y
A
18
5-2 平面简谐波的波函数
例2 一平面简谐波以速度u 20 m s-1
沿直线传播,波线上点 A 的简谐运动方 程
yA 310-2 cos(4 π t); ( y, t单位分别为m,s).
5
yC
y(-13,t )
(310-2 ) cos[4 π t
13 π] 5
yD
y(9,t )
( 3 10-2
)cos[4 π t
-
9 5
π]
u
yA (310 -2 )co1s(04mπ t )
8m 5m 9m
C
B oA
Dx
22
5-2 平面简谐波的波函数
(3) 写出传播方向上点C、D的运动方程
5-2 平面简谐波的波函数
5.2.1 平面简谐波的运动方程--波函数 一、波长 波的周期和频率 波速
1 波长
波传播方向上相邻两振动状态完全相同
的质点间的距离(一完整波的长度).
Ay
u
O
x
-A

平面简谐波的波动方程

平面简谐波的波动方程
方向的运动情况.
y
u
t 时刻
tt时刻
O
xx
x
从t时到t+∆x时 : 波线上各质点的相位均向前传播 ∆x 即:
xu t (行波)
例1 已知波动方程如下,求波长、周期和波速.
y ( 5 c) c m π [ o 2 (s - .) 1 t5 ( 0 .0 0 c- 1 s ) m 1 x ].
t
u
a 2 t2 y 2 A co (t su x )[ ]
严格区分两种速度(波速和振动速度)
波速(相速)
u
T
v y A si (n t x [ ) ]
t
u
二 波动方程的物理意义
y A co ( t x ) s ] [A c2 o π ( t s x ) [ ]
y co ( t x s ) u [ ] c2 o ( t s T x ) [] m
u2
222
2)求t1 .0 s波形图.
y 1 .0 co 2π (st[x)π ] m 2 .02 .0 2
t 1 .0 s
波形方程
y1.0coπsπ (x) m 2
1.0siπ nx)( m
波形图为 y / m
pO

x
p 2 π x 2 π T x u u x ypA co ts (p)
点 P 振动方程
ypAcos(tu x)
如果原点的 初相位不为零
y A
u
x0,0 O A
x
点 O 振动方程 y O A co t s)(
波 yAco(st [x)]u沿x轴正向
动 方
yAco(st [u x)]u沿 x轴负向
u
T
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u 沿 x 轴正向 u 沿 x 轴负向
第5章 机械波
5–2 平面简谐波的波动方程 平面简谐波波函数的其它形式
大学物理学 (第3版)
t y A cos[2 π( T
y A cos[2 t
y A cos[ 2
2 x
x ) 0 ] λ

0 ]

(ut x) 0 ] A cos[k (ut x) 0 ]
x y A cos (t ) (沿x轴负向传播) u
第5章 机械波
5–2 平面简谐波的波动方程 如果原点的
大学物理学 (第3版)
A
O
y
u

初相位不为零
x
x 0, 0 0 A
点 O 振动方程
y0 A cos(t 0 )
波 函 数
x y A cos[ (t ) 0 ] u x y A cos[ (t ) 0 ] u
2 y G 2 y 2 t x2 2 y E 2 y 2 t x 2
G为切变模量
固体内弹性平面纵波
E为杨氏模量
张紧柔软线绳上传播横波
2 y T 2 y 2 t x 2
T为线绳所受张力,为线密度:单位长度线绳的质量
第5章 机械波
5–2 平面简谐波的波动方程 2、波速 固体中弹性横波 固体中弹性纵波 张紧软绳中横波
x0 x0 2 π u λ
y ( x, t ) y ( x, t T ) (波具有时间的周期性)
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
波线上各点的简谐运动图
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
(2) 当 t t0 一定时,位移y只是坐标x的函数.
2 π 波矢 k
第5章 机械波
5–2 平面简谐波的波动方程 讨论 和
大学物理学 (第3版)
t x y A cos 2π ( ) (向x 轴正向传播 , π ) T x y A cos (t ) (向x 轴负向传播 , π ) u 2)平面简谐波的波函数为 y A cos(Bt Cx)
5–2 平面简谐波的波动方程
大学物理学 (第3版)
一 平面简谐波的波动方程 介质中任一质点(坐标为 x)相对其平衡位置的 位移(坐标为 y)随时间的变化关系,即 y ( x, t ) 称 为波函数.
y y ( x, t )
各质点相对平 衡位置的位移
波线上各质点 平衡位置
简谐波:在均匀的、无吸收的介质中,波源作 简谐运动时,在介质中所形成的波. 平面简谐波:波面为平面的简谐波.
x y A cos[ (t0 ) 0 ] u
称为t0时刻的波形方程.
同一质点在相邻两个 时刻的振动位相差为
t2 t1 (t2 t1 ) 2π T
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
(3)若t,x均变化,波函数表示波形沿传播方向的运 动情况(行波).
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
以速度u 沿
x 轴正向传播的
平面简谐波 . 令 原点O 的初相为 零,其振动方程 时间推 迟方法
yO A cos t
yO A cos t
点O 的振动状态
t-x/u时刻点O 的运动
第5章 机械波
x P点在t时刻的振动方程 y A cos (t ) u

x t u
点P
t 时刻点 P 的运动
5–2 平面简谐波的波动方程
大学物理学 (第3版)
波动方程
y A
O
u
x
P
*
x y A cos (t ) u
A

x
点 O 振动方程
yo A cos t x 0 , 0
x P点的振动超前O点的振动,超前的时间为 u
点 P 振动方程
大学物理学 (第3版)
u
b
t=T/4
c
( π ~ π ) A o π O y


O
A

x

O
A b 0 y
π c 2
A
y
π a 2
A
O

yห้องสมุดไป่ตู้
第5章 机械波
5–2 平面简谐波的波动方程
大学物理学 (第3版)
*三 波动微分方程与波速
1、波动微分方程 弹性媒质中横波
大学物理学 (第3版)
u G / u// E / u T /
G为切变模量 E为杨氏模量
T为线绳所受张力,为线密度:单位长度线绳的质量
流体中纵波
第5章 机械波
u// B /
B为流体的体变模量
5–2 平面简谐波的波动方程
y 0.1cos
大学物理学 (第3版)
例5.1 已知波动方程为 25t x ,其中 10 x,y的单位为m,t的单位为s,求(1)振幅、波长、 周期、波速;(2)距原点为8m和10m两点处质点振动 的位相差;(3)波线上某质点在时间间隔0.2s内的位 相差. 解 (1)
1)给出下列波函数所表示的波的传播方向 x 0 点的初相位.
式中 A, B, C 为正常数,求波长、波速、波传播方 向上相距为 d 的两点间的相位差.
y A cos(Bt Cx)
2π T B
2π C
第5章 机械波
B u T C

t x y A cos 2 π ( ) T
x t时刻: y ( x) A cos[ (t ) 0 ] u x t t时刻: y ( x) A cos[ (t t ) 0 ] u y(t t , x x) y(t , x)
第5章 机械波
5–2 平面简谐波的波动方程 y 讨论:如图简谐 t =0 A 波以余弦函数表示, 求 O、a、b、c 各点 a O 振动初相位.
2 π d

dC
5–2 平面简谐波的波动方程
大学物理学 (第3版)

波动方程的物理意义
(1) 当x=x0为给定值时, 波函数表示该点的简谐运 动方程,并给出该点与点 O 振动的相位差.
x0 x0 y (t ) A cos( t 0 ) A cos( t 2 0 ) u
相关文档
最新文档