第二章误差分析

合集下载

分析化学第二章 误差与分析

分析化学第二章 误差与分析

• 乙 • •• •••
•精密度好,准确 度不好,系统误 差大
•准确度、精密度都 好,系统误差、偶 然误差小
• 丙 ••• ••• • 丁 •• • • • •
•精密度较差,接近 真值是因为正负误差 彼此抵销
•精密度、准确度差。系统 误差、偶然误差大
(1)精密度是保证准确度的先决条件。精密度差, 所测得结果不可靠,就失去了衡量准确度的前提。
由于绝对误差不能反映出误差在结果中所占 的比例,不能用于比较两个或多个测量值的准确 度,为了进行比较,人们引入相对误差的概念。
2.相对误差(Er):
绝对误差δ在真实值μ或测量值 x 中占的百分率
Er
相对误差%
μ
100%
注:μ未知,δ已知,可用测量值 χ代替μ
Er
相对误差%
x
100%
相对误差是反映了误差在测量结果中占的比例, 同样可正可负,但无单位。
0.12 9.2104
1.1104
25 30
2.极值误差法
❖指导思想:一个测量结果各步骤测量值的 误差既是最大的,又是叠加的。
加减法:
乘除法:
四、提高分析结果准确度的方法
1.选择恰当的分析方法
例:测全Fe含量
K2Cr2O7法 比色法
40.20% ±0.2% 40.20% ±2.0%
2.减小测量误差
些,以使其绝对误差较小;而对低含量的组
分,测定的相对误差可以大些,但其绝对误
差仍然较小。
Er
相对误差%
x
100%
(二)精密度与偏差
精密度是指在相同的条件下,多次平 行测量的各测量值(实验值)之间相互接 近的程度,它体现了测定结果的重复性。

过程参数检测及仪表第2章 误差分析及处理

过程参数检测及仪表第2章 误差分析及处理

按误差出现的规律,将下列误差进行分类
1、用一只电流表测量某电流,在相同条件下每隔一定时间重复 测量n次,测量数值间有一定的偏差。 2、用万用表测量电阻时,由于零点没有调整,测得的阻值始终 偏大。 3、由于仪表放置的位置问题,使观测人员只能从一个非正常角 度对指针式仪表读数,由此产生的读数误差。 4、由于仪表刻度(数值)不清楚,使用人员读错数据造成的误 差。 5、用热电偶测量温度,由于导线电阻引起的测量误差。 6、要求垂直安装的仪表,没有按照规定安装造成的测量误差。
b a c e d
t
曲线a是恒定系统误差 曲线b是线性变化系统误差 曲线c是非线性变化系统误差 曲线d是周期性变化系统误差 曲线e是复杂规律变化系统误差
再现性 --- 偏差(Deviation) 理论分析/实验验证 --- 原因和规律 --- 减少/消除
系统误差是有规律性的,因此可以 通过实验的方法或引入修正值的方 法计算修正,也可以重新调整测量 仪表的有关部件予以消除。
改变测量条件(如方向)--- 两次测量结果的误差符号相反 --- 平均值消除带有间隙特性的定值系统误差 例:千分尺 --- 空行程(刻度变化,量杆不动)--- 系统误差 正反两个方向对准标志线——不含系统误差-a, 空程引起误差-ε 顺时针 ---
d = a+ε
逆时针 --- d ' = a − ε 正确值 --- a = ( d + d ' ) / 2
第二章 测量误差的分析与处理
第一节 测量误差的概念
实验结果 --- 实验数据 --- 与其理论期望值不完全相同
1、测量误差的产生原因 (1)检测系统误差 (2)环境误差 (3)方法误差 (4)人员误差
2、测量误差的分类

第二章 误差及分析数据的统计处理

第二章 误差及分析数据的统计处理

第二章误差及分析数据的统计处理§2-1 定量分析中的误差定量分析的任务是准确测定试样中组分的含量。

但是,即使是技术很熟练的分析工作者,用最完善的分析方法和最精密的仪器,对同一样品进行多次测定,其结果也不会完全一样。

这说明客观上存在着难以避免的误差。

因此,我们在进行定量测量时,不仅要得到被测组分的含量,而且还应对分析结果作出评价,判断其准确性(可靠程度),找出产生误差的原因,并采取有效的措施,减少误差。

一、误差的表示:从理论上说,样品中某一组分的含量必有一个客观存在的真实数据,称之为“真值”。

测定值(x)与真实值(T)之差称为误差(绝对误差)。

误差 E = X - T误差的大小反映了测定值与真实值之间的符合程度,也即测定结果的准确度。

测定值> 真实值误差为正测定值< 真实值误差为负分析结果的准确度也常用相对误差表示。

相对误差E r = E / T×100%= (X-T) / T×100%用相对误差表示测定结果的准确度更为确切。

二、误差的分类根据误差的性质与产生原因,可将误差分为:系统误差、随机误差和过失误差三类。

(一)系统误差系统误差也称可定误差、可测误差或恒定误差。

系统误差是由某种固定原因引起的误差。

1、产生的原因(1)方法误差:是由于某一分析方法本身不够完善而造成的。

如滴定分析中所选用的指示剂的变色点与化学计量点不相符;又如分析中干扰离子的影响未消除等,都系统的影响测定结果偏高或偏低。

(2)仪器误差:是由于所用仪器本身不准确而造成的。

如滴定管刻度不准(1ml刻度内只有9个分度值),天平两臂不等长等。

(3)试剂误差:是由于实验时所使用的试剂或蒸馏水不纯造成的。

例如配制标准溶液所用试剂的纯度要求在99.9%;再如:测定水的硬度时,若所用的蒸馏水含Ca2+、Mg2+等离子,将使测定结果系统偏高。

(4)操作误差:是由于操作人员一些主观上的原因而造成的。

比如,某些指示剂的颜色由黄色变到橙色即应停止滴定,而有的人由于视觉原因总是滴到偏红色才停止,从而造成误差。

第二章 误差分析

第二章 误差分析

1.57 1.64 1.69 1.62 1.55 1.53 1.62 1.54 1.68
1.60 1.63 1.70 1.60 1.52 1.59 1.65 1.61 1.69
1.63 1.67 1.58 1.57 1.54 1.62 1.65
1.66 1.60 1.60
频率分布表和绘制出频率分布直方图 1. 算出极差: R=1.74-1.49=0.25
三.标准正态分布由于μ, 不同就有不同的 正态分布,曲线也就随之变化,为使用方便, 作如下变换:
1 y f(x) e 2 dx du
u
xm
(x m )2 2
2

1 y f ( x) e 2 u2 1 2 f ( x)dx e du (u) du 2
x
sx s n n (n )
6.极差:R=xmax-xmin
三. 准确度与精密度的关系
系统误差 准确度 随机误差
甲 乙 丙
精密度
T
x
精密度高、准确度低 精密度高、准确度高
精密度低 精密度低、准确度低

结 论:
① 高精密度是获得高准确度的前提条件,准确 度高一定要求精密度高 ② 精密度高,准确度不一定就高,只有消除了 系统误差,高精密度才能保证高的准确度
Xi 10.0 10.1 9.3 10.2 9.9 9.8 10.5 9.8 10.3 9.9
第二批数据 X i- X (Xi-X)2 0.00 ± 0.0 +0.1 0.01 -0.7* 0.49 +0.2 0.04 -0.1 0.01 -0.2 0.04 +0.5* 0.25 -0.2 0.04 +0.3 0.09

第二章药物分析基础误差分析

第二章药物分析基础误差分析

解:浓度公式 C W
MV
按相对误差的传递公式计算
C W M V
CW M V
W W前 W后
W W前 W后
M 0
C W前 W后 V
C
W
V
0.2 0.3 0.07
4302.4
250
0.00016 0.02%
C 0.02% 0.1003mol / L 0.00002mol / L
(一)系统误差及其产生原因 (二)偶然误差及其产生原因
(一)系统误差(可定误差):
由可定原因产生
1.特点:具单向性(大小、正负一定 ) 可消除(原因固定) 重复测定重复出现
2.分类: 按来源分 a.方法误差:方法不恰当产生 b.仪器与试剂误差:仪器不精确和试剂中含被测 组分或不纯组分产生 c.操作误差: 操作方法不当引起
100%
x
100%
Er % x 100%
注:μ未知,δ已知,可用χ代替μ
测高含量组分,Er可小; 测低含量组分,Er可大
仪器分析法——测低含量组分,Er大 化学分析法——测高含量组分,Er小
实际工作中,相对误差比绝对误差常用
(二)精密度与偏差
1.精密度:平行测量的各测量值间的相互 接近程度
x
nx
(5)标准偏差:
x
n
(xi )2
i 1
n
μ已知
μ未知
(6)相对标准偏差(变异系数)
RSD Sx 100%
<
x
(三)准确度与精密度的关系
1. 准确度高,要求精密度一定高 但精密度好,准确度不一定高
2. 准确度反映了测量结果的正确性 精密度反映了测量结果的重现性
练习

第二章 误差和分析数据处理

第二章 误差和分析数据处理

课堂互动 下面是三位学生练习射击后的射击靶 图,请您用精密度或准确度的概念来评 价这三位学生的射击成绩。
二、系统误差和偶然误差
误差(error):测量值与真实值的差值
根据误差产生的原因及性质,可以将误差分为系统误 差和偶然误差。
1 系统误差 (systematic error) 又称可测误差,由某
§3 有效数字及计算规则
小问题:1与1.0和1.00相等吗? 答:在分析化学中1≠1.0≠1.00 一、有效数字(significant figure) 概念:分析工作中实际上能测量到的数字,除最后一 位为可疑数字,其余的数字都是确定的
如:分析天平称量:1.21 23 (g) 滴定管读数:23.20 (ml)
=0.17
S 0.17 RSD 100 % 100 % 1.1% 15.82 X
用标准偏差比用平均偏差更科学更准确。
例: 两组数据
(1) 0.11, -0.73, 0.24, 0.51, -0.14, 0.00, 0.30, -0.21,
n=8 n=8 d1=0.28 d2=0.28 s1>s2 s1=0.38 s2=0.29 (2) 0.18, 0.26, -0.25, -0.37, 0.32, -0.28, 0.31,-0.27
(1)绝对误差 (δ) : δ= x-μ (2) 相对误差(RE): R E= δ / μ× 100%
注:
注1:两种误差都有正、负值之分。
小问题1:
买猪肉1000斤少0.5斤和买1斤少0.5斤哪个误差大?
小问题2: 用分析天平称量两个样品,一个是0.0021克,另一 个是0.5432克,两个测量值的绝对误差都是0.0001 克,试通过计算相对误差来说明哪种表示法更好。

第二章测量数据处理及测量误差分析

第二章测量数据处理及测量误差分析

第二章测量数据处理及测量误差分析测量数据处理及测量误差分析是科学实验中非常重要的一个环节,它涉及到对实验数据进行整理、处理以及对测量误差进行分析、评估的过程。

本章主要包括数据的整理、数据处理的常用方法、误差分析和误差处理方法等内容。

一、数据的整理在进行数据整理之前,首先要明确实验的目的和要求,明确需要获得的数据类型和数据量,有针对性地进行数据测量和记录。

数据整理主要包括:1.数据记录:将实验过程中获得的原始数据按照一定的格式记录下来,包括数据名称、数据值、测量单位等。

2.数据清洗:对记录下来的数据进行初步的筛选和清理,去除明显的异常值和错误数据,保留有效和可靠的数据。

同时,要注意将数据转换为适当的统计量,如平均值、中位数、标准差等。

二、数据处理常用方法数据处理是对记录下来的数据进行统计、分析和加工的过程,常用的数据处理方法有:1.统计分析:包括计算数据的平均值、中位数、众数等统计量,分析数据的分布特征,进行图表的绘制和描述。

2.走势分析:通过时间序列数据的走势分析,观察数据的变化规律,判断数据是否存在趋势性、周期性等特征。

3.相关分析:用于研究两组或多组数据之间的相关性,包括相关系数的计算和相关关系的绘图等。

4.假设检验:通过已知的数据样本对一些假设的合理性进行检验,判断假设是否成立并进行统计推断。

三、误差分析误差是指测量结果与真实值之间的差异,它是不可避免的,但可以通过分析和处理来减小误差的影响。

误差分为系统误差和随机误差两种。

1.系统误差:主要源于测量仪器、测量方法和实验设计的不确定性,它会导致测量结果的整体偏移,常常是可检测和可纠正的。

调整测量仪器的零点、校正仪器的偏差、改进实验设计等方法可以减小系统误差的影响。

2.随机误差:主要源于测量过程中的各种随机因素,如环境的变化、测量操作的不精确等。

随机误差是不可避免的,通过多次重复测量可以获得多组数据,然后进行数据的平均处理和统计分析,可以减小随机误差的影响。

第二章误差分析讲解

第二章误差分析讲解
22
第三节 有限测量数据的统计处理
一、偶然(随机)误差的正态分布
同一矿石样品的n次测定值:
23
y
测量值的波动符合正态分布
y

1
2
exp
1 2 x源自2


µ -0 +
x(测量值) x-µ(误差)
y 表示概率密度
σ—总体标准偏差,表示数据的离散程度
μ—无限次测量的总体平均值,
即F

s12 s22
s1

s2

P一定时,查 F , f1, f2
注意:f1为大方差的自由度 f2为小方差的自由度
如F F ,则两组数据的精密度不存在显著性差异 ,f1, f2
如F F ,则两组数据的精密度存在显著性差异 ,f1, f2 33
练习
例:在吸光光度分析中,用一台旧仪器测定溶液的
由P 95%, f大 5,f小 3 F表 9.01
F F表 两仪器的精密度不存在显著性差异
34
(二)t检验(准确度显著性检验)
1. x 与µ比较
x
t
n
S
当t≥tα,f 存在显著性差异 当t<tα,f 不存在显著性差异
35
练习
例:采用某种新方法测定基准明矾中铝的百分含量, 得到以下九个分析结果,10.74%,10.77%, 10.77%,10.77%,10.81%,10.82%,10.73%, 10.86%,10.81%。试问采用新方法后,是否 引起系统误差?(P=95%)已知含量为10.77%。
26
2.t一定时,由于f不同, 则曲线形状不同,所包 括的面积不同,其概率 也不同。
27
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32
四、显著性检验 (一)F检验法(精密度显著性检验)
s12 即F 2 s1 s2 s2
P一定时,查 F , f1 , f2
注意:f1为大方差的自由度 f2为小方差的自由度
如F F,f , f ,则两组数据的精密度不存在显著性差异
1 2
如F F,f , f ,则两组数据的精密度存在显著性差异
解: n 9 f 9 1 8 x 10.79%, S 0.042%
t 10.79% 10.77% 0.042% 9 1.43
当P 0.95, f 8时,t0.05,8 2.31
因t t0.05,8 x与之间无显著性差异
36
2.两个样本值之间的比较 两组测定结果:n1 S1 n2 S2
x1 x2
(1)先进行F检验
(2)如果精密度之间无显著差异,再进行t检验
t
x1 x 2 sR
n1 n2 n1 n2
37
当S1≈S2时
合并标准偏差sR
x
n i 1
1i
x1
x
2 n i 1
2i
x2

2
n1 1 n2 1
sR


解:理解为在47.50% 0.10%的区间内 包括总体均值在内的概率为95%
31
练习
例2:对某未知试样中Cl-的百分含量进行测定,4次结果 为47.64%,47.69%,47.52%,47.55%,计算置信度 为90%,95%和99%时的总体均值μ的置信区间 解:
47.64% 47.69% 47.52% 47.55% x 47.60% 4
x u
(2)由少量测定结果均值估计μ的置信区间
x t sx x t
sx n
29
双侧置信区间 单侧置信区间
XL<µ <XU µ >XL 或者µ <XU
置信度越高,置信区间越大,估计区间包 含真值的可能性越高 。
30
例1:如何理解 47.50% 0.10% 置信度P 95%
5.与标准限度值比较时不应修约
20
三、运算规则
1. 加减运算
结果的位数取决于绝对误差最大的数据的位数
即以小数点后位数最少的数为准
例:
0.0121
25.64
绝对误差:0.0001
0.01
1.057
26.7091
0.001 26.71
21
2. 乘除运算时
有效数字的位数取决于相对误差最大的数据的位数。
8
精密度好, 准确度不好
精密度、 准确度都很好
精密度、 准确度都不好
9
二、系统误差和偶然误差
1. 系统误差
(1) 特点
a.对分析结果的影响比较恒定; (可定误差) 由可定原因产生
b.在同一条件下,重复测定, 重复出现;
c.影响准确度,不影响精密度; d.可以消除。
10
(2) 产生的原因
a.方法误差——选择的方法不够完善 例: 重量分析中沉淀的溶解损失; 滴定分析中指示剂选择不当。 b.仪器误差——仪器本身的缺陷 例: 天平两臂不等,砝码未校正; 滴定管,容量瓶未校正。 c.试剂误差——所用试剂有杂质 例:去离子水不合格; 试剂纯度不够 (含待测组份或干扰离子)。 d.操作误差——操作人员主观因素造成 例:对指示剂颜色辨别偏深或偏浅; 滴定管读数不准。
2、在指数表示形式中,有效位数不改变
2500
2.500×103
17
3、改变单位,不改变有效数字的位数 如: 24.01mL 24.0110-3 L 4、第一位数字大于8时,多取一位,如:8.48,按4位算 5、pH,pM,pK,lgC,lgK等对数值,其有效数字的 位数取决于小数部分(尾数)数字的位数 例:pH = 11.20 → [H+]= 6.3×10-12[mol/L] 两位
“误差”。在处理所得数据时,如发现由于过失引起的“误差”,
应该把该次测定结果弃去不用。
13
四、提高分析结果准确度的方法 (一)选择恰当的分析方法 (二)减少测量误差 1、减少偶然误差的影响——增加平行测定的次数 2、消除测量中的系统误差 (1)与经典方法进行比较(消除方法误差) (2)校准仪器(消除仪器误差) (3)对照试验:与标准试样的标准值比较 (4)回收试验 (5)空白试验(消除试剂误差)
s12 n1 1 s2 2 n2 1
n1 1 n2 1
在一定P时,查临界值表 t,f (总自由度f n1 n2 2)
ห้องสมุดไป่ตู้
19
2.只能对数字进行一次性修约
例:一次修约至两位有效数字
6.549 错误:→6.55 →6.6 正确:→6.5 2.451 →2.5 3.运算过程多保留一位有效数字 4.标准偏差和相对标准偏差一般保留两位有效数字
在作统计检验时,可多保留1~2位参与运算,修约
标准偏差,其结果应使准确度降低
例:S = 0.134 → 修约至0.14
第二章 误差和分析数据处理
1
概述
• 误差客观存在 • 计算误差,评估和表达结果的可靠性和精密度 • 了解原因和规律,减小误差,测量结果→真值 • 对分析数据进行科学处理
2
第一节 测量值的准确度和精密度
一、准确度和精密度 (一)准确度与误差 1.准确度定义(accuracy) 测量值与真实值的接近程度 2.绝对误差 (absolute error)——δ 测量值(x)与真实值(µ )之差 δ=x-µ 3.相对误差 (relative error)
由P 95%, f大 5,f小 3 F表 9.01
F F表 两仪器的精密度不存在显著性差异
34
(二)t检验(准确度显著性检验)
1. x 与µ 比较
t
x S
n
当t≥tα,f 存在显著性差异 当t<tα,f 不存在显著性差异
35
练习
例:采用某种新方法测定基准明矾中铝的百分含量, 得到以下九个分析结果,10.74%,10.77%, 10.77%,10.77%,10.81%,10.82%,10.73%, 10.86%,10.81%。试问采用新方法后,是否 引起系统误差?(P=95%)已知含量为10.77%。
1 2
33
练习
例:在吸光光度分析中,用一台旧仪器测定溶液的 吸光度6次,得标准偏差s1=0.055;用性能稍好的 新仪器测定4次,得到标准偏差s2=0.022。试问新 仪器的精密度是否显著地优于旧仪器? 2 n1 6, s1 0.055, s大 0.0030 解: 0.0030 F 6.25 2 0.00048 n2 4, s2 0.022, s小 0.00048
x t , f
sx
n
s
x x
n 1
2
0.08%
2.35 0.08% 47.60% 0.09% P 90% t0.10,3 2.35 47.60% 4 3.18 0.08% 47.60% 47.60% 0.13% P 95% t0.05,3 3.18 4 5.84 0.08% 47.60% 47.60% 0.23% P 99% t0.01,3 5.84 4
(2)标准值(相对真值) 通过高精密度测量到获得的更 接近真值的值。 获得标准值的试样为标准试样(标准参考物质) 经有权威机构认定并提供
6
(二)精密度与偏差 1.精密度 (precision) 平行测量的各测量值间的相互接近程度
2.偏差的表示方法:
(1)偏差
(2)平均偏差 (average deviation)
(3)相对平均偏差
(4)标准偏差
(5)相对标准偏差
在实际中多用相对标准偏差
7
(三)准确度与精密度的关系
1.准确度和精密度——分析结果的衡量指标。
(1) 准确度──分析结果与真实值的接近程度
(2) 精密度──几次平行测定结果相互接近程度 (3) 两者的关系 精密度是保证准确度的先决条件; 精密度高准确度不一定高; 准确度高精密度一定高。
22
第三节 有限测量数据的统计处理
一、偶然(随机)误差的正态分布
同一矿石样品的n次测定值:
23
y
测量值的波动符合正态分布
2 1 1 x y exp 2 2
µ 0 + x(测量值) x-µ( 误差 )
y 表示概率密度 σ—总体标准偏差,表示数据的离散程度 μ—无限次测量的总体平均值, x 表示测量值 e = 2.71828 N
18
二、有效数字的修约规则
1.四舍六入五留双 多余数字首位 ≤4 =5
舍去
≥6
进位
5后面数字不为0 进位
5后面数字为0,则如果5前 数字为奇数进位,为偶数舍 去
例如:14.2442 14.24 15.0251 15.03 15.0250 15.02
24.4863 15.0150
24.49 15.02
即以有效数字位数最少的数为准
例:(0.0325 5.103 60.06)/ 139.8 = 0.071179184 0.0712 0.0325 ±0.0001/0.0325 100%=±0.3%
5.103
60.06 139.8
±0.001 /5.103 100%=±0.02%
± 0.01 /60.06 100%=±0.02% ±0.1 /139.8 100% =±0.07%
90.7 3 0.1 0.11%
16
有效数字位数 绝对误差
相关文档
最新文档